टेंसर घनत्व: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Use American English|date = March 2019}}
{{Use American English|date = March 2019}}
{{Short description|Generalization of tensor fields}}
{{Short description|Generalization of tensor fields}}
[[विभेदक ज्यामिति]] में, एक टेंसर घनत्व या सापेक्ष टेंसर, टेंसर क्षेत्र अवधारणा का एक सामान्यीकरण है। एक समन्वय प्रणाली से दूसरे में जाने पर एक टेंसर घनत्व एक टेंसर क्षेत्र के रूप में परिवर्तित हो जाता है ([[टेंसर फ़ील्ड]] देखें), सिवाय इसके कि इसे समन्वय संक्रमण के [[जैकोबियन निर्धारक]] की शक्ति ''डब्ल्यू'' द्वारा अतिरिक्त रूप से गुणा या ''भारित'' किया जाता है। फ़ंक्शन या उसका निरपेक्ष मान. एकल सूचकांक वाले टेंसर घनत्व को वेक्टर घनत्व कहा जाता है। (प्रामाणिक) टेंसर घनत्व, स्यूडोटेंसर घनत्व, सम टेंसर घनत्व और विषम टेंसर घनत्व के बीच अंतर किया जाता है। कभी-कभी नकारात्मक भार ''W'' वाले टेंसर घनत्व को टेंसर क्षमता कहा जाता है।<ref name=":0">{{cite book
 
 
[[विभेदक ज्यामिति]] में, एक टेंसर घनत्व या सापेक्ष टेंसर, टेंसर क्षेत्र अवधारणा का एक सामान्यीकरण है। एक समन्वय प्रणाली से दूसरे समन्वय प्रणाली में जाने पर एक टेंसर घनत्व एक टेंसर क्षेत्र के रूप में परिवर्तित हो जाता है ([[टेंसर फ़ील्ड]] देखें), सिवाय इसके कि इसे समन्वय संक्रमण फलन या इसके निरपेक्ष मान के [[जैकोबियन निर्धारक]] की शक्ति ''डब्ल्यू'' द्वारा अतिरिक्त रूप से गुणा या ''भारित'' किया जाता है। एकल सूचकांक वाले टेंसर घनत्व को वेक्टर घनत्व कहा जाता है। (प्रामाणिक) टेंसर घनत्व, स्यूडोटेंसर घनत्व, सम टेंसर घनत्व और विषम टेंसर घनत्व के बीच अंतर किया जाता है। कभी-कभी नकारात्मक भार ''W'' वाले टेंसर घनत्व को टेंसर क्षमता कहा जाता है।<ref name=":0">{{cite book
  | last = Weinreich
  | last = Weinreich
  | first = Gabriel
  | first = Gabriel
Line 26: Line 28:
  | isbn = 978-3540228875
  | isbn = 978-3540228875
  }}</ref> एक टेंसर घनत्व को एक [[घनत्व बंडल]] के साथ [[टेंसर बंडल]] के [[टेंसर उत्पाद]] के एक खंड (फाइबर बंडल) के रूप में भी माना जा सकता है।
  }}</ref> एक टेंसर घनत्व को एक [[घनत्व बंडल]] के साथ [[टेंसर बंडल]] के [[टेंसर उत्पाद]] के एक खंड (फाइबर बंडल) के रूप में भी माना जा सकता है।
[[विभेदक ज्यामिति]] में, एक टेंसर घनत्व या सापेक्ष टेंसर, टेंसर क्षेत्र अवधारणा का एक सामान्यीकरण है। एक समन्वय प्रणाली से दूसरे समन्वय प्रणाली में जाने पर एक टेंसर घनत्व एक टेंसर क्षेत्र के रूप में परिवर्तित हो जाता है ([[टेंसर फ़ील्ड]] देखें), सिवाय इसके कि इसे समन्वय संक्रमण फलन या इसके निरपेक्ष मान के [[जैकोबियन निर्धारक]] की शक्ति ''डब्ल्यू'' द्वारा अतिरिक्त रूप से गुणा या ''भारित'' किया जाता है।  एकल सूचकांक वाले टेंसर घनत्व को वेक्टर घनत्व कहा जाता है। (प्रामाणिक) टेंसर घनत्व, स्यूडोटेंसर घनत्व, सम टेंसर घनत्व और विषम टेंसर घनत्व के बीच अंतर किया जाता है। कभी-कभी नकारात्मक भार ''W'' वाले टेंसर घनत्व को टेंसर क्षमता कहा जाता है।<ref name=":0" /><ref name=":1" /><ref name=":2" /> एक टेंसर घनत्व को एक [[घनत्व बंडल]] के साथ [[टेंसर बंडल]] के [[टेंसर उत्पाद]] के एक खंड (फाइबर बंडल) के रूप में भी माना जा सकता है।


