डेडेकाइंड-मैकनील समापन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{redirect|डेडेकाइंड पूर्णता|कुछ अन्य संबंधित अवधारणाएँ|डेडेकाइंड पूर्णता}}
{{redirect|डेडेकाइंड पूर्णता|कुछ अन्य संबंधित अवधारणाएँ|डेडेकाइंड पूर्णता}}


[[File:Dedekind-Macneille completion.svg|thumb|240px|आंशिक रूप से अनुक्रम किए गए समूह का [[हस्से आरेख]] (बाएं) और इसका डेडेकाइंड-मैकनील समापन (दाएं)।]]गणित में, विशेष रूप से अनुक्रम सिद्धांत में, आंशिक रूप से अनुक्रम किए गए समूह को डेडेकाइंड-मैकनील समापन कहा जाता है। इसका नाम [[होलब्रुक मान मैकनील]] के नाम पर रखा गया था, जिनके 1937 के पेपर ने पहली बार इसे परिभाषित और निर्मित किया था, और यह [[तर्कसंगत संख्या|तर्कसंगत संख्याओं]] से [[वास्तविक संख्या|वास्तविक संख्याओं]] के निर्माण के लिए डेडेकाइंड द्वारा उपयोग किए गए [[डेडेकाइंड कट|डेडेकाइंड अलगाव]] को सामान्यीकृत करता है। इसे अलगाव द्वारा संपूर्णता या सामान्य संपूर्ण भी कहा जाता है।<ref>{{harvtxt|Davey| Priestley|2002|p=166}}; {{harvtxt|Schröder|2003|p=119}}.</ref> ka
[[File:Dedekind-Macneille completion.svg|thumb|240px|आंशिक रूप से अनुक्रम किए गए समूह का [[हस्से आरेख|आरेख]] (बाएं) और इसका डेडेकाइंड-मैकनील समापन (दाएं)।]]गणित में, विशेष रूप से अनुक्रम सिद्धांत में, आंशिक रूप से अनुक्रम किए गए समूह को '''डेडेकाइंड-मैकनील समापन''' कहा जाता है। इसका नाम [[होलब्रुक मान मैकनील]] के नाम पर रखा गया था, जिनके 1937 के पेपर ने पहली बार इसे परिभाषित और निर्मित किया था, और यह [[तर्कसंगत संख्या|तर्कसंगत संख्याओं]] से [[वास्तविक संख्या|वास्तविक संख्याओं]] के निर्माण के लिए डेडेकाइंड द्वारा उपयोग किए गए [[डेडेकाइंड कट|डेडेकाइंड अलगाव]] को सामान्यीकृत करता है। इसे अलगाव द्वारा संपूर्णता या सामान्य संपूर्ण भी कहा जाता है।<ref>{{harvtxt|Davey| Priestley|2002|p=166}}; {{harvtxt|Schröder|2003|p=119}}.</ref>
==अनुक्रम अंतर्निहित और नियम संपूर्णता==
==अनुक्रम अंतर्निहित और नियम संपूर्णता==
आंशिक रूप से अनुक्रम किए गए समूह (पोसमूह) में द्विआधारी संबंध के साथ तत्वों का एक [[सेट (गणित)|समूह (गणित)]] होता है {{math|''x'' ≤ ''y''}} तत्वों के युग्मों पर जो कि [[प्रतिवर्ती संबंध]] है ({{math|''x'' ≤ ''x''}} प्रत्येक x के लिए), [[सकर्मक संबंध]] (यदि {{math|''x'' ≤ ''y''}} और {{math|''y'' ≤ ''z''}} तब {{math|''x'' ≤ ''z''}}), और [[एंटीसिमेट्रिक संबंध|प्रतिसममिति संबंध]] (यदि दोनों {{math|''x'' ≤ ''y''}} और {{math|''y'' ≤ ''x''}} फिर {{math|1=''x'' = ''y''}}). [[पूर्णांक|संपूर्णांकों]] या वास्तविक संख्याओं पर सामान्य संख्यात्मक क्रम इन गुणों को संतुष्ट करते है, चूँकि, संख्याओं पर क्रम के विपरीत, आंशिक क्रम में दो तत्व हो सकते है जो अतुलनीय होते है: {{math|''x'' ≤ ''y''}} और {{math|''y'' ≤ ''x''}} प्राप्त होता है। आंशिक क्रम का एक और परिचित उदाहरण समूह के जोड़ पर [[सबसेट|उपसमूह]] अनुक्रमित ⊆ है।{{sfnp|Roman|2007}}
आंशिक रूप से अनुक्रम किए गए समूह (पोसमूह) में द्विआधारी संबंध के साथ तत्वों का एक [[सेट (गणित)|समूह (गणित)]] होता है {{math|''x'' ≤ ''y''}} तत्वों के युग्मों पर जो कि [[प्रतिवर्ती संबंध]] है ({{math|''x'' ≤ ''x''}} प्रत्येक x के लिए), [[सकर्मक संबंध]] (यदि {{math|''x'' ≤ ''y''}} और {{math|''y'' ≤ ''z''}} तब {{math|''x'' ≤ ''z''}}), और [[एंटीसिमेट्रिक संबंध|प्रतिसममिति संबंध]] (यदि दोनों {{math|''x'' ≤ ''y''}} और {{math|''y'' ≤ ''x''}} फिर {{math|1=''x'' = ''y''}}). [[पूर्णांक|संपूर्णांकों]] या वास्तविक संख्याओं पर सामान्य संख्यात्मक क्रम इन गुणों को संतुष्ट करते है, चूँकि, संख्याओं पर क्रम के विपरीत, आंशिक क्रम में दो तत्व हो सकते है जो अतुलनीय होते है: {{math|''x'' ≤ ''y''}} और {{math|''y'' ≤ ''x''}} प्राप्त होता है। आंशिक क्रम का एक और परिचित उदाहरण समूह के जोड़ पर [[सबसेट|उपसमूह]] अनुक्रमित ⊆ है।{{sfnp|Roman|2007}}


अगर {{mvar|S}} आंशिक रूप से अनुक्रम किया गया समूह है, संपूर्णता {{mvar|S}} का अर्थ है संपूर्ण नियम {{mvar|L}} के [[ऑर्डर-एम्बेडिंग|अनुक्रम-अंतर्निहित]] के साथ {{mvar|S}} में {{mvar|L}}.<ref>{{harvtxt|Schröder|2003}}, definition 5.3.1, p.&nbsp;119.</ref> संपूर्ण धारणा का अर्थ है कि तत्वों का प्रत्येक उपसमुच्चय {{mvar|L}} में एक अनंत और सर्वोच्च है, यह वास्तविक संख्याओं के अनुरूप गुणों का सामान्यीकरण करता है। अनुक्रम-अंतर्निहित की धारणा उन आवश्यकताओं को लागू करता है जो इसके अलग-अलग तत्वों को लागू करते है {{mvar|S}} को अलग-अलग तत्वों में अंकित किया जाता है {{mvar|L}}, और वह तत्वों की प्रत्येक जोड़ {{mvar|S}} में समान क्रम होता है {{mvar|L}} जैसे {{mvar|S}}. [[विस्तारित वास्तविक संख्या रेखा]] (+∞ और −∞ के साथ वास्तविक संख्याएं) तर्कसंगत संख्याओं के इस अर्थ में संपूर्ण है: तर्कसंगत संख्याओं का समूह {3, 3.1, 3.14, 3.141, 3.1415, 3.14159, ...} की कोई तर्कसंगत न्यूनतम ऊपरी सीमा नहीं होती है, लेकिन वास्तविक संख्याओं में इसकी सबसे कम ऊपरी सीमा होता है {{pi}}.{{sfnp|O'Leary|2015}}
यदि {{mvar|S}} आंशिक रूप से अनुक्रम किया गया समूह है, संपूर्णता {{mvar|S}} का अर्थ है संपूर्ण नियम {{mvar|L}} के [[ऑर्डर-एम्बेडिंग|अनुक्रम-अंतर्निहित]] के साथ {{mvar|S}} में {{mvar|L}}.<ref>{{harvtxt|Schröder|2003}}, definition 5.3.1, p.&nbsp;119.</ref> संपूर्ण धारणा का अर्थ है कि तत्वों का प्रत्येक उपसमुच्चय {{mvar|L}} में एक अनंत और सर्वोच्च है, यह वास्तविक संख्याओं के अनुरूप गुणों का सामान्यीकरण करता है। अनुक्रम-अंतर्निहित की धारणा उन आवश्यकताओं को लागू करता है जो इसके अलग-अलग तत्वों को लागू करते है {{mvar|S}} को अलग-अलग तत्वों में अंकित किया जाता है {{mvar|L}}, और वह तत्वों की प्रत्येक जोड़ {{mvar|S}} में समान क्रम होता है {{mvar|L}} जैसे {{mvar|S}}. [[विस्तारित वास्तविक संख्या रेखा]] (+∞ और −∞ के साथ वास्तविक संख्याएं) तर्कसंगत संख्याओं के इस अर्थ में संपूर्ण है: तर्कसंगत संख्याओं का समूह {3, 3.1, 3.14, 3.141, 3.1415, 3.14159, ...} की कोई तर्कसंगत न्यूनतम ऊपरी सीमा नहीं होती है, लेकिन वास्तविक संख्याओं में इसकी सबसे कम ऊपरी सीमा होता है {{pi}}.{{sfnp|O'Leary|2015}}


