आकारिक वर्ग नियम: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
गणित में, एक औपचारिक समूह कानून (मोटे तौर पर कहें तो) एक [[औपचारिक शक्ति श्रृंखला]] है जो ऐसा व्यवहार करती है जैसे कि यह एक लाई समूह का उत्पाद हो। द्वारा उनका परिचय कराया गया {{harvs|txt|first=S.|last= Bochner|authorlink=Salomon Bochner|year=1946}}. औपचारिक समूह शब्द का अर्थ कभी-कभी औपचारिक समूह कानून के समान होता है, और कभी-कभी इसका अर्थ कई सामान्यीकरणों में से एक होता है। औपचारिक समूह लाई समूह (या [[बीजगणितीय समूह]]) और लाई बीजगणित के बीच मध्यवर्ती होते हैं। इनका उपयोग [[बीजगणितीय संख्या सिद्धांत]] और [[बीजगणितीय टोपोलॉजी]] में किया जाता है।
गणित में, एक आकारिक वर्ग नियम (मोटे तौर पर कहें तो) एक [[औपचारिक शक्ति श्रृंखला|आकारिक शक्ति श्रृंखला]] है जो ऐसा व्यवहार करती है जैसे कि यह एक लाई वर्ग का उत्पाद हो। द्वारा उनका परिचय कराया गया {{harvs|txt|first=S.|last= Bochner|authorlink=Salomon Bochner|year=1946}}. आकारिक वर्ग शब्द का अर्थ कभी-कभी आकारिक वर्ग नियम के समान होता है, और कभी-कभी इसका अर्थ कई सामान्यीकरणों में से एक होता है। आकारिक वर्ग लाई वर्ग (या [[बीजगणितीय समूह|बीजगणितीय वर्ग]]) और लाई बीजगणित के बीच मध्यवर्ती होते हैं। इनका उपयोग [[बीजगणितीय संख्या सिद्धांत]] और [[बीजगणितीय टोपोलॉजी]] में किया जाता है।


==परिभाषाएँ==
==परिभाषाएँ==
[[क्रमविनिमेय वलय]] ''R'' पर एक आयामी औपचारिक समूह कानून ''R'' में गुणांक के साथ एक शक्ति श्रृंखला ''F''(''x'',''y'') है, जैसे कि
[[क्रमविनिमेय वलय]] ''R'' पर एक आयामी आकारिक वर्ग नियम ''R'' में गुणांक के साथ एक शक्ति श्रृंखला ''F''(''x'',''y'') है, जैसे कि
# ''F''(''x'',''y'') = ''x'' + ''y'' + उच्च डिग्री के पद
# ''F''(''x'',''y'') = ''x'' + ''y'' + उच्च डिग्री के पद
# ''F''(''x'', ''F''(''y'',''z'')) = ''F''(''F''(''x'' ,''y''), ''z'') (सहयोगिता)।
# ''F''(''x'', ''F''(''y'',''z'')) = ''F''(''F''(''x'' ,''y''), ''z'') (सहयोगिता)।
सबसे सरल उदाहरण योगात्मक औपचारिक समूह कानून ''F''(''x'', ''y'') = ''x'' + ''y'' है।
सबसे सरल उदाहरण योगात्मक आकारिक वर्ग नियम ''F''(''x'', ''y'') = ''x'' + ''y'' है।
परिभाषा का विचार यह है कि ''एफ'' लाई समूह के उत्पाद के औपचारिक शक्ति श्रृंखला विस्तार जैसा कुछ होना चाहिए, जहां हम निर्देशांक चुनते हैं ताकि लाई समूह की पहचान मूल हो।
परिभाषा का विचार यह है कि ''एफ'' लाई वर्ग के उत्पाद के आकारिक शक्ति श्रृंखला विस्तार जैसा कुछ होना चाहिए, जहां हम निर्देशांक चुनते हैं ताकि लाई वर्ग की पहचान मूल हो।


अधिक सामान्यतः, ''एन''-आयामी औपचारिक समूह कानून ''एन'' शक्ति श्रृंखला का एक संग्रह है
अधिक सामान्यतः, ''एन''-आयामी आकारिक वर्ग नियम ''एन'' शक्ति श्रृंखला का एक संग्रह है
''एफ''<sub>''i''</sub>(एक्स<sub>1</sub>, एक्स<sub>2</sub>, ..., एक्स<sub>''n''</sub>, और<sub>1</sub>, और<sub>2</sub>, ..., और<sub>''n''</sub>) 2n वेरिएबल्स में, जैसे कि
''एफ''<sub>''i''</sub>(एक्स<sub>1</sub>, एक्स<sub>2</sub>, ..., एक्स<sub>''n''</sub>, और<sub>1</sub>, और<sub>2</sub>, ..., और<sub>''n''</sub>) 2n वेरिएबल्स में, जैसे कि
# 'F'('x','y') = 'x' + 'y' + उच्च डिग्री के पद
# 'F'('x','y') = 'x' + 'y' + उच्च डिग्री के पद
Line 14: Line 14:
जहाँ हम (F) के लिए 'F' लिखते हैं<sub>1</sub>, ..., एफ<sub>''n''</sub>), x के लिए (''x''<sub>1</sub>, ..., एक्स<sub>''n''</sub>), और इसी तरह।
जहाँ हम (F) के लिए 'F' लिखते हैं<sub>1</sub>, ..., एफ<sub>''n''</sub>), x के लिए (''x''<sub>1</sub>, ..., एक्स<sub>''n''</sub>), और इसी तरह।