==प्रेरणा==
==प्रेरणा==
भौतिकी और संबंधित क्षेत्रों में, वस्तु के बजाय बीजगणितीय वस्तु के घटकों के साथ काम करना अक्सर उपयोगी होता है। एक उदाहरण एक वेक्टर को कुछ गुणांकों द्वारा भारित बेसिस (रैखिक बीजगणित) वैक्टर के योग में विघटित करना होगा जैसे कि
भौतिकी और संबंधित क्षेत्रों में, वस्तु केअतिरिक्त बीजगणितीय वस्तु के घटकों के साथ काम करना अधिकांशतः उपयोगी होता है। एक उदाहरण कुछ गुणांकों द्वारा भारित आधार सदिश के योग में एक सदिश को विघटित करना होगा जैसे कि
भौतिकी और संबंधित क्षेत्रों में, वस्तु केअतिरिक्त बीजगणितीय वस्तु के घटकों के साथ काम करना अधिकांशतः उपयोगी होता है। एक उदाहरण कुछ गुणांकों द्वारा भारित आधार सदिश के योग में एक सदिश को विघटित करना होगा जैसे कि
<math display="block">\vec{v} = c_1 \vec{e}_1 + c_2 \vec e_2 + c_ 3\vec e_3</math> कहाँ <math>\vec v</math> 3-आयामी यूक्लिडियन अंतरिक्ष में एक वेक्टर है, <math>c_i \in \R^n \text{ and } \vec e_i</math> यूक्लिडियन अंतरिक्ष में सामान्य मानक आधार वैक्टर हैं। यह आमतौर पर कम्प्यूटेशनल उद्देश्यों के लिए आवश्यक है, और अक्सर व्यावहारिक हो सकता है जब बीजगणितीय वस्तुएं जटिल अमूर्तता का प्रतिनिधित्व करती हैं लेकिन उनके घटकों की ठोस व्याख्या होती है। हालाँकि, इस पहचान के साथ, किसी को उस अंतर्निहित आधार के परिवर्तनों को ट्रैक करने में सावधानी बरतनी होगी जिसमें मात्रा का विस्तार किया गया है; यह गणना के दौरान वेक्टर के आधार को बदलने के लिए समीचीन हो सकता है <math>\vec v</math> भौतिक स्थान में स्थिर रहता है। अधिक आम तौर पर, यदि एक बीजगणितीय वस्तु एक ज्यामितीय वस्तु का प्रतिनिधित्व करती है, लेकिन एक विशेष आधार के संदर्भ में व्यक्त की जाती है, तो यह आवश्यक है कि जब आधार बदला जाए, तो प्रतिनिधित्व को भी बदला जाए। भौतिक विज्ञानी अक्सर एक ज्यामितीय वस्तु के इस प्रतिनिधित्व को एक [[ टेन्सर | टेन्सर]] कहेंगे यदि यह आधार के रैखिक परिवर्तन के तहत रैखिक मानचित्रों के अनुक्रम के तहत परिवर्तित हो जाता है (हालांकि भ्रमित करने वाले अन्य लोग अंतर्निहित ज्यामितीय वस्तु को बुलाते हैं जो समन्वय परिवर्तन के तहत नहीं बदला है, एक टेंसर, एक सम्मेलन यह लेख सख्ती से टालता है)। सामान्य तौर पर ऐसे अभ्यावेदन होते हैं जो मनमाने ढंग से रूपांतरित होते हैं, यह इस बात पर निर्भर करता है कि प्रतिनिधित्व से ज्यामितीय अपरिवर्तनीय का पुनर्निर्माण कैसे किया जाता है। कुछ विशेष मामलों में अभ्यावेदन का उपयोग करना सुविधाजनक होता है जो लगभग टेंसर की तरह बदलता है, लेकिन परिवर्तन में एक अतिरिक्त, गैर-रेखीय कारक के साथ। एक प्रोटोटाइप उदाहरण एक मैट्रिक्स है जो क्रॉस उत्पाद (विस्तारित समांतर चतुर्भुज का क्षेत्र) का प्रतिनिधित्व करता है <math>\R^2.</math> द्वारा मानक आधार पर प्रतिनिधित्व दिया जाता है
<math display="block">\vec{v} = c_1 \vec{e}_1 + c_2 \vec e_2 + c_ 3\vec e_3</math>कहाँ <math>\vec v</math> 3-आयामी यूक्लिडियन अंतरिक्ष में एक सदिश  है, <math>c_i \in \R^n \text{ and } \vec e_i</math> यूक्लिडियन अंतरिक्ष में सामान्य मानक आधार सदिश हैं। यह सामान्यतया संगणनात्मक उद्देश्यों के लिए आवश्यक है, और अधिकांशतः व्यावहारिक हो सकता है जब बीजगणितीय वस्तुएं जटिल अमूर्तता का प्रतिनिधित्व करती हैं लेकिन उनके घटकों की ठोस व्याख्या होती है। हालाँकि, इस पहचान के साथ, किसी को उस अंतर्निहित आधार के परिवर्तनों को ट्रैक करने में सावधानी बरतनी होगी जिसमें मात्रा का विस्तार किया गया है; यह गणना के दौरान वेक्टर के आधार को बदलने के लिए समीचीन हो सकता है <math>\vec v</math> भौतिक स्थान में स्थिर रहता है।आम तौर पर अधिक, यदि एक बीजगणितीय वस्तु एक ज्यामितीय वस्तु का प्रतिनिधित्व करती है, लेकिन एक विशेष आधार के संदर्भ में व्यक्त किया जाता है, तो यह आवश्यक है कि जब आधार बदला जाए, तो प्रतिनिधित्व को भी बदला जाए। भौतिक विज्ञानी अधिकांशतः एक ज्यामितीय वस्तु के इस प्रतिनिधित्व को एक [[ टेन्सर | टेन्सर]] कहते हैं यदि यह आधार के रैखिक परिवर्तन को देखते हुए रैखिक मानचित्रों के अनुक्रम के तहत रूपांतरित होता है (चूंकि भ्रमित करने वाले अन्य लोग अंतर्निहित ज्यामितीय वस्तु को कहते हैं जो समन्वय परिवर्तन के तहत नहीं बदला है, इसे "टेंसर" कहते हैं, एक परंपरा जिससे यह लेख सख्ती से बचता है)। सामान्यतः पर ऐसे अभ्यावेदन होते हैं जो मनमाने ढंग से रूपांतरित होते हैं, यह इस बात पर निर्भर करता है कि प्रतिनिधित्व से ज्यामितीय अपरिवर्तनीय का पुनर्निर्माण कैसे किया जाता है। कुछ विशेष मामलों में अभ्यावेदन का उपयोग करना सुविधाजनक होता है जो लगभग टेंसर की तरह बदलता है, लेकिन परिवर्तन में एक अतिरिक्त, अरेखीय कारक के साथ। एक प्रोटोटाइप उदाहरण एक आव्यूह है जो क्रॉस उत्पाद (विस्तारित समांतर चतुर्भुज का क्षेत्र) का प्रतिनिधित्व करता है <math>\R^2.</math> द्वारा मानक आधार पर प्रतिनिधित्व दिया जाता है
 