किसी दिए गए आंशिक रूप से अनुक्रम किए गए समूह में कई अलग-अलग संपूर्णताएँ हो सकती है। उदाहरण के लिए, किसी आंशिक रूप से अनुक्रम किए गए समूह का पूरा होना {{mvar|S}} उपसमुच्चय द्वारा क्रमित इसके निचले समुच्चय का समुच्चय होता है। {{mvar|S}} प्रत्येक तत्व को अंकित करके इस (संपूर्ण) नियम में अंतर्निहित होता है {{mvar|x}} तत्वों के निचले समूह के लिए जो इससे कम या इसके बराबर होता है {{mvar|x}}. परिणाम एक [[वितरणात्मक जाली|वितरणात्मक नियम]] होता है और इसका उपयोग बिरखॉफ के प्रतिनिधित्व प्रमेय में किया जाता है। चूँकि, इसमें संपूर्णता के लिए आवश्यकता से कहीं अधिक तत्व हो सकते है {{mvar|S}}.<ref>{{citation|title=Concept data analysis: theory and applications|first1=Claudio|last1=Carpineto|first2=Giovanni|last2=Romano|publisher=John Wiley and Sons|year=2004|isbn=978-0-470-85055-8|page=10}}.</ref> सभी संभावित नियम संपूर्णताओं में से, डेडेकाइंड-मैकनील संपूर्णता सबसे छोटा संपूर्ण नियम है {{mvar|S}} इसमें समाहित होते है।<ref name="smallest-completion"/>
किसी दिए गए आंशिक रूप से अनुक्रम किए गए समूह में कई अलग-अलग संपूर्णताएँ हो सकती है। उदाहरण के लिए, किसी आंशिक रूप से अनुक्रम किए गए समूह का पूरा होना {{mvar|S}} उपसमुच्चय द्वारा क्रमित इसके निचले समुच्चय का समुच्चय होता है। {{mvar|S}} प्रत्येक तत्व को अंकित करके इस (संपूर्ण) नियम में अंतर्निहित होता है {{mvar|x}} तत्वों के निचले समूह के लिए जो इससे कम या इसके बराबर होता है {{mvar|x}}. परिणाम एक [[वितरणात्मक जाली|वितरणात्मक नियम]] होता है और इसका उपयोग बिरखॉफ के प्रतिनिधित्व प्रमेय में किया जाता है। चूँकि, इसमें संपूर्णता के लिए आवश्यकता से कहीं अधिक तत्व हो सकते है {{mvar|S}}.<ref>{{citation|title=Concept data analysis: theory and applications|first1=Claudio|last1=Carpineto|first2=Giovanni|last2=Romano|publisher=John Wiley and Sons|year=2004|isbn=978-0-470-85055-8|page=10}}.</ref> सभी संभावित नियम संपूर्णताओं में से, डेडेकाइंड-मैकनील संपूर्णता सबसे छोटा संपूर्ण नियम है {{mvar|S}} इसमें समाहित होते है।<ref name="smallest-completion"/>
==परिभाषा==
==परिभाषा==
प्रत्येक उपसमुच्चय के लिए {{mvar|A}} आंशिक रूप से अनुक्रम किए गए समूह का होता है {{mvar|S}}, {{math|''A''<sup>u</sup>}} की [[ऊपरी सीमा]] के समुच्चय को निरूपित करें {{mvar|A}}, वह है, एक तत्व {{mvar|x}} का {{mvar|S}} से संबंधित {{math|''A''<sup>u</sup>}} जब कभी भी {{mvar|x}} प्रत्येक तत्व से बड़ा या उसके बराबर है {{mvar|A}}. सममित रूप से, चलो {{math|''A''<sup>l</sup>}} की निचली सीमाओं के समुच्चय को निरूपित करें {{mvar|A}}, वे तत्व जो प्रत्येक तत्व से कम या उसके बराबर है {{mvar|A}}. फिर डेडेकाइंड-मैकनील का समापन {{mvar|S}} में सभी उपसमुच्चय शामिल है {{mvar|A}} जिसके लिए
प्रत्येक उपसमुच्चय के लिए {{mvar|A}} आंशिक रूप से अनुक्रम किया गया समूह होता है {{mvar|S}}, {{math|''A''<sup>u</sup>}} [[ऊपरी सीमा]] के समुच्चय को निरूपित करता है {{mvar|A}}, एक तत्व {{mvar|x}} का {{mvar|S}} से संबंधित {{math|''A''<sup>u</sup>}} जब कभी भी {{mvar|x}} प्रत्येक तत्व से बड़ा या उसके बराबर होता है {{mvar|A}}. सममित रूप से, {{math|''A''<sup>l</sup>}} की निचली सीमाओं के समुच्चय को निरूपित करता है {{mvar|A}}, वे तत्व जो प्रत्येक तत्व से कम या उसके बराबर होते है {{mvar|A}}. फिर डेडेकाइंड-मैकनील का समापन {{mvar|S}} में उपसमुच्चय सम्मलित होता है {{mvar|A}} जिसके लिए
:{{math|1=(''A''<sup>u</sup>)<sup>l</sup> = ''A''}},
:{{math|1=(''A''<sup>u</sup>)<sup>l</sup> = ''A''}},
इसे शामिल करके आदेश दिया गया है: {{math|''A'' ≤ ''B''}} संपूर्णता में यदि और केवल यदि {{math|''A'' ⊆ ''B''}} संपत्तियां।<ref name=def/>
इसे सम्मलित करके अनुक्रमित किया गया है: {{math|''A'' ≤ ''B''}} संपूर्णता में {{math|''A'' ⊆ ''B''}} स्थितियाँ होती है।<ref name=def/>


तत्व {{mvar|x}} का {{mvar|S}} अपने [[आदर्श (आदेश सिद्धांत)]], समूह के रूप में संपूर्णता में एम्बेड करता है {{math|↓<sub>''x''</sub>}}से कम या उसके बराबर तत्वों का {{mvar|x}}. तब {{math|(↓<sub>''x''</sub>)<sup>u</sup>}} से बड़े या उसके बराबर तत्वों का समूह है {{mvar|x}}, और {{math|1=((↓<sub>''x''</sub>)<sup>u</sup>)<sup>l</sup> = ↓<sub>''x''</sub>}}, वह दिखा रहा हूँ {{math|↓<sub>''x''</sub>}} वास्तव में संपूर्णता का सदस्य है। से अंकितिंग {{mvar|x}} को {{math|↓<sub>''x''</sub>}} एक अनुक्रम-अंतर्निहित है।<ref name=def>{{harvtxt|MacNeille|1937}}, Lemma 11.8, p.&nbsp; 444; {{harvtxt|Davey| Priestley|2002}}, Lemma 3.9(i), p.&nbsp;166.</ref>
तत्व {{mvar|x}} का {{mvar|S}} अपने [[आदर्श (आदेश सिद्धांत)|अनुक्रम सिद्धांत]], समूह के रूप को संपूर्णता अंतर्निहित करता है {{math|↓<sub>''x''</sub>}} इससे कम या उसके बराबर तत्वों का {{mvar|x}}. तब {{math|(↓<sub>''x''</sub>)<sup>u</sup>}} बड़े या उसके बराबर तत्वों का समूह होता है {{mvar|x}}, और {{math|1=((↓<sub>''x''</sub>)<sup>u</sup>)<sup>l</sup> = ↓<sub>''x''</sub>}}, वह दिखाता है {{math|↓<sub>''x''</sub>}} वास्तव में संपूर्णता का गुण है। अंकित {{mvar|x}} को {{math|↓<sub>''x''</sub>}} एक अनुक्रम-अंतर्निहित कहा जाता है।<ref name=def>{{harvtxt|MacNeille|1937}}, Lemma 11.8, p.&nbsp; 444; {{harvtxt|Davey| Priestley|2002}}, Lemma 3.9(i), p.&nbsp;166.</ref>
डेडेकाइंड-मैकनेइल संपूर्णता की एक वैकल्पिक परिभाषा जो डेडेकाइंड कट की परिभाषा से अधिक मिलती-जुलती है, कभी-कभी उपयोग की जाती है।<ref>This is the definition originally used by {{harvtxt|MacNeille|1937}}, for instance.</ref> आंशिक रूप से अनुक्रम किए गए समूह में {{mvar|S}}, समूह की एक जोड़ी के रूप में कट को परिभाषित करें {{math|(''A'',''B'')}} जिसके लिए {{math|1=''A''<sup>u</sup> = ''B''}} और {{math|1=''A'' = ''B''<sup>l</sup>}}. अगर {{math|(''A'',''B'')}} एक कट है तो A समीकरण को संतुष्ट करता है {{math|1=(''A''<sup>u</sup>)<sup>l</sup> = ''A''}}, और इसके विपरीत यदि {{math|1=(''A''<sup>u</sup>)<sup>l</sup> = ''A''}} तब {{math|(''A'',''A''<sup>u</sup>)}} एक कट है. इसलिए, कट का समूह, आंशिक रूप से कट के निचले समूह (या ऊपरी समूह पर समावेशन संबंध के विपरीत) पर शामिल किए जाने के द्वारा आदेश दिया गया है, डेडेकाइंड-मैकनील संपूर्णता की एक समतुल्य परिभाषा देता है।{{sfnp|MacNeille|1937}}