यदि F(x,y) = F(y,x) हो तो औपचारिक समूह नियम को क्रमविनिमेय कहा जाता है। यदि ''आर'' मरोड़ मुक्त है, तो कोई ''आर'' को क्यू-बीजगणित में एम्बेड कर सकता है और किसी भी एक-आयामी औपचारिक समूह कानून ''एफ'' को ''एफ'' के रूप में लिखने के लिए घातांक और लघुगणक का उपयोग कर सकता है। ''x'',''y'') = exp(log(''x'') + log(''y'')), इसलिए ''F'' आवश्यक रूप से क्रमविनिमेय है।<ref>Note that the formula for the logarithm in terms of the invariant differential given in dimension one does not assume that ''F'' is commutative.</ref> अधिक सामान्यतः, हमारे पास है:
यदि F(x,y) = F(y,x) हो तो आकारिक वर्ग नियम को क्रमविनिमेय कहा जाता है। यदि ''आर'' मरोड़ मुक्त है, तो कोई ''आर'' को क्यू-बीजगणित में एम्बेड कर सकता है और किसी भी एक-आयामी आकारिक वर्ग नियम ''एफ'' को ''एफ'' के रूप में लिखने के लिए घातांक और लघुगणक का उपयोग कर सकता है। ''x'',''y'') = exp(log(''x'') + log(''y'')), इसलिए ''F'' आवश्यक रूप से क्रमविनिमेय है।<ref>Note that the formula for the logarithm in terms of the invariant differential given in dimension one does not assume that ''F'' is commutative.</ref> अधिक सामान्यतः, हमारे पास है:
:प्रमेय. ''R'' पर प्रत्येक एक-आयामी औपचारिक समूह कानून क्रमविनिमेय है यदि और केवल तभी जब ''R'' में कोई गैर-शून्य मरोड़ निलपोटेंट नहीं है (यानी, कोई भी गैर-शून्य तत्व जो मरोड़ और निलपोटेंट दोनों हैं)।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§6.1}}</ref>
:प्रमेय. ''R'' पर प्रत्येक एक-आयामी आकारिक वर्ग नियम क्रमविनिमेय है यदि और केवल तभी जब ''R'' में कोई गैर-शून्य मरोड़ निलपोटेंट नहीं है (यानी, कोई भी गैर-शून्य तत्व जो मरोड़ और निलपोटेंट दोनों हैं)।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§6.1}}</ref>
[[समूह (गणित)]] के लिए व्युत्क्रम तत्वों के अस्तित्व के अनुरूप किसी स्वयंसिद्ध की आवश्यकता नहीं है, क्योंकि यह औपचारिक समूह कानून की परिभाषा से स्वचालित रूप से अनुसरण करता है। दूसरे शब्दों में हम हमेशा एक (अद्वितीय) शक्ति श्रृंखला G पा सकते हैं जैसे कि F(x,G(x)) = 0।
[[समूह (गणित)|वर्ग (गणित)]] के लिए व्युत्क्रम तत्वों के अस्तित्व के अनुरूप किसी स्वयंसिद्ध की आवश्यकता नहीं है, क्योंकि यह आकारिक वर्ग नियम की परिभाषा से स्वचालित रूप से अनुसरण करता है। दूसरे शब्दों में हम हमेशा एक (अद्वितीय) शक्ति श्रृंखला G पा सकते हैं जैसे कि F(x,G(x)) = 0।


आयाम ''एम'' के औपचारिक समूह कानून एफ से ''एन'' आयाम के औपचारिक समूह कानून जी तक एक समरूपता ''एम'' चर में ''एन'' शक्ति श्रृंखला का एक संग्रह एफ है, जैसे कि
आयाम ''एम'' के आकारिक वर्ग नियम एफ से ''एन'' आयाम के आकारिक वर्ग नियम जी तक एक समरूपता ''एम'' चर में ''एन'' शक्ति श्रृंखला का एक संग्रह एफ है, जैसे कि
::G(f(x), f(y)) = f(F(x,y)).
::G(f(x), f(y)) = f(F(x,y)).
व्युत्क्रम के साथ एक समरूपता को समरूपता कहा जाता है, और यदि इसके अतिरिक्त f(x) = x + उच्च डिग्री के पद हों तो इसे सख्त समरूपता कहा जाता है। उनके बीच समरूपता वाले दो औपचारिक समूह कानून अनिवार्य रूप से समान हैं; वे केवल निर्देशांक के परिवर्तन से भिन्न होते हैं।
व्युत्क्रम के साथ एक समरूपता को समरूपता कहा जाता है, और यदि इसके अतिरिक्त f(x) = x + उच्च डिग्री के पद हों तो इसे सख्त समरूपता कहा जाता है। उनके बीच समरूपता वाले दो आकारिक वर्ग नियम अनिवार्य रूप से समान हैं; वे केवल निर्देशांक के परिवर्तन से भिन्न होते हैं।


==उदाहरण==
==उदाहरण==
*योगात्मक औपचारिक समूह कानून द्वारा दिया गया है
*योगात्मक आकारिक वर्ग नियम द्वारा दिया गया है
:: <math>F(x,y) = x + y.\ </math>
:: <math>F(x,y) = x + y.\ </math>
*गुणात्मक औपचारिक समूह कानून द्वारा दिया गया है
*गुणात्मक आकारिक वर्ग नियम द्वारा दिया गया है
:: <math>F(x,y) = x + y + xy.\ </math>
:: <math>F(x,y) = x + y + xy.\ </math>
:इस नियम को इस प्रकार समझा जा सकता है. रिंग (गणित) आर में उत्पाद जी (गुणक समूह) जी (ए, बी) = एबी द्वारा दिया गया है। यदि हम a = 1 + x, b = 1 + y, और G = 1 + F डालकर 0 को पहचान बनाने के लिए निर्देशांक बदलते हैं, तो हम पाते हैं कि F(x,y) = x + y + xy।
:इस नियम को इस प्रकार समझा जा सकता है. रिंग (गणित) आर में उत्पाद जी (गुणक वर्ग) जी (ए, बी) = एबी द्वारा दिया गया है। यदि हम a = 1 + x, b = 1 + y, और G = 1 + F डालकर 0 को पहचान बनाने के लिए निर्देशांक बदलते हैं, तो हम पाते हैं कि F(x,y) = x + y + xy।
[[तर्कसंगत संख्या]]ओं पर, योगात्मक औपचारिक समूह कानून से गुणक तक एक समरूपता है, जो द्वारा दी गई है {{nowrap|exp(''x'')&nbsp;−&nbsp;1}}. सामान्य क्रमविनिमेय वलय R पर ऐसी कोई समरूपता नहीं है क्योंकि इसे परिभाषित करने के लिए गैर-अभिन्न तर्कसंगत संख्याओं की आवश्यकता होती है, और योगात्मक और गुणक औपचारिक समूह आमतौर पर आइसोमोर्फिक नहीं होते हैं।
[[तर्कसंगत संख्या]]ओं पर, योगात्मक आकारिक वर्ग नियम से गुणक तक एक समरूपता है, जो द्वारा दी गई है {{nowrap|exp(''x'')&nbsp;−&nbsp;1}}. सामान्य क्रमविनिमेय वलय R पर ऐसी कोई समरूपता नहीं है क्योंकि इसे परिभाषित करने के लिए गैर-अभिन्न तर्कसंगत संख्याओं की आवश्यकता होती है, और योगात्मक और गुणक आकारिक वर्ग आमतौर पर आइसोमोर्फिक नहीं होते हैं।