कहाँ <math>\vec v</math> 3-आयामी यूक्लिडियन अंतरिक्ष में एक सदिश  है, <math>c_i \in \R^n \text{ and } \vec e_i</math> यूक्लिडियन अंतरिक्ष में सामान्य मानक आधार सदिश हैं। यह सामान्यतया संगणनात्मक उद्देश्यों के लिए आवश्यक है, और अधिकांशतः व्यावहारिक हो सकता है जब बीजगणितीय वस्तुएं जटिल अमूर्तता का प्रतिनिधित्व करती हैं लेकिन उनके घटकों की ठोस व्याख्या होती है। हालाँकि, इस पहचान के साथ, किसी को उस अंतर्निहित आधार के परिवर्तनों को ट्रैक करने में सावधानी बरतनी होगी जिसमें मात्रा का विस्तार किया गया है; यह गणना के दौरान वेक्टर के आधार को बदलने के लिए समीचीन हो सकता है <math>\vec v</math> भौतिक स्थान में स्थिर रहता है।आम तौर पर अधिक, यदि एक बीजगणितीय वस्तु एक ज्यामितीय वस्तु का प्रतिनिधित्व करती है, लेकिन एक विशेष आधार के संदर्भ में व्यक्त किया जाता है, तो यह आवश्यक है कि जब आधार बदला जाए, तो प्रतिनिधित्व को भी बदला जाए। भौतिक विज्ञानी अधिकांशतः एक ज्यामितीय वस्तु के इस प्रतिनिधित्व को एक [[ टेन्सर | टेन्सर]] कहते हैं यदि यह आधार के रैखिक परिवर्तन को देखते हुए रैखिक मानचित्रों के अनुक्रम के तहत रूपांतरित होता है (चूंकि भ्रमित करने वाले अन्य लोग अंतर्निहित ज्यामितीय वस्तु को कहते हैं जो समन्वय परिवर्तन के तहत नहीं बदला है, इसे "टेंसर" कहते हैं, एक परंपरा जिससे यह लेख सख्ती से बचता है)। सामान्यतः पर ऐसे अभ्यावेदन होते हैं जो मनमाने ढंग से रूपांतरित होते हैं, यह इस बात पर निर्भर करता है कि प्रतिनिधित्व से ज्यामितीय अपरिवर्तनीय का पुनर्निर्माण कैसे किया जाता है। कुछ विशेष मामलों में अभ्यावेदन का उपयोग करना सुविधाजनक होता है जो लगभग टेंसर की तरह बदलता है, लेकिन परिवर्तन में एक अतिरिक्त, अरेखीय कारक के साथ। एक प्रोटोटाइप उदाहरण एक आव्यूह है जो क्रॉस उत्पाद (विस्तारित समांतर चतुर्भुज का क्षेत्र) का प्रतिनिधित्व करता है <math>\R^2.</math> द्वारा मानक आधार पर प्रतिनिधित्व दिया जाता है
<math display="block">
<math display="block">
   \vec u \times \vec v =
   \vec u \times \vec v =
   \begin{bmatrix} u_1& u_2 \end{bmatrix} \begin{bmatrix}0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix}v_1 \\ v_2 \end{bmatrix} =
   \begin{bmatrix} u_1& u_2 \end{bmatrix} \begin{bmatrix}0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix}v_1 \\ v_2 \end{bmatrix} =
   u_1 v_2 - u_2 v_1
   u_1 v_2 - u_2 v_1
</math>
</math>यदि अब हम इसी अभिव्यक्ति को मानक आधार के अलावा किसी अन्य आधार पर व्यक्त करने का प्रयास करें, तब सदिशों के घटक बदल जाएंगे, मान लीजिए के अनुसार <math display="inline">\begin{bmatrix} u'_1 & u'_2 \end{bmatrix}^\textsf{T} = A \begin{bmatrix} u_1 & u_2 \end{bmatrix}^\textsf{T}</math> कहाँ <math>A</math> वास्तविक संख्याओं का कुछ 2 बटा 2 आव्यूह  है। यह देखते हुए कि फैले हुए समांतर चतुर्भुज का क्षेत्र एक ज्यामितीय अपरिवर्तनीय है, आधार परिवर्तन के तहत यह नहीं बदल सकताहै, और इसलिए इस आव्यूह  का नया प्रतिनिधित्व होना चाहिए:
यदि अब हम इसी अभिव्यक्ति को मानक आधार के अलावा किसी अन्य आधार पर व्यक्त करने का प्रयास करें, तो वैक्टर के घटक बदल जाएंगे, मान लीजिए के अनुसार <math display="inline">\begin{bmatrix} u'_1 & u'_2 \end{bmatrix}^\textsf{T} = A \begin{bmatrix} u_1 & u_2 \end{bmatrix}^\textsf{T}</math> कहाँ <math>A</math> वास्तविक संख्याओं का कुछ 2 बटा 2 मैट्रिक्स है। यह देखते हुए कि फैले हुए समांतर चतुर्भुज का क्षेत्र एक ज्यामितीय अपरिवर्तनीय है, यह आधार के परिवर्तन के तहत नहीं बदला जा सकता है, और इसलिए इस मैट्रिक्स का नया प्रतिनिधित्व होना चाहिए:
 
यदि अब हम इसी अभिव्यक्ति को मानक आधार के अलावा किसी अन्य आधार पर व्यक्त करने का प्रयास करें, तब सदिशों के घटक बदल जाएंगे, मान लीजिए के अनुसार <math display="inline">\begin{bmatrix} u'_1 & u'_2 \end{bmatrix}^\textsf{T} = A \begin{bmatrix} u_1 & u_2 \end{bmatrix}^\textsf{T}</math> कहाँ <math>A</math> वास्तविक संख्याओं का कुछ 2 बटा 2 आव्यूह  है। यह देखते हुए कि फैले हुए समांतर चतुर्भुज का क्षेत्र एक ज्यामितीय अपरिवर्तनीय है, आधार परिवर्तन के तहत यह नहीं बदल सकताहै, और इसलिए इस आव्यूह  का नया प्रतिनिधित्व होना चाहिए:
 