वैकल्पिक परिभाषा के साथ, संपूर्ण नियम के जुड़ने और मिलने के संचालन दोनों में सममित विवरण है: यदि {{math|(''A<sub>i</sub>'',''B<sub>i</sub>'')}} कट्स के किसी भी परिवार में कट्स है, तो इन कट्स का मिलन कट है {{math|(''L'',''L''<sup>u</sup>)}} कहाँ {{math|1=''L'' = ∩<sub>''i''</sub>''A<sub>i</sub>''}}, और जुड़ना ही कट है {{math|(''U''<sup>l</sup>,''U'')}} कहाँ {{math|1=''U'' = ∩<sub>''i''</sub>''B<sub>i</sub>''}}.{{sfnp|MacNeille|1937}}
डेडेकाइंड-मैकनेइल संपूर्णता की एक वैकल्पिक परिभाषा डेडेकाइंड अलगाव की परिभाषा से अधिक मिलती-जुलती है, यह कभी-कभी उपयोग की जाती है।<ref>This is the definition originally used by {{harvtxt|MacNeille|1937}}, for instance.</ref> आंशिक रूप से अनुक्रम किए गए समूह में {{mvar|S}}, समूह की एक जोड़ी के रूप में अलगाव को परिभाषित करता है {{math|(''A'',''B'')}} जिसके लिए {{math|1=''A''<sup>u</sup> = ''B''}} और {{math|1=''A'' = ''B''<sup>l</sup>}}. यदि {{math|(''A'',''B'')}} एक अलगाव है तो A समीकरण को संतुष्ट करता है {{math|1=(''A''<sup>u</sup>)<sup>l</sup> = ''A''}}, और इसके विपरीत यदि {{math|1=(''A''<sup>u</sup>)<sup>l</sup> = ''A''}} तब {{math|(''A'',''A''<sup>u</sup>)}} एक अलगाव है. इसलिए, अलगाव का समूह, आंशिक रूप से अलगाव के निचले समूह (या ऊपरी समूह पर समावेशन संबंध के विपरीत) पर सम्मलित किए जाने के द्वारा अनुक्रमित किया जाता है, डेडेकाइंड-मैकनील संपूर्णता की एक समतुल्य परिभाषा प्रदान करता है।{{sfnp|MacNeille|1937}}
 
वैकल्पिक परिभाषा के साथ, संपूर्ण नियम के जुड़ने और मिलने के संचालन दोनों में सममित विवरण होता है: यदि {{math|(''A<sub>i</sub>'',''B<sub>i</sub>'')}} के किसी भी गुण में से इसका मिलन है {{math|(''L'',''L''<sup>u</sup>)}} जहाँ {{math|1=''L'' = ∩<sub>''i''</sub>''A<sub>i</sub>''}}, अलगाव है {{math|(''U''<sup>l</sup>,''U'')}} और {{math|1=''U'' = ∩<sub>''i''</sub>''B<sub>i</sub>''}}.{{sfnp|MacNeille|1937}}


==उदाहरण==
==उदाहरण==
अगर <math>\Q</math> तर्कसंगत संख्याओं का समूह है, जिसे सामान्य संख्यात्मक क्रम के साथ पूरी तरह से व्यवस्थित समूह के रूप में देखा जाता है, फिर डेडेकाइंड-मैकनील के प्रत्येक तत्व को पूरा किया जाता है <math>\Q</math> इसे डेडेकाइंड कट और डेडेकाइंड-मैकनील के पूरा होने के रूप में देखा जा सकता है <math>\Q</math> दो अतिरिक्त मानों के साथ वास्तविक संख्याओं पर कुल क्रम है <math>\pm\infty</math>.<ref>{{harvtxt|Davey| Priestley|2002}}, Example 7.44(1), p.&nbsp;168; {{harvtxt|Schröder|2003}}, Example 5.3.3(2), p.&nbsp;120.</ref>
यदि <math>\Q</math> तर्कसंगत संख्याओं का समूह है, जिसे सामान्य संख्यात्मक क्रम के साथ पूरी तरह से व्यवस्थित समूह के रूप में देखा जाता है, फिर डेडेकाइंड-मैकनील के प्रत्येक तत्व को पूरा किया जाता है <math>\Q</math> इसे डेडेकाइंड अलगाव और डेडेकाइंड-मैकनील के पूरा होने के रूप में देखा जा सकता है <math>\Q</math> दो अतिरिक्त मानों के साथ वास्तविक संख्याओं पर कुल क्रम है <math>\pm\infty</math>.<ref>{{harvtxt|Davey| Priestley|2002}}, Example 7.44(1), p.&nbsp;168; {{harvtxt|Schröder|2003}}, Example 5.3.3(2), p.&nbsp;120.</ref>
अगर {{mvar|S}} एक [[एंटीचेन]] है (तत्वों का एक समूह जिनमें से कोई भी दो तुलनीय नहीं है) तो डेडेकाइंड-मैकनील का समापन {{mvar|S}} के होते है {{mvar|S}} स्वयं दो अतिरिक्त तत्वों के साथ, एक निचला तत्व जो प्रत्येक तत्व के नीचे है {{mvar|S}} और एक शीर्ष तत्व जो प्रत्येक तत्व के ऊपर है {{mvar|S}}.<ref>{{harvtxt|Davey| Priestley|2002}}, Example 7.44(2), p.&nbsp;168.</ref>
 
अगर {{mvar|O}} वस्तुओं का कोई भी सीमित समूह है, और {{mvar|A}} वस्तुओं के लिए एकात्मक विशेषताओं का कोई सीमित समूह है {{mvar|O}}, तो कोई ऊंचाई दो का आंशिक क्रम बना सकता है जिसमें आंशिक क्रम के तत्व वस्तुएं और विशेषताएं है, और जिसमें {{math|''x'' ≤ ''y''}} कब {{mvar|x}} एक वस्तु है जिसमें विशेषता है{{mvar|y}}. इस तरह से परिभाषित आंशिक आदेश के लिए, डेडेकाइंड-मैकनील का समापन {{mvar|S}} को एक अवधारणा नियम के रूप में जाना जाता है, और यह [[औपचारिक अवधारणा विश्लेषण]] के क्षेत्र में एक केंद्रीय भूमिका निभाता है।{{sfnp|Ganter|Kuznetsov|1998}}
यदि {{mvar|S}} एक [[एंटीचेन|श्रंखला]] है (तत्वों का एक समूह जिनमें से कोई भी दो तुलनीय नहीं है) तो डेडेकाइंड-मैकनील का समापन {{mvar|S}} होता है {{mvar|S}} स्वयं दो अतिरिक्त तत्वों के साथ, एक निचला तत्व जो प्रत्येक तत्व के नीचे है {{mvar|S}} और एक शीर्ष तत्व जो प्रत्येक तत्व के ऊपर है {{mvar|S}}.<ref>{{harvtxt|Davey| Priestley|2002}}, Example 7.44(2), p.&nbsp;168.</ref>
 
यदि {{mvar|O}} वस्तुओं का कोई भी सीमित समूह है, और {{mvar|A}} वस्तुओं के लिए एकात्मक विशेषताओं का कोई सीमित समूह है {{mvar|O}}, तो ऊंचाई आंशिक क्रम बना सकता है, और जिसमें {{math|''x'' ≤ ''y''}} जब {{mvar|x}} एक वस्तु है जिसमें विशेषता है {{mvar|y}} इस तरह से परिभाषित आंशिक अनुक्रम के लिए, डेडेकाइंड-मैकनील का समापन {{mvar|S}} को एक अवधारणा नियम के रूप में जाना जाता है, और यह [[औपचारिक अवधारणा विश्लेषण]] के क्षेत्र में एक केंद्रीय भूमिका निभाता है।{{sfnp|Ganter|Kuznetsov|1998}}