*आम तौर पर, हम पहचान पर निर्देशांक लेकर और उत्पाद मानचित्र के औपचारिक शक्ति श्रृंखला विस्तार को लिखकर, किसी भी बीजगणितीय समूह या आयाम n के झूठ समूह से आयाम n का एक औपचारिक समूह कानून बना सकते हैं। योगात्मक और गुणक औपचारिक समूह कानून इस प्रकार योगात्मक और गुणक बीजगणितीय समूहों से प्राप्त किए जाते हैं। इसका एक अन्य महत्वपूर्ण विशेष मामला '[[अण्डाकार वक्र]] का औपचारिक समूह (कानून)' (या [[एबेलियन किस्म]]) है।
*आम तौर पर, हम पहचान पर निर्देशांक लेकर और उत्पाद मानचित्र के आकारिक शक्ति श्रृंखला विस्तार को लिखकर, किसी भी बीजगणितीय वर्ग या आयाम n के झूठ वर्ग से आयाम n का एक आकारिक वर्ग नियम बना सकते हैं। योगात्मक और गुणक आकारिक वर्ग नियम इस प्रकार योगात्मक और गुणक बीजगणितीय वर्गों से प्राप्त किए जाते हैं। इसका एक अन्य महत्वपूर्ण विशेष मामला '[[अण्डाकार वक्र]] का आकारिक वर्ग (नियम)' (या [[एबेलियन किस्म]]) है।
*F(x,y) = (x + y)/(1 + xy) एक औपचारिक समूह कानून है जो हाइपरबोलिक स्पर्शरेखा फ़ंक्शन के अतिरिक्त सूत्र से आता है: tanh(x + y) = F(tanh(x), tanh (y)), और [[विशेष सापेक्षता]] में वेगों को जोड़ने का सूत्र भी है (1 के बराबर [[प्रकाश की गति]] के साथ)।
*F(x,y) = (x + y)/(1 + xy) एक आकारिक वर्ग नियम है जो हाइपरबोलिक स्पर्शरेखा फ़ंक्शन के अतिरिक्त सूत्र से आता है: tanh(x + y) = F(tanh(x), tanh (y)), और [[विशेष सापेक्षता]] में वेगों को जोड़ने का सूत्र भी है (1 के बराबर [[प्रकाश की गति]] के साथ)।
*<math display="inline">F(x,y) = \left. \left(x\sqrt{1-y^4} +y\sqrt{1-x^4}\right) \right/ \!(1+x^2y^2)</math> Z[1/2] पर एक औपचारिक समूह कानून है जिसे [[यूलर]] ने [https://scholar.rose-hulman.edu/cgi/viewcontent.cgi?article=1148&context=rhumj जोड़ सूत्र] के रूप में पाया है। [[अण्डाकार अभिन्न]] ({{harvtxt|Strickland}}):
*<math display="inline">F(x,y) = \left. \left(x\sqrt{1-y^4} +y\sqrt{1-x^4}\right) \right/ \!(1+x^2y^2)</math> Z[1/2] पर एक आकारिक वर्ग नियम है जिसे [[यूलर]] ने [https://scholar.rose-hulman.edu/cgi/viewcontent.cgi?article=1148&context=rhumj जोड़ सूत्र] के रूप में पाया है। [[अण्डाकार अभिन्न]] ({{harvtxt|Strickland}}):


:: <math>\int_0^x{dt\over \sqrt{1-t^4}} + \int_0^y{dt\over \sqrt{1-t^4}} = \int_0^{F(x,y)}{dt\over \sqrt{1-t^4}}.</math>
:: <math>\int_0^x{dt\over \sqrt{1-t^4}} + \int_0^y{dt\over \sqrt{1-t^4}} = \int_0^{F(x,y)}{dt\over \sqrt{1-t^4}}.</math>
Line 39: Line 39:
==झूठ बीजगणित==
==झूठ बीजगणित==


कोई भी एन-आयामी औपचारिक समूह कानून रिंग आर पर एक एन-आयामी झूठ बीजगणित देता है, जिसे द्विघात भाग एफ के संदर्भ में परिभाषित किया गया है।<sub>2</sub> औपचारिक समूह कानून का.
कोई भी एन-आयामी आकारिक वर्ग नियम रिंग आर पर एक एन-आयामी झूठ बीजगणित देता है, जिसे द्विघात भाग एफ के संदर्भ में परिभाषित किया गया है।<sub>2</sub> आकारिक वर्ग नियम का.
:[x,y] = एफ<sub>2</sub>(एक्स,वाई) - एफ<sub>2</sub>(वाई,एक्स)
:[x,y] = एफ<sub>2</sub>(एक्स,वाई) - एफ<sub>2</sub>(वाई,एक्स)
लाई समूहों या बीजगणितीय समूहों से लेकर लाई बीजगणित तक के प्राकृतिक फ़नकार को लाई समूहों से लेकर औपचारिक समूह कानूनों तक के [[ऑपरेटर]] में विभाजित किया जा सकता है, इसके बाद औपचारिक समूह के लाई बीजगणित को लिया जा सकता है:
लाई वर्गों या बीजगणितीय वर्गों से लेकर लाई बीजगणित तक के प्राकृतिक फ़नकार को लाई वर्गों से लेकर आकारिक वर्ग नियमों तक के [[ऑपरेटर]] में विभाजित किया जा सकता है, इसके बाद आकारिक वर्ग के लाई बीजगणित को लिया जा सकता है:
::झूठ समूह औपचारिक समूह कानून → झूठ बीजगणित
::झूठ वर्ग आकारिक वर्ग नियम → झूठ बीजगणित


[[विशेषता (बीजगणित)]] 0 के क्षेत्र (गणित) पर, औपचारिक समूह कानून अनिवार्य रूप से परिमित-आयामी झूठ बीजगणित के समान होते हैं: अधिक सटीक रूप से, परिमित-आयामी औपचारिक समूह कानूनों से परिमित-आयामी झूठ बीजगणित तक फ़ैक्टर श्रेणियों का एक समतुल्य है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§14.2.3}}</ref> गैर-शून्य विशेषता वाले क्षेत्रों में, औपचारिक समूह कानून लाई बीजगणित के समकक्ष नहीं हैं। वास्तव में, इस मामले में यह सर्वविदित है कि एक बीजगणितीय समूह से उसके लाई बीजगणित में जाने से अक्सर बहुत अधिक जानकारी दूर हो जाती है, लेकिन इसके बजाय औपचारिक समूह कानून में जाने से अक्सर पर्याप्त जानकारी बच जाती है। तो कुछ अर्थों में औपचारिक समूह कानून विशेषता पी>0 में लाई बीजगणित के लिए सही विकल्प हैं।
[[विशेषता (बीजगणित)]] 0 के क्षेत्र (गणित) पर, आकारिक वर्ग नियम अनिवार्य रूप से परिमित-आयामी झूठ बीजगणित के समान होते हैं: अधिक सटीक रूप से, परिमित-आयामी आकारिक वर्ग नियमों से परिमित-आयामी झूठ बीजगणित तक फ़ैक्टर श्रेणियों का एक समतुल्य है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§14.2.3}}</ref> गैर-शून्य विशेषता वाले क्षेत्रों में, आकारिक वर्ग नियम लाई बीजगणित के समकक्ष नहीं हैं। वास्तव में, इस मामले में यह सर्वविदित है कि एक बीजगणितीय वर्ग से उसके लाई बीजगणित में जाने से अक्सर बहुत अधिक जानकारी दूर हो जाती है, लेकिन इसके बजाय आकारिक वर्ग नियम में जाने से अक्सर पर्याप्त जानकारी बच जाती है। तो कुछ अर्थों में आकारिक वर्ग नियम विशेषता पी>0 में लाई बीजगणित के लिए सही विकल्प हैं।


==क्रमविनिमेय औपचारिक समूह कानून का लघुगणक==
==क्रमविनिमेय आकारिक वर्ग नियम का लघुगणक==


यदि F, क्रमविनिमेय Q-बीजगणित ''R'' पर एक क्रमविनिमेय ''एन''-आयामी औपचारिक समूह कानून है, तो यह योगात्मक औपचारिक समूह कानून के लिए सख्ती से समरूपी है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§11.1.6}}</ref> दूसरे शब्दों में, योगात्मक औपचारिक समूह से F तक एक सख्त समरूपता f है, जिसे F का लघुगणक कहा जाता है, ताकि
यदि F, क्रमविनिमेय Q-बीजगणित ''R'' पर एक क्रमविनिमेय ''एन''-आयामी आकारिक वर्ग नियम है, तो यह योगात्मक आकारिक वर्ग नियम के लिए सख्ती से समरूपी है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§11.1.6}}</ref> दूसरे शब्दों में, योगात्मक आकारिक वर्ग से F तक एक सख्त समरूपता f है, जिसे F का लघुगणक कहा जाता है, ताकि
::f(F(x,y)) = f(x) + f(y).
::f(F(x,y)) = f(x) + f(y).