<math display="block">\left(A^{-1}\right)^\textsf{T} \begin{bmatrix}0 & 1 \\ -1 & 0 \end{bmatrix} A^{-1}</math>
जो, विस्तारित होने पर केवल मूल अभिव्यक्ति है लेकिन निर्धारक द्वारा गुणा किया जाता है <math>A^{-1},</math> यह भी जो <math display="inline">\frac{1}{\det A}.</math> वास्तव में इस प्रतिनिधित्व को दो सूचकांक टेंसर परिवर्तन के रूप में सोचा जा सकता है, लेकिन इसके बजाय, टेंसर परिवर्तन नियम को गुणा के रूप में सोचना कम्प्यूटेशनल रूप से आसान है <math display="inline">\frac{1}{\det A},</math> 2 मैट्रिक्स गुणन के बजाय (वास्तव में उच्च आयामों में, इसका प्राकृतिक विस्तार है <math>n, n \times n</math> मैट्रिक्स गुणन, जो बड़े के लिए <math>n</math> पूरी तरह से अव्यवहार्य है)। जो वस्तुएं इस तरह से परिवर्तित होती हैं उन्हें टेंसर घनत्व कहा जाता है क्योंकि वे क्षेत्रों और आयतन से संबंधित समस्याओं पर विचार करते समय स्वाभाविक रूप से उत्पन्न होती हैं, और इसलिए अक्सर एकीकरण में उपयोग किया जाता है।


जो, विस्तारित होने पर केवल मूल अभिव्यक्ति है लेकिन निर्धारक द्वारा गुणा किया जाता है <math>A^{-1},</math> यह भी जो <math display="inline">\frac{1}{\det A}.</math> वास्तव में इस प्रतिनिधित्व को दो सूचकांक टेंसर परिवर्तन के रूप में सोचा जा सकता है, लेकिन इसके अतिरिक्त, टेंसर परिवर्तन नियम को गुणा के रूप में सोचना संगणनात्मक रूप से आसान है <math display="inline">\frac{1}{\det A},</math> 2 आव्यूह गुणन के बजाय (वास्तव में उच्च आयामों में, इसका स्वाभाविक विस्तार है <math>n, n \times n</math> आव्यूह  गुणन, जो बड़े के लिए <math>n</math> पूरी तरह से अव्यवहार्य है)। जो वस्तुएं इस तरह से परिवर्तित होती हैं उन्हें टेंसर घनत्व कहा जाता है क्योंकि वे क्षेत्रों और आयतन से संबंधित समस्याओं पर विचार करते समय स्वाभाविक रूप से उत्पन्न होती हैं, और इसलिए अधिकांशतः एकीकरण में उपयोग किया जाता है।
<math display="block">\left(A^{-1}\right)^\textsf{T} \begin{bmatrix}0 & 1 \\ -1 & 0 \end{bmatrix} A^{-1}</math>जो, विस्तारित होने पर केवल मूल अभिव्यक्ति है लेकिन निर्धारक द्वारा गुणा किया जाता है <math>A^{-1},</math> यह भी जो <math display="inline">\frac{1}{\det A}.</math> वास्तव में इस प्रतिनिधित्व को दो सूचकांक टेंसर परिवर्तन के रूप में सोचा जा सकता है, लेकिन इसके अतिरिक्त, टेंसर परिवर्तन नियम को गुणा के रूप में सोचना संगणनात्मक रूप से आसान है <math display="inline">\frac{1}{\det A},</math> 2 आव्यूह गुणन के बजाय (वास्तव में उच्च आयामों में, इसका स्वाभाविक विस्तार है <math>n, n \times n</math> आव्यूह  गुणन, जो बड़े के लिए <math>n</math> पूरी तरह से अव्यवहार्य है)। जो वस्तुएं इस तरह से परिवर्तित होती हैं उन्हें टेंसर घनत्व कहा जाता है क्योंकि वे क्षेत्रों और आयतन से संबंधित समस्याओं पर विचार करते समय स्वाभाविक रूप से उत्पन्न होती हैं, और इसलिए अधिकांशतः एकीकरण में उपयोग किया जाता है।


==परिभाषा==
==परिभाषा==
{{Refimprove|date=September 2012}}
{{Refimprove|date=September 2012}}
कुछ लेखक इस लेख में टेन्सर घनत्व को दो प्रकारों में वर्गीकृत करते हैं जिन्हें (प्रामाणिक) टेन्सर घनत्व और स्यूडोटेंसर घनत्व कहा जाता है। अन्य लेखक उन्हें अलग-अलग प्रकार से वर्गीकृत करते हैं, जिन्हें सम टेंसर घनत्व और विषम टेंसर घनत्व कहा जाता है। जब टेंसर घनत्व भार एक पूर्णांक होता है तो इन दृष्टिकोणों के बीच एक तुल्यता होती है जो इस पर निर्भर करती है कि पूर्णांक सम है या विषम।
ध्यान दें कि ये वर्गीकरण अलग-अलग तरीकों को स्पष्ट करते हैं कि टेंसर घनत्व अभिविन्यास-उलट समन्वय परिवर्तनों के तहत कुछ हद तक पैथोलॉजिकल रूप से बदल सकते हैं। इन प्रकारों में उनके वर्गीकरण के बावजूद, केवल एक ही तरीका है कि टेंसर घनत्व अभिविन्यास-संरक्षण समन्वय परिवर्तनों के तहत परिवर्तित हो जाते हैं।


इस लेख में हमने उस परिपाटी को चुना है जो +2 का भार निर्दिष्ट करती है <math>g = \det\left(g_{\rho\sigma}\right)</math>, सदिश सूचकांकों के सहप्रसरण और प्रतिप्रसरण के साथ व्यक्त मीट्रिक टेंसर का निर्धारक। इस विकल्प के साथ, शास्त्रीय घनत्व, जैसे चार्ज घनत्व, को वजन +1 के टेंसर घनत्व द्वारा दर्शाया जाएगा। कुछ लेखक वज़न के लिए एक संकेत परिपाटी का उपयोग करते हैं जो कि यहां प्रस्तुत किए गए वज़न का निषेध है।<ref name=":3">E.g. {{harvnb|Weinberg|1972}} pp 98. The chosen convention involves in the formulae below the [[Jacobian determinant]] of the inverse transition {{math|''x'' → {{overbar|''x''}}}}, while the opposite convention considers the forward transition {{math|{{overbar|''x''}} → ''x''}} resulting in a flip of sign of the weight.</ref>
इस लेख में प्रयुक्त अर्थ के विपरीत, सामान्य सापेक्षता में [[ स्यूडोटेन्सर ]] का अर्थ कभी-कभी एक ऐसी वस्तु से होता है जो किसी भार के टेंसर या सापेक्ष टेंसर की तरह परिवर्तित नहीं होती है।