==गुण==
==गुण==
डेडेकाइंड-मैकनील आंशिक रूप से अनुक्रम किए गए समूह को पूरा करता है {{mvar|S}} सबसे छोटी संपूर्ण नियम है {{mvar|S}} इसमें सन्निहित है, इस अर्थ में कि, यदि {{mvar|L}} किसी भी नियम का पूरा होना है {{mvar|S}}, तो डेडेकाइंड-मैकनील संपूर्णता आंशिक रूप से अनुक्रम किया गया उपसमुच्चय है {{mvar|L}}.<ref name="smallest-completion">{{harvtxt|Bishop|1978}}; {{harvtxt|Schröder|2003}}, Theorem 5.3.8, p.&nbsp;121.</ref> कब {{mvar|S}} परिमित है, इसकी संपूर्णता भी परिमित है, और सभी परिमित संपूर्ण नियमों में तत्वों की संख्या सबसे कम है {{mvar|S}}.{{sfnp|Ganter|Kuznetsov|1998}}
डेडेकाइंड-मैकनील आंशिक रूप से अनुक्रम किए गए समूह को पूरा करता है {{mvar|S}} सबसे छोटा संपूर्ण नियम है {{mvar|S}} इसमें समाहित होता है, इस अर्थ में, यदि {{mvar|L}} किसी भी नियम को पूरा करता है {{mvar|S}}, तो डेडेकाइंड-मैकनील संपूर्णता आंशिक रूप से अनुक्रम किया गया उपसमुच्चय होता है {{mvar|L}}.<ref name="smallest-completion">{{harvtxt|Bishop|1978}}; {{harvtxt|Schröder|2003}}, Theorem 5.3.8, p.&nbsp;121.</ref> जब {{mvar|S}} परिमित होता है, इसकी संपूर्णता भी परिमित होती है, और सभी परिमित संपूर्ण नियमों में तत्वों की संख्या सबसे कम होती है {{mvar|S}}.{{sfnp|Ganter|Kuznetsov|1998}}


आंशिक रूप से अनुक्रम किया गया समूह {{mvar|S}} डेडेकाइंड-मैकनेइल संपूर्णता में जॉइन-डेंस और मीट-डेंस है, अर्थात्, संपूर्णता का प्रत्येक तत्व कुछ तत्वों के समूह का जोड़ है {{mvar|S}}, और इसमें तत्वों के कुछ समूह का मिलन भी है {{mvar|S}}.<ref>{{harvtxt|Schröder|2003}}, Proposition 5.3.7, p.&nbsp;121.</ref> डेडेकाइंड-मैकनील संपूर्णता को संपूर्णताओं में से एक माना जाता है {{mvar|S}} इस संपत्ति द्वारा.{{sfnp|Schmidt|1956}}
आंशिक रूप से अनुक्रम किया गया समूह {{mvar|S}} डेडेकाइंड-मैकनेइल संपूर्णता में प्रत्येक तत्व कुछ तत्वों के समूह का जोड़ होता है {{mvar|S}}, और इसमें तत्वों के कुछ समूह का मिलन भी होता है {{mvar|S}}.<ref>{{harvtxt|Schröder|2003}}, Proposition 5.3.7, p.&nbsp;121.</ref> डेडेकाइंड-मैकनील संपूर्णता को संपूर्णताओं में से एक माना जाता है {{mvar|S}}{{sfnp|Schmidt|1956}}


[[बूलियन बीजगणित (संरचना)]] का डेडेकाइंड-मैकनील समापन एक [[पूर्ण बूलियन बीजगणित|संपूर्ण बूलियन बीजगणित]] है, इस परिणाम को [[ वालेरी इवानोविच ग्लिवेंको ]] और [[मार्शल स्टोन]] के बाद ग्लिवेंको-स्टोन प्रमेय के रूप में जाना जाता है।<ref>{{harvtxt|Birkhoff|1995}}, Theorem 27, p.&nbsp;130.</ref> इसी प्रकार, एक [[अवशिष्ट जाली|अवशिष्ट नियम]] का डेडेकाइंड-मैकनील पूरा होना एक संपूर्ण अवशिष्ट नियम है।{{sfnp|Gabbay|Shehtman|Skvortsov|2009}} चूँकि, एक वितरणात्मक नियम का पूरा होना स्वयं वितरणात्मक नहीं होना चाहिए, और एक [[मॉड्यूलर जाली|मॉड्यूलर नियम]] का पूरा होना मॉड्यूलर नहीं रह सकता है।<ref>{{harvtxt|Cotlar|1944}}; {{harvtxt|Funayama|1944}}.</ref>
[[बूलियन बीजगणित (संरचना)]] का डेडेकाइंड-मैकनील समापन एक [[पूर्ण बूलियन बीजगणित|संपूर्ण बूलियन बीजगणित]] है, इस परिणाम को [[ वालेरी इवानोविच ग्लिवेंको |वालेरी इवानोविच ग्लिवेंको]] और [[मार्शल स्टोन]] के बाद ग्लिवेंको-स्टोन प्रमेय के रूप में जाना जाता है।<ref>{{harvtxt|Birkhoff|1995}}, Theorem 27, p.&nbsp;130.</ref> इसी प्रकार, एक [[अवशिष्ट जाली|अवशिष्ट नियम]] का डेडेकाइंड-मैकनील पूरा होना एक संपूर्ण अवशिष्ट नियम होता है।{{sfnp|Gabbay|Shehtman|Skvortsov|2009}} चूँकि, एक वितरणात्मक नियम का पूरा होना स्वयं वितरणात्मक नहीं होता है, और एक [[मॉड्यूलर जाली|मॉड्यूलर नियम]] का पूरा होना मॉड्यूलर नहीं रह सकता है।<ref>{{harvtxt|Cotlar|1944}}; {{harvtxt|Funayama|1944}}.</ref>
डेडेकाइंड-मैकनील संपूर्णता स्व-दोहरी है: आंशिक क्रम के [[द्वैत (आदेश सिद्धांत)]] का पूरा होना संपूर्णता के दोहरे के समान है।{{sfnp|Birkhoff|1995}}


डेडेकाइंड-मैकनील का समापन {{mvar|S}} का क्रम आयाम भी वैसा ही है {{mvar|S}} अपने आप।<ref>This result is frequently attributed to an unpublished 1961 Harvard University honors thesis by K. A. Baker, "Dimension, join-independence and breadth in partially ordered sets". It was published by {{harvtxt|Novák|1969}}.</ref>
डेडेकाइंड-मैकनील संपूर्णता स्व-दोहरी होती है: आंशिक क्रम के [[द्वैत (आदेश सिद्धांत)|द्वैत (अनुक्रम सिद्धांत)]] का पूरा होना संपूर्णता के दोहरे के समान होते है।{{sfnp|Birkhoff|1995}}
आंशिक रूप से अनुक्रम किए गए समूहों और आंशिक रूप से अनुक्रम किए गए समूहों के बीच मोनोटोनिक कार्यों की [[श्रेणी (गणित)]] में, संपूर्ण नियम अनुक्रम-अंतर्निहित के लिए [[इंजेक्शन वस्तु]] बनाती है, और डेडेकाइंड-मैकनील पूरा करती है {{mvar|S}} का [[इंजेक्शन पतवार]] है{{mvar|S}}.{{sfnp|Banaschewski|Bruns|1967}}


==एल्गोरिदम==
डेडेकाइंड-मैकनील का समापन {{mvar|S}} का क्रम आयाम भी वैसा ही होता है {{mvar|S}}<ref>This result is frequently attributed to an unpublished 1961 Harvard University honors thesis by K. A. Baker, "Dimension, join-independence and breadth in partially ordered sets". It was published by {{harvtxt|Novák|1969}}.</ref>
कई शोधकर्ताओं ने एक सीमित आंशिक रूप से अनुक्रम किए गए समूह को पूरा करने वाले डेडेकाइंड-मैकनील के निर्माण के लिए एल्गोरिदम की जांच की है। डेडेकाइंड-मैकनील संपूर्णता उस आंशिक क्रम से तेजी से बड़ी हो सकती है, जिससे यह आता है,{{sfnp|Ganter|Kuznetsov|1998}} और ऐसे एल्गोरिदम के लिए समय सीमा आम तौर पर [[आउटपुट-संवेदनशील एल्गोरिदम]] में बताई जाती है|आउटपुट-संवेदनशील तरीके से, संख्या पर निर्भर करता है {{mvar|n}} इनपुट के तत्वों का आंशिक क्रम, और संख्या पर {{mvar|c}} इसके संपूर्ण होने के तत्वों का.