Line 55: Line 55:
*''F''(''x'',''y'') = ''x'' + ''y'' +''xy'' का लघुगणक ''f''(''x) है '') = लॉग(1+''x''), क्योंकि लॉग(1+''x''+''y''+''xy'') = लॉग(1+''x'')+ लॉग(1+''y'').
*''F''(''x'',''y'') = ''x'' + ''y'' +''xy'' का लघुगणक ''f''(''x) है '') = लॉग(1+''x''), क्योंकि लॉग(1+''x''+''y''+''xy'') = लॉग(1+''x'')+ लॉग(1+''y'').


यदि ''R'' में परिमेय नहीं है, तो ''R'' ⊗ Q तक अदिश राशि के विस्तार द्वारा एक मानचित्र f का निर्माण किया जा सकता है, लेकिन यदि ''R'' में सकारात्मक विशेषता है तो यह सब कुछ शून्य पर भेज देगा। रिंग ''आर'' पर औपचारिक समूह कानूनों का निर्माण अक्सर उनके लघुगणक को ''आर'' ⊗ क्यू में गुणांक के साथ एक शक्ति श्रृंखला के रूप में लिखकर किया जाता है, और फिर यह साबित किया जाता है कि संबंधित औपचारिक समूह के गुणांक ''आर'' पर हैं। ' ⊗ Q वास्तव में ''R'' में है। सकारात्मक विशेषता में काम करते समय, आमतौर पर ''आर'' को एक मिश्रित विशेषता रिंग से बदल दिया जाता है, जिसका प्रभाव ''आर'' पर होता है, जैसे कि [[विट वेक्टर]] की रिंग ''डब्ल्यू''(''आर''), और अंत में ''R'' तक कम हो जाता है।
यदि ''R'' में परिमेय नहीं है, तो ''R'' ⊗ Q तक अदिश राशि के विस्तार द्वारा एक मानचित्र f का निर्माण किया जा सकता है, लेकिन यदि ''R'' में सकारात्मक विशेषता है तो यह सब कुछ शून्य पर भेज देगा। रिंग ''आर'' पर आकारिक वर्ग नियमों का निर्माण अक्सर उनके लघुगणक को ''आर'' ⊗ क्यू में गुणांक के साथ एक शक्ति श्रृंखला के रूप में लिखकर किया जाता है, और फिर यह साबित किया जाता है कि संबंधित आकारिक वर्ग के गुणांक ''आर'' पर हैं। ' ⊗ Q वास्तव में ''R'' में है। सकारात्मक विशेषता में काम करते समय, आमतौर पर ''आर'' को एक मिश्रित विशेषता रिंग से बदल दिया जाता है, जिसका प्रभाव ''आर'' पर होता है, जैसे कि [[विट वेक्टर]] की रिंग ''डब्ल्यू''(''आर''), और अंत में ''R'' तक कम हो जाता है।


=== अपरिवर्तनीय अंतर ===
=== अपरिवर्तनीय अंतर ===
जब F एक-आयामी है, तो कोई इसका लघुगणक 'अपरिवर्तनीय अंतर' ω(t) के संदर्भ में लिख सकता है।<ref>{{Cite web |last=Mavraki |first=Niki Myrto |title=औपचारिक समूह|url=https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |url-status=live |archive-url=https://web.archive.org/web/20220912144322/https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |archive-date=2022-09-12}}</ref> होने देना <math display="block">\omega(t) = \frac{\partial F}{\partial x}(0,t)^{-1} dt \in R[[t]]dt,</math>कहाँ <math display="inline">R[[t]] dt</math> मुफ़्त है <math display="inline">R[[t]]</math>-एक प्रतीक डीटी पर रैंक 1 का मॉड्यूल। तब ω उस अर्थ में अनुवाद अपरिवर्तनीय है <math display="block">F^* \omega = \omega,</math>अगर हम लिखें तो कहां <math display="inline">\omega(t) = p(t)dt</math>, तो परिभाषा के अनुसार एक है<math display="block">F^* \omega := p(F(t,s)) \frac{\partial F}{\partial x}(t,s) dt.</math>यदि कोई विस्तार पर विचार करता है <math display="inline">\omega(t) = (1 + c_1 t + c_2 t^2 + \dots) dt</math>, सूत्र<math display="block">f(t) = \int \omega(t) = t + \frac{c_1}{2} t^2 + \frac{c_2}{3} t^3 + \dots</math>F के लघुगणक को परिभाषित करता है।
जब F एक-आयामी है, तो कोई इसका लघुगणक 'अपरिवर्तनीय अंतर' ω(t) के संदर्भ में लिख सकता है।<ref>{{Cite web |last=Mavraki |first=Niki Myrto |title=औपचारिक समूह|url=https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |url-status=live |archive-url=https://web.archive.org/web/20220912144322/https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |archive-date=2022-09-12}}</ref> होने देना <math display="block">\omega(t) = \frac{\partial F}{\partial x}(0,t)^{-1} dt \in R[[t]]dt,</math>कहाँ <math display="inline">R[[t]] dt</math> मुफ़्त है <math display="inline">R[[t]]</math>-एक प्रतीक डीटी पर रैंक 1 का मॉड्यूल। तब ω उस अर्थ में अनुवाद अपरिवर्तनीय है <math display="block">F^* \omega = \omega,</math>अगर हम लिखें तो कहां <math display="inline">\omega(t) = p(t)dt</math>, तो परिभाषा के अनुसार एक है<math display="block">F^* \omega := p(F(t,s)) \frac{\partial F}{\partial x}(t,s) dt.</math>यदि कोई विस्तार पर विचार करता है <math display="inline">\omega(t) = (1 + c_1 t + c_2 t^2 + \dots) dt</math>, सूत्र<math display="block">f(t) = \int \omega(t) = t + \frac{c_1}{2} t^2 + \frac{c_2}{3} t^3 + \dots</math>F के लघुगणक को परिभाषित करता है।


==औपचारिक समूह कानून का औपचारिक समूह वलय==
==आकारिक वर्ग नियम का आकारिक वर्ग वलय==