कुछ लेखक इस लेख में टेन्सर घनत्व को दो प्रकारों में वर्गीकृत करते हैं जिन्हें (प्रामाणिक) टेन्सर घनत्व और छद्म टेंसर घनत्व कहा जाता है। अन्य लेखक उन्हें अलग-अलग प्रकार से वर्गीकृत करते हैं, जिन्हें सम टेंसर घनत्व और विषम टेंसर घनत्व कहा जाता है। जब टेंसर घनत्व का भार एक पूर्णांक होता है तो इन दृष्टिकोणों के बीच एक समानता होती है जो इस बात पर निर्भर करती है कि पूर्णांक सम है या विषम।
कुछ लेखक इस लेख में टेन्सर घनत्व को दो प्रकारों में वर्गीकृत करते हैं जिन्हें (प्रामाणिक) टेन्सर घनत्व और छद्म टेंसर घनत्व कहा जाता है। अन्य लेखक उन्हें अलग-अलग प्रकार से वर्गीकृत करते हैं, जिन्हें सम टेंसर घनत्व और विषम टेंसर घनत्व कहा जाता है। जब टेंसर घनत्व का भार एक पूर्णांक होता है तो इन दृष्टिकोणों के बीच एक समानता होती है जो इस बात पर निर्भर करती है कि पूर्णांक सम है या विषम।
Line 63: Line 48:
ध्यान दें कि ये वर्गीकरण अलग-अलग तरीकों को स्पष्ट करते हैं कि टेंसर घनत्व अभिविन्यास-उलट समन्वय परिवर्तनों के तहत कुछ हद तक तर्कहीन रूप से बदल सकते हैं। इन प्रकारों में उनके वर्गीकरण के अतिरिक्त, केवल एक ही तरीका है कि टेंसर घनत्व अभिविन्यास-संरक्षण समन्वय परिवर्तनों के तहत परिवर्तित हो जाते हैं।
ध्यान दें कि ये वर्गीकरण अलग-अलग तरीकों को स्पष्ट करते हैं कि टेंसर घनत्व अभिविन्यास-उलट समन्वय परिवर्तनों के तहत कुछ हद तक तर्कहीन रूप से बदल सकते हैं। इन प्रकारों में उनके वर्गीकरण के अतिरिक्त, केवल एक ही तरीका है कि टेंसर घनत्व अभिविन्यास-संरक्षण समन्वय परिवर्तनों के तहत परिवर्तित हो जाते हैं।


इस लेख में हमने उस परिपाटी को चुना है जो +2 का भार निर्दिष्ट करती है <math>g = \det\left(g_{\rho\sigma}\right)</math>, सहसंयोजक सूचकांकों के साथ व्यक्त मीट्रिक टेंसर का निर्धारक। इस विकल्प के साथ, शास्त्रीय घनत्व, जैसे चार्ज घनत्व, को वजन +1 के टेंसर घनत्व द्वारा दर्शाया जाएगा। कुछ लेखक वज़न के लिए एक संकेत परिपाटी का उपयोग करते हैं जो कि यहां प्रस्तुत किए गए वज़न का निषेध है।<ref name=":3" />
इस लेख में हमने उस परिपाटी को चुना है जो +2 का भार निर्दिष्ट करती है <math>g = \det\left(g_{\rho\sigma}\right)</math>, सहसंयोजक सूचकांकों के साथ व्यक्त मीट्रिक टेंसर का निर्धारक। इस विकल्प के साथ, शास्त्रीय घनत्व, जैसे चार्ज घनत्व, को वजन +1 के टेंसर घनत्व द्वारा दर्शाया जाएगा। कुछ लेखक वज़न के लिए एक संकेत परिपाटी का उपयोग करते हैं जो कि यहां प्रस्तुत किए गए वज़न का निषेध है।<ref name=":3">E.g. {{harvnb|Weinberg|1972}} pp 98. The chosen convention involves in the formulae below the [[Jacobian determinant]] of the inverse transition {{math|''x'' → {{overbar|''x''}}}}, while the opposite convention considers the forward transition {{math|{{overbar|''x''}} → ''x''}} resulting in a flip of sign of the weight.</ref>
इस लेख में प्रयुक्त अर्थ के विपरीत, सामान्य सापेक्षता में [[ स्यूडोटेन्सर | स्यूडोटेन्सर]] का अर्थ कभी-कभी एक ऐसी वस्तु से होता है जो किसी भार के टेंसर या सापेक्ष टेंसर की तरह परिवर्तित नहीं होती है।
इस लेख में प्रयुक्त अर्थ के विपरीत, सामान्य सापेक्षता में [[ स्यूडोटेन्सर | स्यूडोटेन्सर]] का अर्थ कभी-कभी एक ऐसी वस्तु से होता है जो किसी भार के टेंसर या सापेक्ष टेंसर की तरह परिवर्तित नहीं होती है।



Revision as of 11:28, 14 July 2023


विभेदक ज्यामिति में, एक टेंसर घनत्व या सापेक्ष टेंसर, टेंसर क्षेत्र अवधारणा का एक सामान्यीकरण है। एक समन्वय प्रणाली से दूसरे समन्वय प्रणाली में जाने पर एक टेंसर घनत्व एक टेंसर क्षेत्र के रूप में परिवर्तित हो जाता है (टेंसर फ़ील्ड देखें), सिवाय इसके कि इसे समन्वय संक्रमण फलन या इसके निरपेक्ष मान के जैकोबियन निर्धारक की शक्ति डब्ल्यू द्वारा अतिरिक्त रूप से गुणा या भारित किया जाता है। एकल सूचकांक वाले टेंसर घनत्व को वेक्टर घनत्व कहा जाता है। (प्रामाणिक) टेंसर घनत्व, स्यूडोटेंसर घनत्व, सम टेंसर घनत्व और विषम टेंसर घनत्व के बीच अंतर किया जाता है। कभी-कभी नकारात्मक भार W वाले टेंसर घनत्व को टेंसर क्षमता कहा जाता है।[1][2][3] एक टेंसर घनत्व को एक घनत्व बंडल के साथ टेंसर बंडल के टेंसर उत्पाद के एक खंड (फाइबर बंडल) के रूप में भी माना जा सकता है।