===अलगाव के समूह का निर्माण===
आंशिक रूप से अनुक्रम किए गए समूहों के बीच मोनोटोनिक कार्यों की [[श्रेणी (गणित)]] में, संपूर्ण नियम अनुक्रम-अंतर्निहित के लिए डेडेकाइंड-मैकनील को पूरा करती है {{mvar|S}}{{sfnp|Banaschewski|Bruns|1967}}
{{harvtxt|Ganter|Kuznetsov|1998}} एक वृद्धिशील एल्गोरिदम का वर्णन करें, जिसमें एक समय में एक तत्व जोड़कर इनपुट आंशिक क्रम बनाया जाता है, प्रत्येक चरण में, छोटे आंशिक क्रम की संपूर्णता को बड़े आंशिक क्रम की संपूर्णता के रूप में विस्तारित किया जाता है। उनकी पद्धति में, संपूर्णता को अलगाव की एक स्पष्ट सूची द्वारा दर्शाया जाता है। संवर्धित आंशिक क्रम का प्रत्येक कट, उस कट को छोड़कर जिसके दो समूह नए तत्व में प्रतिच्छेद करते है, या तो पिछले आंशिक क्रम से एक कट है या पिछले से कट के एक या दूसरे पक्ष में नया तत्व जोड़कर बनता है। आंशिक क्रम, इसलिए उनके एल्गोरिदम को यह निर्धारित करने के लिए कि कौन से कट है, केवल इस फॉर्म के समूह के जोड़े का परीक्षण करने की आवश्यकता है। आंशिक क्रम को पूरा करने के लिए एक तत्व जोड़ने के लिए उनकी विधि का उपयोग करने का समय है {{math|''O''(''cnw'')}} कहाँ {{mvar|w}} आंशिक क्रम की चौड़ाई है, यानी, इसके सबसे बड़े एंटीचेन का आकार। इसलिए, किसी दिए गए आंशिक आदेश के पूरा होने की गणना करने का समय है {{math|1=''O''(''cn''<sup>2</sup>''w'') = O(''cn''<sup>3</sup>)}}.{{sfnp|Ganter|Kuznetsov|1998}}


जैसा {{harvtxt|Jourdan|Rampon|Jard|1994}} ध्यान दें, आंशिक रूप से अनुक्रम किए गए समूह में सभी कटों को सूचीबद्ध करने की समस्या को एक सरल समस्या के विशेष मामले के रूप में तैयार किया जा सकता है, सभी अधिकतम एंटीचेन को एक अलग आंशिक रूप से अनुक्रम किए गए समूह में सूचीबद्ध करने की। अगर {{mvar|P}} कोई आंशिक रूप से अनुक्रम किया गया समूह है, मान लीजिए {{mvar|Q}} एक आंशिक क्रम हो जिसके तत्वों की दो प्रतियां हों {{mvar|P}}: प्रत्येक तत्व के लिए {{mvar|x}} का {{mvar|P}}, {{mvar|Q}} में दो तत्व शामिल है {{math|''x''<sub>0</sub>}} और {{math|''x''<sub>1</sub>}}, साथ {{math|''x<sub>i</sub>'' < ''y<sub>j</sub>''}} अगर और केवल अगर {{math|''x'' < ''y''}} और {{math|''i'' < ''j''}}. फिर अलगाव होती है {{mvar|P}} अधिकतम एंटीचेन के साथ एक-के-लिए-एक से मेल खाता है {{mvar|Q}}: कट के निचले समूह के तत्व एक एंटीचेन में सबस्क्रिप्ट 0 वाले तत्वों के अनुरूप होते है, और कट के ऊपरी समूह के तत्व एक एंटीचेन में सबस्क्रिप्ट 1 वाले तत्वों के अनुरूप होते है। जॉर्डन एट अल. अधिकतम एंटीचेन खोजने के लिए एक एल्गोरिदम का वर्णन करें, जिसे सभी कटों को सूचीबद्ध करने की समस्या पर लागू किया जाए {{mvar|P}}, समय लेता है {{math|1=''O''(''c''(''nw'' + ''w''<sup>3</sup>))}}, के एल्गोरिदम में सुधार {{harvtxt|Ganter|Kuznetsov|1998}} जब चौड़ाई {{mvar|w}} छोटा है।{{sfnp|Jourdan|Rampon|Jard|1994}} वैकल्पिक रूप से, एक अधिकतम एंटीचेन {{mvar|Q}} [[तुलनीयता ग्राफ]]़ में [[अधिकतम स्वतंत्र सेट|अधिकतम स्वतंत्र समूह]] के समान है {{mvar|Q}}, या तुलनीयता ग्राफ के पूरक में एक [[अधिकतम क्लिक]], इसलिए क्लिक समस्या या स्वतंत्र समूह समस्या के लिए एल्गोरिदम को डेडेकाइंड-मैकनेइल संपूर्णता समस्या के इस संस्करण पर भी लागू किया जा सकता है।<ref>For the equivalence between algorithms for antichains in partial orders and for independent sets in comparability graphs, see {{harvtxt|Cameron|1985}}, p. 251.</ref>
==कलन विधि==
कई शोधकर्ताओं ने एक सीमित आंशिक रूप से अनुक्रम किए गए समूह को पूरा करने वाले डेडेकाइंड-मैकनील के निर्माण के लिए कलन विधि की जांच की थी। डेडेकाइंड-मैकनील संपूर्णता उस आंशिक क्रम से तेजी से बढ़ सकती है{{sfnp|Ganter|Kuznetsov|1998}} जिसमे ऐसे कलन विधि के लिए समय सीमा सामान्यतः [[आउटपुट-संवेदनशील एल्गोरिदम|आउटपुट-संवेदनशील कलन विधि]] प्रस्तुत की जाती है, यह संख्या पर निर्भर करता है {{mvar|n}} इनपुट के तत्वों का आंशिक क्रम, और संख्या पर {{mvar|c}} इसके संपूर्ण होने का तत्व है।


===अलगाव के समूह का निर्माण===
{{harvtxt|गैंटर|कुजनेत्सोव|1998}} एक वृद्धिशील कलन विधि का वर्णन करते है, जिसमें एक समय में एक तत्व को जोड़कर इनपुट आंशिक क्रम बनाया जाता है, प्रत्येक चरण में, छोटे आंशिक क्रम की संपूर्णता को बड़े आंशिक क्रम की संपूर्णता के रूप में विस्तारित किया जाता है। उनकी पद्धति में, संपूर्णता को अलगाव की एक स्पष्ट सूची द्वारा दर्शाया जाता है। संवर्धित आंशिक क्रम के प्रत्येक अलगाव दो समूह के नए तत्व में प्रतिच्छेद करते है, या तो पिछले आंशिक क्रम से एक अलगाव होता है या तो पिछले से अलगाव के एक या दूसरे पक्ष में नया तत्व जोड़कर बनता है। आंशिक क्रम, इसलिए उनके कलन विधि को यह निर्धारित करने के लिए कि कौन से अलगाव है, केवल इस समूह के जोड़ का परीक्षण करने की आवश्यकता होती है। आंशिक क्रम को पूरा करने के लिए एक तत्व जोड़ने के लिए उनकी विधि का उपयोग करती है {{math|''O''(''cnw'')}} जहाँ {{mvar|w}} आंशिक क्रम की चौड़ाई है। इसलिए, दिए गए आंशिक अनुक्रम के पूरा होने की गणना करते है {{math|1=''O''(''cn''<sup>2</sup>''w'') = O(''cn''<sup>3</sup>)}}.{{sfnp|Ganter|Kuznetsov|1998}}