एक औपचारिक समूह कानून का औपचारिक समूह वलय एक समूह के समूह वलय और एक ली बीजगणित के [[सार्वभौमिक आवरण बीजगणित]] के अनुरूप एक सह-विनिमेय [[हॉपफ बीजगणित]] है, जो दोनों सह-अनुकरणीय हॉफ बीजगणित भी हैं। सामान्य तौर पर सह-विनिमेय हॉपफ बीजगणित बहुत हद तक समूहों की तरह व्यवहार करते हैं।
एक आकारिक वर्ग नियम का आकारिक वर्ग वलय एक वर्ग के वर्ग वलय और एक ली बीजगणित के [[सार्वभौमिक आवरण बीजगणित]] के अनुरूप एक सह-विनिमेय [[हॉपफ बीजगणित]] है, जो दोनों सह-अनुकरणीय हॉफ बीजगणित भी हैं। सामान्य तौर पर सह-विनिमेय हॉपफ बीजगणित बहुत हद तक वर्गों की तरह व्यवहार करते हैं।


सरलता के लिए हम 1-आयामी मामले का वर्णन करते हैं; उच्च-आयामी मामला समान है सिवाय इसके कि अंकन अधिक शामिल हो जाता है।
सरलता के लिए हम 1-आयामी मामले का वर्णन करते हैं; उच्च-आयामी मामला समान है सिवाय इसके कि अंकन अधिक शामिल हो जाता है।


मान लीजिए कि F, R के ऊपर एक (1-आयामी) औपचारिक समूह कानून है। इसका 'औपचारिक समूह वलय' (जिसे इसका 'हाइपरलेजेब्रा' या इसका 'सहसंयोजक बायलजेब्रा' भी कहा जाता है) एक सह-विनिमेय हॉपफ बीजगणित H है, जिसका निर्माण इस प्रकार किया गया है।
मान लीजिए कि F, R के ऊपर एक (1-आयामी) आकारिक वर्ग नियम है। इसका 'आकारिक वर्ग वलय' (जिसे इसका 'हाइपरलेजेब्रा' या इसका 'सहसंयोजक बायलजेब्रा' भी कहा जाता है) एक सह-विनिमेय हॉपफ बीजगणित H है, जिसका निर्माण इस प्रकार किया गया है।
* आर-[[मॉड्यूल (गणित)]] के रूप में, एच एक आधार 1 = डी के साथ [[मुफ़्त मॉड्यूल]] है<sup>(0)</sup>, डी<sup>(1)</sup>, डी<sup>(2)</sup>,...
* आर-[[मॉड्यूल (गणित)]] के रूप में, एच एक आधार 1 = डी के साथ [[मुफ़्त मॉड्यूल]] है<sup>(0)</sup>, डी<sup>(1)</sup>, डी<sup>(2)</sup>,...
* सहउत्पाद Δ, ΔD द्वारा दिया जाता है<sup>(n)</sup> = ΣD<sup>(i)</sup>‍⊗ डी<sup>(n−i)</sup> (इसलिए इस कोलजेब्रा का द्वैत केवल औपचारिक शक्ति श्रृंखला का वलय है)।
* सहउत्पाद Δ, ΔD द्वारा दिया जाता है<sup>(n)</sup> = ΣD<sup>(i)</sup>‍⊗ डी<sup>(n−i)</sup> (इसलिए इस कोलजेब्रा का द्वैत केवल आकारिक शक्ति श्रृंखला का वलय है)।
*गणक η D के गुणांक द्वारा दिया जाता है<sup>(0)</sup>.
*गणक η D के गुणांक द्वारा दिया जाता है<sup>(0)</sup>.
*पहचान 1 = D है<sup>(0)</sup>.
*पहचान 1 = D है<sup>(0)</sup>.
Line 74: Line 74:
*डी का गुणांक<sup>(1) उत्पाद डी में<sup>(i)</sup>D<sup>(j)</sup>x का गुणांक है<sup>मैं</sup>y<sup>j</sup> F(x,y) में।
*डी का गुणांक<sup>(1) उत्पाद डी में<sup>(i)</sup>D<sup>(j)</sup>x का गुणांक है<sup>मैं</sup>y<sup>j</sup> F(x,y) में।


इसके विपरीत, एक हॉपफ बीजगणित दिया गया है जिसकी कोलजेब्रा संरचना ऊपर दी गई है, हम इससे एक औपचारिक समूह कानून एफ पुनर्प्राप्त कर सकते हैं। तो 1-आयामी औपचारिक समूह कानून अनिवार्य रूप से हॉपफ बीजगणित के समान हैं जिनकी कोलजेब्रा संरचना ऊपर दी गई है।
इसके विपरीत, एक हॉपफ बीजगणित दिया गया है जिसकी कोलजेब्रा संरचना ऊपर दी गई है, हम इससे एक आकारिक वर्ग नियम एफ पुनर्प्राप्त कर सकते हैं। तो 1-आयामी आकारिक वर्ग नियम अनिवार्य रूप से हॉपफ बीजगणित के समान हैं जिनकी कोलजेब्रा संरचना ऊपर दी गई है।


==कार्यकर्ताओं के रूप में औपचारिक समूह कानून==
==कार्यकर्ताओं के रूप में आकारिक वर्ग नियम==


R पर एक n-आयामी औपचारिक समूह कानून 'F' और एक क्रमविनिमेय R-बीजगणित S को देखते हुए, हम एक समूह 'F'(S) बना सकते हैं जिसका अंतर्निहित सेट N है<sup>n</sup> जहां N, S के शून्यप्रभावी तत्वों का समुच्चय है। N के तत्वों को गुणा करने के लिए 'F' का उपयोग करके उत्पाद दिया जाता है।<sup>n</sup>; मुद्दा यह है कि सभी औपचारिक शक्ति श्रृंखलाएं अब एकत्रित हो गई हैं क्योंकि उन्हें शून्य-शक्तिशाली तत्वों पर लागू किया जा रहा है, इसलिए गैर-शून्य शब्दों की केवल एक सीमित संख्या है।
R पर एक n-आयामी आकारिक वर्ग नियम 'F' और एक क्रमविनिमेय R-बीजगणित S को देखते हुए, हम एक वर्ग 'F'(S) बना सकते हैं जिसका अंतर्निहित सेट N है<sup>n</sup> जहां N, S के शून्यप्रभावी तत्वों का समुच्चय है। N के तत्वों को गुणा करने के लिए 'F' का उपयोग करके उत्पाद दिया जाता है।<sup>n</sup>; मुद्दा यह है कि सभी आकारिक शक्ति श्रृंखलाएं अब एकत्रित हो गई हैं क्योंकि उन्हें शून्य-शक्तिशाली तत्वों पर लागू किया जा रहा है, इसलिए गैर-शून्य शब्दों की केवल एक सीमित संख्या है।
यह 'F' को क्रमविनिमेय R-बीजगणित S से समूहों तक एक फ़नकार बनाता है।
यह 'F' को क्रमविनिमेय R-बीजगणित S से वर्गों तक एक फ़नकार बनाता है।