प्रेरणा

भौतिकी और संबंधित क्षेत्रों में, वस्तु केअतिरिक्त बीजगणितीय वस्तु के घटकों के साथ काम करना अधिकांशतः उपयोगी होता है। एक उदाहरण कुछ गुणांकों द्वारा भारित आधार सदिश के योग में एक सदिश को विघटित करना होगा जैसे कि

कहाँ 3-आयामी यूक्लिडियन अंतरिक्ष में एक सदिश है, यूक्लिडियन अंतरिक्ष में सामान्य मानक आधार सदिश हैं। यह सामान्यतया संगणनात्मक उद्देश्यों के लिए आवश्यक है, और अधिकांशतः व्यावहारिक हो सकता है जब बीजगणितीय वस्तुएं जटिल अमूर्तता का प्रतिनिधित्व करती हैं लेकिन उनके घटकों की ठोस व्याख्या होती है। हालाँकि, इस पहचान के साथ, किसी को उस अंतर्निहित आधार के परिवर्तनों को ट्रैक करने में सावधानी बरतनी होगी जिसमें मात्रा का विस्तार किया गया है; यह गणना के दौरान वेक्टर के आधार को बदलने के लिए समीचीन हो सकता है भौतिक स्थान में स्थिर रहता है।आम तौर पर अधिक, यदि एक बीजगणितीय वस्तु एक ज्यामितीय वस्तु का प्रतिनिधित्व करती है, लेकिन एक विशेष आधार के संदर्भ में व्यक्त किया जाता है, तो यह आवश्यक है कि जब आधार बदला जाए, तो प्रतिनिधित्व को भी बदला जाए। भौतिक विज्ञानी अधिकांशतः एक ज्यामितीय वस्तु के इस प्रतिनिधित्व को एक टेन्सर कहते हैं यदि यह आधार के रैखिक परिवर्तन को देखते हुए रैखिक मानचित्रों के अनुक्रम के तहत रूपांतरित होता है (चूंकि भ्रमित करने वाले अन्य लोग अंतर्निहित ज्यामितीय वस्तु को कहते हैं जो समन्वय परिवर्तन के तहत नहीं बदला है, इसे "टेंसर" कहते हैं, एक परंपरा जिससे यह लेख सख्ती से बचता है)। सामान्यतः पर ऐसे अभ्यावेदन होते हैं जो मनमाने ढंग से रूपांतरित होते हैं, यह इस बात पर निर्भर करता है कि प्रतिनिधित्व से ज्यामितीय अपरिवर्तनीय का पुनर्निर्माण कैसे किया जाता है। कुछ विशेष मामलों में अभ्यावेदन का उपयोग करना सुविधाजनक होता है जो लगभग टेंसर की तरह बदलता है, लेकिन परिवर्तन में एक अतिरिक्त, अरेखीय कारक के साथ। एक प्रोटोटाइप उदाहरण एक आव्यूह है जो क्रॉस उत्पाद (विस्तारित समांतर चतुर्भुज का क्षेत्र) का प्रतिनिधित्व करता है द्वारा मानक आधार पर प्रतिनिधित्व दिया जाता है
यदि अब हम इसी अभिव्यक्ति को मानक आधार के अलावा किसी अन्य आधार पर व्यक्त करने का प्रयास करें, तब सदिशों के घटक बदल जाएंगे, मान लीजिए के अनुसार कहाँ वास्तविक संख्याओं का कुछ 2 बटा 2 आव्यूह है। यह देखते हुए कि फैले हुए समांतर चतुर्भुज का क्षेत्र एक ज्यामितीय अपरिवर्तनीय है, आधार परिवर्तन के तहत यह नहीं बदल सकताहै, और इसलिए इस आव्यूह का नया प्रतिनिधित्व होना चाहिए:

जो, विस्तारित होने पर केवल मूल अभिव्यक्ति है लेकिन निर्धारक द्वारा गुणा किया जाता है यह भी जो वास्तव में इस प्रतिनिधित्व को दो सूचकांक टेंसर परिवर्तन के रूप में सोचा जा सकता है, लेकिन इसके अतिरिक्त, टेंसर परिवर्तन नियम को गुणा के रूप में सोचना संगणनात्मक रूप से आसान है 2 आव्यूह गुणन के बजाय (वास्तव में उच्च आयामों में, इसका स्वाभाविक विस्तार है आव्यूह गुणन, जो बड़े के लिए पूरी तरह से अव्यवहार्य है)। जो वस्तुएं इस तरह से परिवर्तित होती हैं उन्हें टेंसर घनत्व कहा जाता है क्योंकि वे क्षेत्रों और आयतन से संबंधित समस्याओं पर विचार करते समय स्वाभाविक रूप से उत्पन्न होती हैं, और इसलिए अधिकांशतः एकीकरण में उपयोग किया जाता है।

परिभाषा


कुछ लेखक इस लेख में टेन्सर घनत्व को दो प्रकारों में वर्गीकृत करते हैं जिन्हें (प्रामाणिक) टेन्सर घनत्व और छद्म टेंसर घनत्व कहा जाता है। अन्य लेखक उन्हें अलग-अलग प्रकार से वर्गीकृत करते हैं, जिन्हें सम टेंसर घनत्व और विषम टेंसर घनत्व कहा जाता है। जब टेंसर घनत्व का भार एक पूर्णांक होता है तो इन दृष्टिकोणों के बीच एक समानता होती है जो इस बात पर निर्भर करती है कि पूर्णांक सम है या विषम।

ध्यान दें कि ये वर्गीकरण अलग-अलग तरीकों को स्पष्ट करते हैं कि टेंसर घनत्व अभिविन्यास-उलट समन्वय परिवर्तनों के तहत कुछ हद तक तर्कहीन रूप से बदल सकते हैं। इन प्रकारों में उनके वर्गीकरण के अतिरिक्त, केवल एक ही तरीका है कि टेंसर घनत्व अभिविन्यास-संरक्षण समन्वय परिवर्तनों के तहत परिवर्तित हो जाते हैं।