===कवरिंग ग्राफ़ का निर्माण===
आंशिक रूप से अनुक्रम किए गए समूह में सभी अलगावों को सूचीबद्ध करने की समस्या को एक सरल समस्या के विशेष स्थिति के रूप में तैयार किया जा सकता है, सभी अधिकतम श्रंखला को एक अलग आंशिक रूप से अनुक्रम किए गए समूह में सूचीबद्ध किया जाता है। यदि {{mvar|P}} कोई आंशिक रूप से अनुक्रम किया गया समूह होता है, मान लेते है {{mvar|Q}} एक आंशिक क्रम होता है जिसके तत्वों की दो प्रतियां होती {{mvar|P}}: प्रत्येक तत्व के लिए {{mvar|x}} का {{mvar|P}}, {{mvar|Q}} में दो तत्व सम्मलित है {{math|''x''<sub>0</sub>}} और {{math|''x''<sub>1</sub>}}, साथ {{math|''x<sub>i</sub>'' < ''y<sub>j</sub>''}} यदि {{math|''x'' < ''y''}} और {{math|''i'' < ''j''}}. अलगाव होते है {{mvar|P}} अधिकतम श्रंखला के साथ मेल खाता है {{mvar|Q}}: अलगाव के निचले समूह के तत्व एक श्रंखला में सबस्क्रिप्ट 0 वाले तत्वों के अनुरूप होते है, और अलगाव के ऊपरी समूह के तत्व एक श्रंखला में सबस्क्रिप्ट 1 वाले तत्वों के अनुरूप होते है। जॉर्डन एट अल. अधिकतम श्रंखला प्राप्त करने के लिए एक कलन विधि का वर्णन करते है, जिसे सभी अलगावों को सूचीबद्ध करने की समस्या पर लागू किया जाता है {{mvar|P}}, और {{math|1=''O''(''c''(''nw'' + ''w''<sup>3</sup>))}}।{{sfnp|Jourdan|Rampon|Jard|1994}} वैकल्पिक रूप से, एक अधिकतम श्रंखला {{mvar|Q}} [[तुलनीयता ग्राफ|तुलनीयता]] आलेख में [[अधिकतम स्वतंत्र सेट|अधिकतम स्वतंत्र समूह]] के समान होता है {{mvar|Q}}, या तुलनीयता आलेख में एक पूरक होता है, इसलिए स्वतंत्र समूह समस्या के लिए कलन विधि को डेडेकाइंड-मैकनेइल संपूर्णता समस्या के इस संस्करण पर भी लागू किया जा सकता है।<ref>For the equivalence between algorithms for antichains in partial orders and for independent sets in comparability graphs, see {{harvtxt|Cameron|1985}}, p. 251.</ref>
डेडेकाइंड-मैकनील संपूर्णता का संक्रमणीय कमी या कवरिंग ग्राफ इसके तत्वों के बीच क्रम संबंध का संक्षिप्त तरीके से वर्णन करता है:
===आवरण आलेख का निर्माण===
कट के प्रत्येक [[पड़ोस (ग्राफ सिद्धांत)]] को कट के ऊपरी या निचले समूह से मूल आंशिक क्रम के एक तत्व को हटाना होगा, इसलिए प्रत्येक शीर्ष पर अधिकतम {{mvar|n}} पड़ोसियों। इस प्रकार, कवरिंग ग्राफ़ है {{mvar|c}} शीर्ष और अधिक से अधिक {{mvar|''cn''/2}} पड़ोसियों, एक संख्या जो की तुलना में बहुत छोटी हो सकती है {{mvar|''c''<sup>2</sup>}} एक मैट्रिक्स में प्रविष्टियाँ जो तत्वों के बीच सभी जोड़ीवार तुलनाओं को निर्दिष्ट करती है। {{harvtxt|Nourine|Raynaud|1999}}दिखाएं कि इस कवरिंग ग्राफ़ की कुशलतापूर्वक गणना कैसे करें, अधिक सामान्यतः, यदि {{mvar|B}} समूह का कोई भी परिवार है, वे दिखाते है कि उपसमुच्चय के संघों की नियम के कवरिंग ग्राफ की गणना कैसे करें {{mvar|B}}. डेडेकाइंड-मैकनील नियम के मामले में, {{mvar|B}} को प्रमुख आदर्शों के [[पूरक सेट|पूरक समूह]]ों के परिवार और के उपसमूहों के संघ के रूप में लिया जा सकता है {{mvar|B}} कट्स के निचले समूह के पूरक है। उनके एल्गोरिदम का मुख्य विचार उपसमुच्चय के संघ उत्पन्न करना है {{mvar|B}} वृद्धिशील रूप से (प्रत्येक समूह के लिए {{mvar|B}}, पहले से उत्पन्न सभी यूनियनों के साथ अपना संघ बनाते हुए), एक त्रि में समूह के परिणामी परिवार का प्रतिनिधित्व करते है, और कवरिंग संबंध में आसन्नता के लिए समूह के कुछ उम्मीदवार जोड़े का परीक्षण करने के लिए त्रि प्रतिनिधित्व का उपयोग करते है, समय लगता है {{math|''O''(''cn''<sup>2</sup>)}}. बाद के काम में, उन्हीं लेखकों ने दिखाया कि एल्गोरिदम को समान कुल समय सीमा के साथ पूरी तरह से वृद्धिशील (एक समय में आंशिक क्रम में तत्वों को जोड़ने में सक्षम) बनाया जा सकता है।{{sfnp|Nourine|Raynaud|2002}}
डेडेकाइंड-मैकनील संपूर्णता संक्रमणीय या आवरण आलेख के तत्वों के बीच क्रम संबंध का संक्षिप्त विधि का वर्णन करता है: अलगाव के प्रत्येक [[पड़ोस (ग्राफ सिद्धांत)|आलेख सिद्धांत]] को अलगाव के ऊपरी या निचले समूह से मूल आंशिक क्रम के तत्व को हटाना होता है, इसलिए प्रत्येक शीर्ष पर अधिकतम होता है {{mvar|n}}, इस प्रकार, आवरण आलेख होता है {{mvar|c}} शीर्ष और {{mvar|''cn''/2}}, एक संख्या जो की तुलना में बहुत छोटी हो सकती है {{mvar|''c''<sup>2</sup>}} एक आव्यूह में प्रविष्टियाँ जो तत्वों के बीच सभी जोड़ तुलनाओं को निर्दिष्ट करती है। {{harvtxt|नौरीन|रेनॉड|1999}} ने दिखाया कि इस आवरण आलेख की कुशलतापूर्वक गणना कैसे करते है, अधिक सामान्यतः, यदि {{mvar|B}} समूह का कोई भी गुण होता है, तो वह दिखाते है कि उपसमुच्चय के संघों की नियम के आवरण आलेख की गणना कैसे करते है {{mvar|B}}. डेडेकाइंड-मैकनील नियम के स्थिति में, {{mvar|B}} को प्रमुख अनुक्रमों के [[पूरक सेट|पूरक समूहों]] के गुण और के उपसमूहों के संघ के रूप में लिया जा सकता है {{mvar|B}} अलगाव के निचले समूह का पूरक होता है। उनके कलन विधि का मुख्य विचार उपसमुच्चय के संघ उत्पन्न करना होता है {{mvar|B}} वृद्धिशील रूप से (प्रत्येक समूह के लिए {{mvar|B}}, पहले से उत्पन्न सभी संघों के साथ अपना संघ बनाते हुए), एक समूह के परिणामी गुण का प्रतिनिधित्व करते है, और आवरण संबंध में आसन्नता के लिए समूह के कुछ जोड़ का परीक्षण करने के लिए प्रतिनिधित्व का उपयोग करते है {{math|''O''(''cn''<sup>2</sup>)}}, इन लेखकों ने दिखाया कि कलन विधि को समान कुल समय सीमा के साथ पूरी तरह से वृद्धिशील (एक समय में आंशिक क्रम में तत्वों को जोड़ने में सक्षम) बनाया जा सकता है।{{sfnp|Nourine|Raynaud|2002}}


==टिप्पणियाँ==
==टिप्पणियाँ==

Revision as of 01:40, 10 July 2023

आंशिक रूप से अनुक्रम किए गए समूह का आरेख (बाएं) और इसका डेडेकाइंड-मैकनील समापन (दाएं)।

गणित में, विशेष रूप से अनुक्रम सिद्धांत में, आंशिक रूप से अनुक्रम किए गए समूह को डेडेकाइंड-मैकनील समापन कहा जाता है। इसका नाम होलब्रुक मान मैकनील के नाम पर रखा गया था, जिनके 1937 के पेपर ने पहली बार इसे परिभाषित और निर्मित किया था, और यह तर्कसंगत संख्याओं से वास्तविक संख्याओं के निर्माण के लिए डेडेकाइंड द्वारा उपयोग किए गए डेडेकाइंड अलगाव को सामान्यीकृत करता है। इसे अलगाव द्वारा संपूर्णता या सामान्य संपूर्ण भी कहा जाता है।[1]

अनुक्रम अंतर्निहित और नियम संपूर्णता

आंशिक रूप से अनुक्रम किए गए समूह (पोसमूह) में द्विआधारी संबंध के साथ तत्वों का एक समूह (गणित) होता है xy तत्वों के युग्मों पर जो कि प्रतिवर्ती संबंध है (xx प्रत्येक x के लिए), सकर्मक संबंध (यदि xy और yz तब xz), और प्रतिसममिति संबंध (यदि दोनों xy और yx फिर x = y). संपूर्णांकों या वास्तविक संख्याओं पर सामान्य संख्यात्मक क्रम इन गुणों को संतुष्ट करते है, चूँकि, संख्याओं पर क्रम के विपरीत, आंशिक क्रम में दो तत्व हो सकते है जो अतुलनीय होते है: xy और yx प्राप्त होता है। आंशिक क्रम का एक और परिचित उदाहरण समूह के जोड़ पर उपसमूह अनुक्रमित ⊆ है।[2]