हम 'एफ'(एस) की परिभाषा को कुछ टोपोलॉजिकल बीजगणित|टोपोलॉजिकल आर-बीजगणित तक बढ़ा सकते हैं। विशेष रूप से, यदि S असतत R बीजगणित की व्युत्क्रम सीमा है, तो हम 'F'(S) को संबंधित समूहों की व्युत्क्रम सीमा के रूप में परिभाषित कर सकते हैं। उदाहरण के लिए, यह हमें 'F'('Z') को परिभाषित करने की अनुमति देता है<sub>''p''</sub>) पी-एडिक संख्या|पी-एडिक संख्याओं में मानों के साथ।
हम 'एफ'(एस) की परिभाषा को कुछ टोपोलॉजिकल बीजगणित|टोपोलॉजिकल आर-बीजगणित तक बढ़ा सकते हैं। विशेष रूप से, यदि S असतत R बीजगणित की व्युत्क्रम सीमा है, तो हम 'F'(S) को संबंधित वर्गों की व्युत्क्रम सीमा के रूप में परिभाषित कर सकते हैं। उदाहरण के लिए, यह हमें 'F'('Z') को परिभाषित करने की अनुमति देता है<sub>''p''</sub>) पी-एडिक संख्या|पी-एडिक संख्याओं में मानों के साथ।


'एफ' के समूह-मूल्यवान फ़ैक्टर को 'एफ' के औपचारिक समूह रिंग एच का उपयोग करके भी वर्णित किया जा सकता है। सरलता के लिए हम मान लेंगे कि 'एफ' 1-आयामी है; सामान्य मामला समान है. किसी भी सह-विनिमेय हॉपफ बीजगणित के लिए, एक तत्व g को 'समूह-समान' कहा जाता है यदि Δg = g ⊗ g और εg = 1, और समूह-समान तत्व गुणन के तहत एक समूह बनाते हैं। एक रिंग पर औपचारिक समूह कानून के हॉपफ बीजगणित के मामले में, समूह जैसे तत्व बिल्कुल फॉर्म के होते हैं
'एफ' के वर्ग-मूल्यवान फ़ैक्टर को 'एफ' के आकारिक वर्ग रिंग एच का उपयोग करके भी वर्णित किया जा सकता है। सरलता के लिए हम मान लेंगे कि 'एफ' 1-आयामी है; सामान्य मामला समान है. किसी भी सह-विनिमेय हॉपफ बीजगणित के लिए, एक तत्व g को 'वर्ग-समान' कहा जाता है यदि Δg = g ⊗ g और εg = 1, और वर्ग-समान तत्व गुणन के तहत एक वर्ग बनाते हैं। एक रिंग पर आकारिक वर्ग नियम के हॉपफ बीजगणित के मामले में, वर्ग जैसे तत्व बिल्कुल फॉर्म के होते हैं
:डी<sup>(0)+डी<sup>(1)x+डी<sup>(2)x<sup>2</sup> +...
:डी<sup>(0)+डी<sup>(1)x+डी<sup>(2)x<sup>2</sup> +...
शून्यशक्तिशाली तत्वों x के लिए। विशेष रूप से हम H ⊗ S के समूह-जैसे तत्वों की पहचान S के निलपोटेंट तत्वों से कर सकते हैं, और H ⊗ S के समूह-जैसे तत्वों पर समूह संरचना की पहचान 'F'(S) पर समूह संरचना से की जाती है।
शून्यशक्तिशाली तत्वों x के लिए। विशेष रूप से हम H ⊗ S के वर्ग-जैसे तत्वों की पहचान S के निलपोटेंट तत्वों से कर सकते हैं, और H ⊗ S के वर्ग-जैसे तत्वों पर वर्ग संरचना की पहचान 'F'(S) पर वर्ग संरचना से की जाती है।


==ऊंचाई==
==ऊंचाई==
मान लीजिए कि f विशेषता p > 0 के क्षेत्र पर एक-आयामी औपचारिक समूह कानूनों के बीच एक समरूपता है। तब f या तो शून्य है, या इसकी शक्ति श्रृंखला विस्तार में पहला गैर-शून्य शब्द है <math>ax^{p^h}</math> कुछ गैर-नकारात्मक [[पूर्णांक]] h के लिए, जिसे समरूपता f की 'ऊंचाई' कहा जाता है। शून्य समरूपता की ऊंचाई ∞ के रूप में परिभाषित की गई है।
मान लीजिए कि f विशेषता p > 0 के क्षेत्र पर एक-आयामी आकारिक वर्ग नियमों के बीच एक समरूपता है। तब f या तो शून्य है, या इसकी शक्ति श्रृंखला विस्तार में पहला गैर-शून्य शब्द है <math>ax^{p^h}</math> कुछ गैर-नकारात्मक [[पूर्णांक]] h के लिए, जिसे समरूपता f की 'ऊंचाई' कहा जाता है। शून्य समरूपता की ऊंचाई ∞ के रूप में परिभाषित की गई है।


विशेषता p > 0 के क्षेत्र पर एक आयामी औपचारिक समूह कानून की 'ऊंचाई' को पी मानचित्र द्वारा इसके गुणन की ऊंचाई के रूप में परिभाषित किया गया है।
विशेषता p > 0 के क्षेत्र पर एक आयामी आकारिक वर्ग नियम की 'ऊंचाई' को पी मानचित्र द्वारा इसके गुणन की ऊंचाई के रूप में परिभाषित किया गया है।


विशेषता p > 0 के बीजगणितीय रूप से बंद क्षेत्र पर दो एक-आयामी औपचारिक समूह कानून आइसोमोर्फिक हैं यदि और केवल तभी जब उनकी ऊंचाई समान हो, और ऊंचाई कोई भी सकारात्मक पूर्णांक या ∞ हो सकती है।
विशेषता p > 0 के बीजगणितीय रूप से बंद क्षेत्र पर दो एक-आयामी आकारिक वर्ग नियम आइसोमोर्फिक हैं यदि और केवल तभी जब उनकी ऊंचाई समान हो, और ऊंचाई कोई भी सकारात्मक पूर्णांक या ∞ हो सकती है।


उदाहरण:
उदाहरण:
*योगात्मक औपचारिक समूह कानून F(x,y) = x + y की ऊंचाई ∞ है, क्योंकि इसका pth पावर मैप 0 है।
*योगात्मक आकारिक वर्ग नियम F(x,y) = x + y की ऊंचाई ∞ है, क्योंकि इसका pth पावर मैप 0 है।
*गुणात्मक औपचारिक समूह कानून F(x,y) = x + y + xy की ऊंचाई 1 है, क्योंकि इसका pth पावर मैप (1 + x) है<sup>p</sup> - 1 = x<sup>प</sup>.
*गुणात्मक आकारिक वर्ग नियम F(x,y) = x + y + xy की ऊंचाई 1 है, क्योंकि इसका pth पावर मैप (1 + x) है<sup>p</sup> - 1 = x<sup>प</sup>.
*अण्डाकार वक्र के औपचारिक समूह नियम की ऊंचाई या तो एक या दो होती है, यह इस पर निर्भर करता है कि वक्र सामान्य है या [[सुपरसिंगुलर]]। आइज़ेंस्टीन श्रृंखला के लुप्त होने से सुपरसिंग्युलैरिटी का पता लगाया जा सकता है <math>E_{p-1}</math>.
*अण्डाकार वक्र के आकारिक वर्ग नियम की ऊंचाई या तो एक या दो होती है, यह इस पर निर्भर करता है कि वक्र सामान्य है या [[सुपरसिंगुलर]]। आइज़ेंस्टीन श्रृंखला के लुप्त होने से सुपरसिंग्युलैरिटी का पता लगाया जा सकता है <math>E_{p-1}</math>.