इस लेख में हमने उस परिपाटी को चुना है जो +2 का भार निर्दिष्ट करती है , सहसंयोजक सूचकांकों के साथ व्यक्त मीट्रिक टेंसर का निर्धारक। इस विकल्प के साथ, शास्त्रीय घनत्व, जैसे चार्ज घनत्व, को वजन +1 के टेंसर घनत्व द्वारा दर्शाया जाएगा। कुछ लेखक वज़न के लिए एक संकेत परिपाटी का उपयोग करते हैं जो कि यहां प्रस्तुत किए गए वज़न का निषेध है।[4] इस लेख में प्रयुक्त अर्थ के विपरीत, सामान्य सापेक्षता में स्यूडोटेन्सर का अर्थ कभी-कभी एक ऐसी वस्तु से होता है जो किसी भार के टेंसर या सापेक्ष टेंसर की तरह परिवर्तित नहीं होती है।

टेंसर और स्यूडोटेंसर घनत्व

उदाहरण के लिए, वजन का मिश्रित रैंक-दो (प्रामाणिक) टेंसर घनत्व के रूप में रूपांतरित होता है:[5][6]

((प्रामाणिक) (पूर्णांक) भार W का टेंसर घनत्व)

कहाँ में रैंक-दो टेंसर घनत्व है निर्देशांक तरीका, में रूपांतरित टेंसर घनत्व है निर्देशांक तरीका; और हम जैकोबियन निर्धारक का उपयोग करते हैं। क्योंकि निर्धारक नकारात्मक हो सकता है, जो कि एक अभिविन्यास-उलट समन्वय परिवर्तन के लिए है, यह सूत्र केवल तभी लागू होता है जब एक पूर्णांक है. (हालांकि, नीचे सम और विषम टेंसर घनत्व देखें।)

हम कहते हैं कि एक टेंसर घनत्व एक स्यूडोटेंसर घनत्व है जब एक ओरिएंटेशन-रिवर्सिंग समन्वय परिवर्तन के तहत एक अतिरिक्त साइन फ्लिप होता है। वजन का मिश्रित रैंक-दो स्यूडोटेंसर घनत्व के रूप में परिवर्तित हो जाता है

((पूर्णांक) वजन का स्यूडोटेंसर घनत्व डब्ल्यू)

जहां साइन फ़ंक्शन () एक फ़ंक्शन है जो +1 देता है जब उसका तर्क सकारात्मक होता है या -1 जब उसका तर्क नकारात्मक होता है।

सम और विषम टेंसर घनत्व

सम और विषम टेंसर घनत्वों के परिवर्तनों को तब भी अच्छी तरह से परिभाषित होने का लाभ होता है पूर्णांक नहीं है. इस प्रकार कोई कह सकता है, वजन का एक विषम टेंसर घनत्व +2 या वजन का एक सम टेंसर घनत्व -1/2।

कब एक सम पूर्णांक है (प्रामाणिक) टेंसर घनत्व के लिए उपरोक्त सूत्र को इस प्रकार फिर से लिखा जा सकता है

(वजन का सम टेंसर घनत्व W)

इसी प्रकार, जब एक विषम पूर्णांक है (प्रामाणिक) टेंसर घनत्व के लिए सूत्र को इस प्रकार फिर से लिखा जा सकता है

(वजन का विषम टेंसर घनत्व W)

शून्य और एक का वजन

किसी भी प्रकार का टेंसर घनत्व जिसका भार शून्य होता है, उसे निरपेक्ष टेंसर भी कहा जाता है। भार शून्य के (सम) प्रामाणिक टेंसर घनत्व को साधारण टेंसर भी कहा जाता है।

यदि वजन निर्दिष्ट नहीं है, लेकिन सापेक्ष या घनत्व शब्द का उपयोग उस संदर्भ में किया जाता है जहां एक विशिष्ट वजन की आवश्यकता होती है, तो आमतौर पर यह माना जाता है कि वजन +1 है।

बीजगणितीय गुण

  1. एक ही प्रकार और भार के टेंसर घनत्वों का एक रैखिक संयोजन (भारित योग के रूप में भी जाना जाता है)। यह फिर से उस प्रकार और भार का एक टेंसर घनत्व है।
  2. किसी भी प्रकार के और भार के साथ दो टेंसर घनत्वों का एक उत्पाद और , वजन का एक टेंसर घनत्व है #:प्रामाणिक टेन्सर घनत्व और स्यूडोटेंसर घनत्व का एक उत्पाद एक प्रामाणिक टेन्सर घनत्व होगा जब कारकों की एक सम संख्या स्यूडोटेंसर घनत्व होती है; यह एक स्यूडोटेंसर घनत्व होगा जब विषम संख्या में कारक स्यूडोटेंसर घनत्व होंगे। इसी तरह, सम टेंसर घनत्व और विषम टेंसर घनत्व का उत्पाद एक सम टेंसर घनत्व होगा जब सम संख्या में कारक विषम टेंसर घनत्व होते हैं; यह एक विषम टेंसर घनत्व होगा जब विषम संख्या में कारक विषम टेंसर घनत्व होंगे।
  3. वजन के साथ टेंसर घनत्व पर सूचकांकों का संकुचन फिर से वजन का एक टेंसर घनत्व प्राप्त होता है [7]
  4. (2) और (3) का उपयोग करने से पता चलता है कि मीट्रिक टेंसर (वजन 0) का उपयोग करके सूचकांकों को बढ़ाने और घटाने से वजन अपरिवर्तित रहता है।[8]


मैट्रिक्स व्युत्क्रम और टेंसर घनत्व का मैट्रिक्स निर्धारक

अगर एक गैर-एकवचन मैट्रिक्स और वजन का रैंक-दो टेंसर घनत्व है सहसंयोजक सूचकांकों के साथ तो इसका मैट्रिक्स व्युत्क्रम वजन का रैंक-दो टेंसर घनत्व होगा - विरोधाभासी सूचकांकों के साथ। समान कथन तब लागू होते हैं जब दो सूचकांक विरोधाभासी होते हैं या मिश्रित सहसंयोजक और विरोधाभासी होते हैं।