यदि S आंशिक रूप से अनुक्रम किया गया समूह है, संपूर्णता S का अर्थ है संपूर्ण नियम L के अनुक्रम-अंतर्निहित के साथ S में L.[3] संपूर्ण धारणा का अर्थ है कि तत्वों का प्रत्येक उपसमुच्चय L में एक अनंत और सर्वोच्च है, यह वास्तविक संख्याओं के अनुरूप गुणों का सामान्यीकरण करता है। अनुक्रम-अंतर्निहित की धारणा उन आवश्यकताओं को लागू करता है जो इसके अलग-अलग तत्वों को लागू करते है S को अलग-अलग तत्वों में अंकित किया जाता है L, और वह तत्वों की प्रत्येक जोड़ S में समान क्रम होता है L जैसे S. विस्तारित वास्तविक संख्या रेखा (+∞ और −∞ के साथ वास्तविक संख्याएं) तर्कसंगत संख्याओं के इस अर्थ में संपूर्ण है: तर्कसंगत संख्याओं का समूह {3, 3.1, 3.14, 3.141, 3.1415, 3.14159, ...} की कोई तर्कसंगत न्यूनतम ऊपरी सीमा नहीं होती है, लेकिन वास्तविक संख्याओं में इसकी सबसे कम ऊपरी सीमा होता है π.[4]

किसी दिए गए आंशिक रूप से अनुक्रम किए गए समूह में कई अलग-अलग संपूर्णताएँ हो सकती है। उदाहरण के लिए, किसी आंशिक रूप से अनुक्रम किए गए समूह का पूरा होना S उपसमुच्चय द्वारा क्रमित इसके निचले समुच्चय का समुच्चय होता है। S प्रत्येक तत्व को अंकित करके इस (संपूर्ण) नियम में अंतर्निहित होता है x तत्वों के निचले समूह के लिए जो इससे कम या इसके बराबर होता है x. परिणाम एक वितरणात्मक नियम होता है और इसका उपयोग बिरखॉफ के प्रतिनिधित्व प्रमेय में किया जाता है। चूँकि, इसमें संपूर्णता के लिए आवश्यकता से कहीं अधिक तत्व हो सकते है S.[5] सभी संभावित नियम संपूर्णताओं में से, डेडेकाइंड-मैकनील संपूर्णता सबसे छोटा संपूर्ण नियम है S इसमें समाहित होते है।[6]

परिभाषा

प्रत्येक उपसमुच्चय के लिए A आंशिक रूप से अनुक्रम किया गया समूह होता है S, Au ऊपरी सीमा के समुच्चय को निरूपित करता है A, एक तत्व x का S से संबंधित Au जब कभी भी x प्रत्येक तत्व से बड़ा या उसके बराबर होता है A. सममित रूप से, Al की निचली सीमाओं के समुच्चय को निरूपित करता है A, वे तत्व जो प्रत्येक तत्व से कम या उसके बराबर होते है A. फिर डेडेकाइंड-मैकनील का समापन S में उपसमुच्चय सम्मलित होता है A जिसके लिए

(Au)l = A,

इसे सम्मलित करके अनुक्रमित किया गया है: AB संपूर्णता में AB स्थितियाँ होती है।[7]

तत्व x का S अपने अनुक्रम सिद्धांत, समूह के रूप को संपूर्णता अंतर्निहित करता है x इससे कम या उसके बराबर तत्वों का x. तब (↓x)u बड़े या उसके बराबर तत्वों का समूह होता है x, और ((↓x)u)l = ↓x, वह दिखाता है x वास्तव में संपूर्णता का गुण है। अंकित x को x एक अनुक्रम-अंतर्निहित कहा जाता है।[7]

डेडेकाइंड-मैकनेइल संपूर्णता की एक वैकल्पिक परिभाषा डेडेकाइंड अलगाव की परिभाषा से अधिक मिलती-जुलती है, यह कभी-कभी उपयोग की जाती है।[8] आंशिक रूप से अनुक्रम किए गए समूह में S, समूह की एक जोड़ी के रूप में अलगाव को परिभाषित करता है (A,B) जिसके लिए Au = B और A = Bl. यदि (A,B) एक अलगाव है तो A समीकरण को संतुष्ट करता है (Au)l = A, और इसके विपरीत यदि (Au)l = A तब (A,Au) एक अलगाव है. इसलिए, अलगाव का समूह, आंशिक रूप से अलगाव के निचले समूह (या ऊपरी समूह पर समावेशन संबंध के विपरीत) पर सम्मलित किए जाने के द्वारा अनुक्रमित किया जाता है, डेडेकाइंड-मैकनील संपूर्णता की एक समतुल्य परिभाषा प्रदान करता है।[9]

वैकल्पिक परिभाषा के साथ, संपूर्ण नियम के जुड़ने और मिलने के संचालन दोनों में सममित विवरण होता है: यदि (Ai,Bi) के किसी भी गुण में से इसका मिलन है (L,Lu) जहाँ L = ∩iAi, अलगाव है (Ul,U) और U = ∩iBi.[9]

उदाहरण

यदि तर्कसंगत संख्याओं का समूह है, जिसे सामान्य संख्यात्मक क्रम के साथ पूरी तरह से व्यवस्थित समूह के रूप में देखा जाता है, फिर डेडेकाइंड-मैकनील के प्रत्येक तत्व को पूरा किया जाता है इसे डेडेकाइंड अलगाव और डेडेकाइंड-मैकनील के पूरा होने के रूप में देखा जा सकता है दो अतिरिक्त मानों के साथ वास्तविक संख्याओं पर कुल क्रम है .[10]

यदि S एक श्रंखला है (तत्वों का एक समूह जिनमें से कोई भी दो तुलनीय नहीं है) तो डेडेकाइंड-मैकनील का समापन S होता है S स्वयं दो अतिरिक्त तत्वों के साथ, एक निचला तत्व जो प्रत्येक तत्व के नीचे है S और एक शीर्ष तत्व जो प्रत्येक तत्व के ऊपर है S.[11]

यदि O वस्तुओं का कोई भी सीमित समूह है, और A वस्तुओं के लिए एकात्मक विशेषताओं का कोई सीमित समूह है O, तो ऊंचाई आंशिक क्रम बना सकता है, और जिसमें xy जब x एक वस्तु है जिसमें विशेषता है y इस तरह से परिभाषित आंशिक अनुक्रम के लिए, डेडेकाइंड-मैकनील का समापन S को एक अवधारणा नियम के रूप में जाना जाता है, और यह औपचारिक अवधारणा विश्लेषण के क्षेत्र में एक केंद्रीय भूमिका निभाता है।[12]

गुण

डेडेकाइंड-मैकनील आंशिक रूप से अनुक्रम किए गए समूह को पूरा करता है S सबसे छोटा संपूर्ण नियम है S इसमें समाहित होता है, इस अर्थ में, यदि L किसी भी नियम को पूरा करता है S, तो डेडेकाइंड-मैकनील संपूर्णता आंशिक रूप से अनुक्रम किया गया उपसमुच्चय होता है L.[6] जब S परिमित होता है, इसकी संपूर्णता भी परिमित होती है, और सभी परिमित संपूर्ण नियमों में तत्वों की संख्या सबसे कम होती है S.[12]

आंशिक रूप से अनुक्रम किया गया समूह S डेडेकाइंड-मैकनेइल संपूर्णता में प्रत्येक तत्व कुछ तत्वों के समूह का जोड़ होता है S, और इसमें तत्वों के कुछ समूह का मिलन भी होता है S.[13] डेडेकाइंड-मैकनील संपूर्णता को संपूर्णताओं में से एक माना जाता है S[14]

बूलियन बीजगणित (संरचना) का डेडेकाइंड-मैकनील समापन एक संपूर्ण बूलियन बीजगणित है, इस परिणाम को वालेरी इवानोविच ग्लिवेंको और मार्शल स्टोन के बाद ग्लिवेंको-स्टोन प्रमेय के रूप में जाना जाता है।[15] इसी प्रकार, एक अवशिष्ट नियम का डेडेकाइंड-मैकनील पूरा होना एक संपूर्ण अवशिष्ट नियम होता है।[16] चूँकि, एक वितरणात्मक नियम का पूरा होना स्वयं वितरणात्मक नहीं होता है, और एक मॉड्यूलर नियम का पूरा होना मॉड्यूलर नहीं रह सकता है।[17]