==लेज़ार्ड रिंग==
==लेज़ार्ड रिंग==
{{main|Lazard's universal ring}}
{{main|Lazard's universal ring}}
एक सार्वभौमिक क्रमविनिमेय वलय पर एक सार्वभौमिक क्रमविनिमेय औपचारिक समूह कानून है जिसे इस प्रकार परिभाषित किया गया है। हम जाने
एक सार्वभौमिक क्रमविनिमेय वलय पर एक सार्वभौमिक क्रमविनिमेय आकारिक वर्ग नियम है जिसे इस प्रकार परिभाषित किया गया है। हम जाने


:एफ(एक्स,वाई)
:एफ(एक्स,वाई)
Line 113: Line 113:
:सी<sub>''i'',''j''</sub>,
:सी<sub>''i'',''j''</sub>,


और हम सार्वभौमिक वलय R को तत्वों c द्वारा उत्पन्न क्रमविनिमेय वलय के रूप में परिभाषित करते हैं<sub>''i'',''j''</sub>, उन संबंधों के साथ जो औपचारिक समूह कानूनों के लिए साहचर्यता और क्रमविनिमेयता कानूनों द्वारा मजबूर हैं। परिभाषा के अनुसार कमोबेश, वलय R में निम्नलिखित सार्वभौमिक गुण हैं:
और हम सार्वभौमिक वलय R को तत्वों c द्वारा उत्पन्न क्रमविनिमेय वलय के रूप में परिभाषित करते हैं<sub>''i'',''j''</sub>, उन संबंधों के साथ जो आकारिक वर्ग नियमों के लिए साहचर्यता और क्रमविनिमेयता नियमों द्वारा मजबूर हैं। परिभाषा के अनुसार कमोबेश, वलय R में निम्नलिखित सार्वभौमिक गुण हैं:
:किसी भी क्रमविनिमेय वलय S के लिए, S पर एक-आयामी औपचारिक समूह कानून R से S तक [[वलय समरूपता]] के अनुरूप हैं।
:किसी भी क्रमविनिमेय वलय S के लिए, S पर एक-आयामी आकारिक वर्ग नियम R से S तक [[वलय समरूपता]] के अनुरूप हैं।


ऊपर निर्मित क्रमविनिमेय वलय R को 'लेज़ार्ड की सार्वभौमिक वलय' के रूप में जाना जाता है। पहली नज़र में यह अविश्वसनीय रूप से जटिल लगता है: इसके जनरेटर के बीच संबंध बहुत गड़बड़ हैं। हालाँकि लैज़ार्ड ने साबित किया कि इसकी एक बहुत ही सरल संरचना है: यह डिग्री 2, 4, 6, ... (जहाँ c<sub>''i'',''j''</sub> डिग्री 2(i+j−1)) है। [[डेनियल क्विलेन]] ने असामान्य ग्रेडिंग की व्याख्या करते हुए साबित किया कि जटिल कोबॉर्डिज्म का गुणांक रिंग स्वाभाविक रूप से लैजार्ड की सार्वभौमिक रिंग के लिए एक ग्रेडेड रिंग के रूप में आइसोमोर्फिक है।
ऊपर निर्मित क्रमविनिमेय वलय R को 'लेज़ार्ड की सार्वभौमिक वलय' के रूप में जाना जाता है। पहली नज़र में यह अविश्वसनीय रूप से जटिल लगता है: इसके जनरेटर के बीच संबंध बहुत गड़बड़ हैं। हालाँकि लैज़ार्ड ने साबित किया कि इसकी एक बहुत ही सरल संरचना है: यह डिग्री 2, 4, 6, ... (जहाँ c<sub>''i'',''j''</sub> डिग्री 2(i+j−1)) है। [[डेनियल क्विलेन]] ने असामान्य ग्रेडिंग की व्याख्या करते हुए साबित किया कि जटिल कोबॉर्डिज्म का गुणांक रिंग स्वाभाविक रूप से लैजार्ड की सार्वभौमिक रिंग के लिए एक ग्रेडेड रिंग के रूप में आइसोमोर्फिक है।


==औपचारिक समूह==
==आकारिक वर्ग==


औपचारिक समूह [[औपचारिक योजना]]ओं की [[श्रेणी (गणित)]] में एक [[समूह वस्तु]] है।
आकारिक वर्ग [[औपचारिक योजना|आकारिक योजना]]ओं की [[श्रेणी (गणित)]] में एक [[समूह वस्तु|वर्ग वस्तु]] है।
* अगर <math>G</math> [[बीजगणित की कला]] से समूहों के लिए एक फ़नकार है जिसे सटीक फ़नकार छोड़ दिया जाता है, तो यह प्रतिनिधित्व योग्य है (जी एक औपचारिक समूह के बिंदुओं का फ़नकार है। (फ़नकार की बाईं सटीकता परिमित प्रक्षेप्य सीमाओं के साथ आने के बराबर है)।
* अगर <math>G</math> [[बीजगणित की कला]] से वर्गों के लिए एक फ़नकार है जिसे सटीक फ़नकार छोड़ दिया जाता है, तो यह प्रतिनिधित्व योग्य है (जी एक आकारिक वर्ग के बिंदुओं का फ़नकार है। (फ़नकार की बाईं सटीकता परिमित प्रक्षेप्य सीमाओं के साथ आने के बराबर है)।
* अगर <math>G</math> तो यह एक [[समूह योजना]] है <math> \widehat{G} </math>, पहचान पर जी का औपचारिक समापन, एक औपचारिक समूह की संरचना है।
* अगर <math>G</math> तो यह एक [[समूह योजना|वर्ग योजना]] है <math> \widehat{G} </math>, पहचान पर जी का आकारिक समापन, एक आकारिक वर्ग की संरचना है।
*एक सुचारु समूह योजना का औपचारिक समापन समरूपी है <math>\mathrm{Spf}(R[[T_1,\ldots,T_n]])</math>. कुछ लोग औपचारिक समूह योजना को सुचारू कहते हैं यदि इसका विपरीत प्रभाव पड़ता है; अन्य लोग इस रूप की स्थानीय वस्तुओं के लिए औपचारिक समूह शब्द को आरक्षित रखते हैं।<ref>{{cite web | last=Weinstein | first=Jared | title=ल्यूबिन-टेट स्पेस की ज्यामिति| url=http://math.bu.edu/people/jsweinst/FRGLecture.pdf}}</ref>
*एक सुचारु वर्ग योजना का आकारिक समापन समरूपी है <math>\mathrm{Spf}(R[[T_1,\ldots,T_n]])</math>. कुछ लोग आकारिक वर्ग योजना को सुचारू कहते हैं यदि इसका विपरीत प्रभाव पड़ता है; अन्य लोग इस रूप की स्थानीय वस्तुओं के लिए आकारिक वर्ग शब्द को आरक्षित रखते हैं।<ref>{{cite web | last=Weinstein | first=Jared | title=ल्यूबिन-टेट स्पेस की ज्यामिति| url=http://math.bu.edu/people/jsweinst/FRGLecture.pdf}}</ref>
*औपचारिक सहजता विकृतियों की लिफ्टों के अस्तित्व पर जोर देती है और उन औपचारिक योजनाओं पर लागू हो सकती है जो बिंदुओं से बड़ी हैं। एक सुचारु औपचारिक समूह योजना औपचारिक समूह योजना का एक विशेष मामला है।
*आकारिक सहजता विकृतियों की लिफ्टों के अस्तित्व पर जोर देती है और उन आकारिक योजनाओं पर लागू हो सकती है जो बिंदुओं से बड़ी हैं। एक सुचारु आकारिक वर्ग योजना आकारिक वर्ग योजना का एक विशेष मामला है।
*एक सुचारू औपचारिक समूह को देखते हुए, कोई भी अनुभागों का एक समान सेट चुनकर एक औपचारिक समूह कानून और एक क्षेत्र का निर्माण कर सकता है।
*एक सुचारू आकारिक वर्ग को देखते हुए, कोई भी अनुभागों का एक समान सेट चुनकर एक आकारिक वर्ग नियम और एक क्षेत्र का निर्माण कर सकता है।
*मापदंडों के परिवर्तन से प्रेरित औपचारिक समूह कानूनों के बीच (गैर-सख्त) समरूपताएं औपचारिक समूह पर समन्वय परिवर्तन के समूह के तत्व बनाती हैं।
*मापदंडों के परिवर्तन से प्रेरित आकारिक वर्ग नियमों के बीच (गैर-सख्त) समरूपताएं आकारिक वर्ग पर समन्वय परिवर्तन के वर्ग के तत्व बनाती हैं।