अगर वजन का रैंक-दो टेंसर घनत्व है सहसंयोजक सूचकांकों के साथ फिर मैट्रिक्स निर्धारक वजन होगा कहाँ अंतरिक्ष-समय आयामों की संख्या है। अगर वजन का रैंक-दो टेंसर घनत्व है विरोधाभासी सूचकांकों के साथ फिर मैट्रिक्स निर्धारक वजन होगा मैट्रिक्स निर्धारक वजन होगा


सामान्य सापेक्षता

जैकोबियन निर्धारक और मीट्रिक टेंसर का संबंध

कोई भी गैर-विलक्षण साधारण टेंसर के रूप में परिवर्तित हो जाता है

जहां दाहिनी ओर को तीन आव्यूहों के गुणनफल के रूप में देखा जा सकता है। समीकरण के दोनों पक्षों के निर्धारक को लेते हुए (इसका उपयोग करते हुए कि मैट्रिक्स उत्पाद का निर्धारक निर्धारकों का उत्पाद है), दोनों पक्षों को विभाजित करके और उनका वर्गमूल लेने पर प्राप्त होता है
जब टेंसर मीट्रिक टेंसर है, और एक स्थानीय रूप से जड़त्वीय समन्वय प्रणाली है जहां  diag(−1,+1,+1,+1), मिन्कोवस्की मीट्रिक, फिर  −1 और इसी तरह
कहाँ मीट्रिक टेंसर का निर्धारक है


टेंसर घनत्व में हेरफेर करने के लिए मीट्रिक टेंसर का उपयोग

परिणामस्वरूप, एक सम टेंसर घनत्व, वजन W के रूप में लिखा जा सकता है

कहाँ एक साधारण टेंसर है. स्थानीय रूप से जड़त्वीय समन्वय प्रणाली में, जहां ऐसा ही होगा और समान संख्याओं द्वारा दर्शाया जाएगा।

मीट्रिक कनेक्शन (लेवी-सिविटा कनेक्शन) का उपयोग करते समय, एक सम टेंसर घनत्व के सहसंयोजक व्युत्पन्न को इस प्रकार परिभाषित किया गया है

एक मनमाना कनेक्शन के लिए, सहसंयोजक व्युत्पन्न को एक अतिरिक्त शब्द जोड़कर परिभाषित किया जाता है
उस अभिव्यक्ति के लिए जो एक साधारण टेंसर के सहसंयोजक व्युत्पन्न के लिए उपयुक्त होगी।

समान रूप से, उत्पाद नियम का पालन किया जाता है

जहां, मीट्रिक कनेक्शन के लिए, किसी भी फ़ंक्शन का सहसंयोजक व्युत्पन्न सदैव शून्य है,


उदाहरण

इजहार एक अदिश घनत्व है. इस लेख की परिपाटी के अनुसार इसका भार +1 है। विद्युत धारा का घनत्व (उदाहरण के लिए, 3-वॉल्यूम तत्व को पार करने वाले विद्युत आवेश की मात्रा है उस तत्व से विभाजित - इस गणना में मीट्रिक का उपयोग न करें) वजन +1 का एक विरोधाभासी वेक्टर घनत्व है। इसे अक्सर ऐसे लिखा जाता है या कहाँ और विभेदक रूप हैं निरपेक्ष टेंसर, और कहाँ लेवी-सिविटा प्रतीक है; नीचे देखें।

लोरेंत्ज़ बल का घनत्व (अर्थात, विद्युत चुम्बकीय क्षेत्र से 4-मात्रा वाले तत्व के भीतर पदार्थ में स्थानांतरित रैखिक गति उस तत्व से विभाजित - इस गणना में मीट्रिक का उपयोग न करें) वजन +1 का एक सहसंयोजक वेक्टर घनत्व है। एन-डायमेंशनल स्पेस-टाइम में, लेवी-सिविटा प्रतीक को वजन के रैंक-एन सहसंयोजक (विषम) प्रामाणिक टेंसर घनत्व के रूप में माना जा सकता है -1 (εα1αN) या एक रैंक-एन कंट्रावेरिएंट (विषम) वजन का प्रामाणिक टेंसर घनत्व +1 (εα1αN). ध्यान दें कि लेवी-सिविटा प्रतीक (ऐसा माना जाता है) करता है not मीट्रिक टेंसर के साथ सूचकांकों को बढ़ाने या घटाने के लिए सामान्य परंपरा का पालन करें। यानी ये बात सच है

लेकिन सामान्य सापेक्षता में, कहाँ सदैव ऋणात्मक होता है, यह कभी भी बराबर नहीं होता मीट्रिक टेंसर का निर्धारक,
वजन +2 का एक (सम) प्रामाणिक स्केलर घनत्व है, जो वजन +1 के 2 (विषम) प्रामाणिक टेंसर घनत्वों और वजन 0 के चार (सम) प्रामाणिक टेंसर घनत्वों के उत्पाद का संकुचन है।

यह भी देखें

टिप्पणियाँ

  1. Weinreich, Gabriel (July 6, 1998). Geometrical Vectors (in English). pp. 112, 115. ISBN 978-0226890487.
  2. Papastavridis, John G. (Dec 18, 1998). Tensor Calculus and Analytical Dynamics (in English). CRC Press. ISBN 978-0849385148.
  3. Ruiz-Tolosa, Castillo, Juan R., Enrique (30 Mar 2006). From Vectors to Tensors (in English). Springer Science & Business Media. ISBN 978-3540228875.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. E.g. Weinberg 1972 pp 98. The chosen convention involves in the formulae below the Jacobian determinant of the inverse transition xx, while the opposite convention considers the forward transition xx resulting in a flip of sign of the weight.
  5. M.R. Spiegel; S. Lipcshutz; D. Spellman (2009). वेक्टर विश्लेषण (2nd ed.). New York: Schaum's Outline Series. p. 198. ISBN 978-0-07-161545-7.
  6. C.B. Parker (1994). मैकग्रा हिल इनसाइक्लोपीडिया ऑफ फिजिक्स (2nd ed.). p. 1417. ISBN 0-07-051400-3.
  7. Weinberg 1972 p 100.
  8. Weinberg 1972 p 100.


संदर्भ