डेडेकाइंड-मैकनील संपूर्णता स्व-दोहरी होती है: आंशिक क्रम के द्वैत (अनुक्रम सिद्धांत) का पूरा होना संपूर्णता के दोहरे के समान होते है।[18]

डेडेकाइंड-मैकनील का समापन S का क्रम आयाम भी वैसा ही होता है S[19]

आंशिक रूप से अनुक्रम किए गए समूहों के बीच मोनोटोनिक कार्यों की श्रेणी (गणित) में, संपूर्ण नियम अनुक्रम-अंतर्निहित के लिए डेडेकाइंड-मैकनील को पूरा करती है S[20]

कलन विधि

कई शोधकर्ताओं ने एक सीमित आंशिक रूप से अनुक्रम किए गए समूह को पूरा करने वाले डेडेकाइंड-मैकनील के निर्माण के लिए कलन विधि की जांच की थी। डेडेकाइंड-मैकनील संपूर्णता उस आंशिक क्रम से तेजी से बढ़ सकती है[12] जिसमे ऐसे कलन विधि के लिए समय सीमा सामान्यतः आउटपुट-संवेदनशील कलन विधि प्रस्तुत की जाती है, यह संख्या पर निर्भर करता है n इनपुट के तत्वों का आंशिक क्रम, और संख्या पर c इसके संपूर्ण होने का तत्व है।

अलगाव के समूह का निर्माण

गैंटर & कुजनेत्सोव (1998) एक वृद्धिशील कलन विधि का वर्णन करते है, जिसमें एक समय में एक तत्व को जोड़कर इनपुट आंशिक क्रम बनाया जाता है, प्रत्येक चरण में, छोटे आंशिक क्रम की संपूर्णता को बड़े आंशिक क्रम की संपूर्णता के रूप में विस्तारित किया जाता है। उनकी पद्धति में, संपूर्णता को अलगाव की एक स्पष्ट सूची द्वारा दर्शाया जाता है। संवर्धित आंशिक क्रम के प्रत्येक अलगाव दो समूह के नए तत्व में प्रतिच्छेद करते है, या तो पिछले आंशिक क्रम से एक अलगाव होता है या तो पिछले से अलगाव के एक या दूसरे पक्ष में नया तत्व जोड़कर बनता है। आंशिक क्रम, इसलिए उनके कलन विधि को यह निर्धारित करने के लिए कि कौन से अलगाव है, केवल इस समूह के जोड़ का परीक्षण करने की आवश्यकता होती है। आंशिक क्रम को पूरा करने के लिए एक तत्व जोड़ने के लिए उनकी विधि का उपयोग करती है O(cnw) जहाँ w आंशिक क्रम की चौड़ाई है। इसलिए, दिए गए आंशिक अनुक्रम के पूरा होने की गणना करते है O(cn2w) = O(cn3).[12]

आंशिक रूप से अनुक्रम किए गए समूह में सभी अलगावों को सूचीबद्ध करने की समस्या को एक सरल समस्या के विशेष स्थिति के रूप में तैयार किया जा सकता है, सभी अधिकतम श्रंखला को एक अलग आंशिक रूप से अनुक्रम किए गए समूह में सूचीबद्ध किया जाता है। यदि P कोई आंशिक रूप से अनुक्रम किया गया समूह होता है, मान लेते है Q एक आंशिक क्रम होता है जिसके तत्वों की दो प्रतियां होती P: प्रत्येक तत्व के लिए x का P, Q में दो तत्व सम्मलित है x0 और x1, साथ xi < yj यदि x < y और i < j. अलगाव होते है P अधिकतम श्रंखला के साथ मेल खाता है Q: अलगाव के निचले समूह के तत्व एक श्रंखला में सबस्क्रिप्ट 0 वाले तत्वों के अनुरूप होते है, और अलगाव के ऊपरी समूह के तत्व एक श्रंखला में सबस्क्रिप्ट 1 वाले तत्वों के अनुरूप होते है। जॉर्डन एट अल. अधिकतम श्रंखला प्राप्त करने के लिए एक कलन विधि का वर्णन करते है, जिसे सभी अलगावों को सूचीबद्ध करने की समस्या पर लागू किया जाता है P, और O(c(nw + w3))[21] वैकल्पिक रूप से, एक अधिकतम श्रंखला Q तुलनीयता आलेख में अधिकतम स्वतंत्र समूह के समान होता है Q, या तुलनीयता आलेख में एक पूरक होता है, इसलिए स्वतंत्र समूह समस्या के लिए कलन विधि को डेडेकाइंड-मैकनेइल संपूर्णता समस्या के इस संस्करण पर भी लागू किया जा सकता है।[22]

आवरण आलेख का निर्माण

डेडेकाइंड-मैकनील संपूर्णता संक्रमणीय या आवरण आलेख के तत्वों के बीच क्रम संबंध का संक्षिप्त विधि का वर्णन करता है: अलगाव के प्रत्येक आलेख सिद्धांत को अलगाव के ऊपरी या निचले समूह से मूल आंशिक क्रम के तत्व को हटाना होता है, इसलिए प्रत्येक शीर्ष पर अधिकतम होता है n, इस प्रकार, आवरण आलेख होता है c शीर्ष और cn/2, एक संख्या जो की तुलना में बहुत छोटी हो सकती है c2 एक आव्यूह में प्रविष्टियाँ जो तत्वों के बीच सभी जोड़ तुलनाओं को निर्दिष्ट करती है। नौरीन & रेनॉड (1999) ने दिखाया कि इस आवरण आलेख की कुशलतापूर्वक गणना कैसे करते है, अधिक सामान्यतः, यदि B समूह का कोई भी गुण होता है, तो वह दिखाते है कि उपसमुच्चय के संघों की नियम के आवरण आलेख की गणना कैसे करते है B. डेडेकाइंड-मैकनील नियम के स्थिति में, B को प्रमुख अनुक्रमों के पूरक समूहों के गुण और के उपसमूहों के संघ के रूप में लिया जा सकता है B अलगाव के निचले समूह का पूरक होता है। उनके कलन विधि का मुख्य विचार उपसमुच्चय के संघ उत्पन्न करना होता है B वृद्धिशील रूप से (प्रत्येक समूह के लिए B, पहले से उत्पन्न सभी संघों के साथ अपना संघ बनाते हुए), एक समूह के परिणामी गुण का प्रतिनिधित्व करते है, और आवरण संबंध में आसन्नता के लिए समूह के कुछ जोड़ का परीक्षण करने के लिए प्रतिनिधित्व का उपयोग करते है O(cn2), इन लेखकों ने दिखाया कि कलन विधि को समान कुल समय सीमा के साथ पूरी तरह से वृद्धिशील (एक समय में आंशिक क्रम में तत्वों को जोड़ने में सक्षम) बनाया जा सकता है।[23]

टिप्पणियाँ

  1. Davey & Priestley (2002, p. 166); Schröder (2003, p. 119).
  2. Roman (2007).
  3. Schröder (2003), definition 5.3.1, p. 119.
  4. O'Leary (2015).
  5. Carpineto, Claudio; Romano, Giovanni (2004), Concept data analysis: theory and applications, John Wiley and Sons, p. 10, ISBN 978-0-470-85055-8.
  6. 6.0 6.1 Bishop (1978); Schröder (2003), Theorem 5.3.8, p. 121.
  7. 7.0 7.1 MacNeille (1937), Lemma 11.8, p.  444; Davey & Priestley (2002), Lemma 3.9(i), p. 166.
  8. This is the definition originally used by MacNeille (1937), for instance.
  9. 9.0 9.1 MacNeille (1937).
  10. Davey & Priestley (2002), Example 7.44(1), p. 168; Schröder (2003), Example 5.3.3(2), p. 120.
  11. Davey & Priestley (2002), Example 7.44(2), p. 168.
  12. 12.0 12.1 12.2 12.3 Ganter & Kuznetsov (1998).
  13. Schröder (2003), Proposition 5.3.7, p. 121.
  14. Schmidt (1956).
  15. Birkhoff (1995), Theorem 27, p. 130.
  16. Gabbay, Shehtman & Skvortsov (2009).
  17. Cotlar (1944); Funayama (1944).
  18. Birkhoff (1995).
  19. This result is frequently attributed to an unpublished 1961 Harvard University honors thesis by K. A. Baker, "Dimension, join-independence and breadth in partially ordered sets". It was published by Novák (1969).
  20. Banaschewski & Bruns (1967).
  21. Jourdan, Rampon & Jard (1994).
  22. For the equivalence between algorithms for antichains in partial orders and for independent sets in comparability graphs, see Cameron (1985), p. 251.
  23. Nourine & Raynaud (2002).


संदर्भ


बाहरी संबंध