औपचारिक समूहों और औपचारिक समूह कानूनों को केवल क्रमविनिमेय रिंगों या क्षेत्रों के बजाय मनमानी [[योजना (गणित)]] पर भी परिभाषित किया जा सकता है, और परिवारों को आधार से पैरामीट्रिज़िंग ऑब्जेक्ट तक मानचित्रों द्वारा वर्गीकृत किया जा सकता है।
आकारिक वर्गों और आकारिक वर्ग नियमों को केवल क्रमविनिमेय रिंगों या क्षेत्रों के बजाय मनमानी [[योजना (गणित)]] पर भी परिभाषित किया जा सकता है, और परिवारों को आधार से पैरामीट्रिज़िंग ऑब्जेक्ट तक मानचित्रों द्वारा वर्गीकृत किया जा सकता है।


औपचारिक समूह कानूनों का मॉड्यूलि स्पेस अनंत-आयामी एफ़िन रिक्त स्थान का एक असंयुक्त संघ है, जिसके घटक आयाम द्वारा पैरामीट्रिज्ड होते हैं, और जिनके बिंदु पावर श्रृंखला 'एफ' के स्वीकार्य गुणांक द्वारा पैरामीट्रिज्ड होते हैं। सुचारू औपचारिक समूहों का संबंधित [[मॉड्यूलि स्टैक]] समन्वय परिवर्तनों के अनंत-आयामी समूह की विहित कार्रवाई द्वारा इस स्थान का एक भागफल है।
आकारिक वर्ग नियमों का मॉड्यूलि स्पेस अनंत-आयामी एफ़िन रिक्त स्थान का एक असंयुक्त संघ है, जिसके घटक आयाम द्वारा पैरामीट्रिज्ड होते हैं, और जिनके बिंदु पावर श्रृंखला 'एफ' के स्वीकार्य गुणांक द्वारा पैरामीट्रिज्ड होते हैं। सुचारू आकारिक वर्गों का संबंधित [[मॉड्यूलि स्टैक]] समन्वय परिवर्तनों के अनंत-आयामी वर्ग की विहित कार्रवाई द्वारा इस स्थान का एक भागफल है।


बीजगणितीय रूप से बंद क्षेत्र पर, एक-आयामी औपचारिक समूहों का उप-स्टैक या तो एक बिंदु (विशेषता शून्य में) या स्टैकी पॉइंट पैरामीट्रिज़िंग ऊंचाइयों की एक अनंत श्रृंखला है। विशेषता शून्य में, प्रत्येक बिंदु के बंद होने में अधिक ऊंचाई के सभी बिंदु शामिल होते हैं। यह अंतर औपचारिक समूहों को सकारात्मक और मिश्रित विशेषता में एक समृद्ध ज्यामितीय सिद्धांत देता है, जिसमें स्टीनरोड बीजगणित, पी-विभाज्य समूह, डायडोने सिद्धांत और गैलोइस अभ्यावेदन के संबंध हैं। उदाहरण के लिए, सेरे-टेट प्रमेय का तात्पर्य है कि एक समूह योजना की विकृतियाँ उसके औपचारिक समूह द्वारा दृढ़ता से नियंत्रित की जाती हैं, विशेष रूप से [[सुपरसिंगुलर एबेलियन किस्म]] के मामले में। [[सुपरसिंगुलर अण्डाकार वक्र]]ों के लिए, यह नियंत्रण पूर्ण है, और यह विशेषता शून्य स्थिति से काफी अलग है जहां औपचारिक समूह में कोई विकृति नहीं है।
बीजगणितीय रूप से बंद क्षेत्र पर, एक-आयामी आकारिक वर्गों का उप-स्टैक या तो एक बिंदु (विशेषता शून्य में) या स्टैकी पॉइंट पैरामीट्रिज़िंग ऊंचाइयों की एक अनंत श्रृंखला है। विशेषता शून्य में, प्रत्येक बिंदु के बंद होने में अधिक ऊंचाई के सभी बिंदु शामिल होते हैं। यह अंतर आकारिक वर्गों को सकारात्मक और मिश्रित विशेषता में एक समृद्ध ज्यामितीय सिद्धांत देता है, जिसमें स्टीनरोड बीजगणित, पी-विभाज्य वर्ग, डायडोने सिद्धांत और गैलोइस अभ्यावेदन के संबंध हैं। उदाहरण के लिए, सेरे-टेट प्रमेय का तात्पर्य है कि एक वर्ग योजना की विकृतियाँ उसके आकारिक वर्ग द्वारा दृढ़ता से नियंत्रित की जाती हैं, विशेष रूप से [[सुपरसिंगुलर एबेलियन किस्म]] के मामले में। [[सुपरसिंगुलर अण्डाकार वक्र]]ों के लिए, यह नियंत्रण पूर्ण है, और यह विशेषता शून्य स्थिति से काफी अलग है जहां आकारिक वर्ग में कोई विकृति नहीं है।


एक औपचारिक समूह को कभी-कभी सह-विनिमेय हॉपफ बीजगणित के रूप में परिभाषित किया जाता है (आमतौर पर कुछ अतिरिक्त शर्तों को जोड़ा जाता है, जैसे इंगित किया जाना या जुड़ा होना)।<ref name=Und121>{{cite book | last=Underwood | first=Robert G. | title=हॉपफ बीजगणित का परिचय| location=Berlin | publisher=[[Springer-Verlag]] | year=2011 | isbn=978-0-387-72765-3 | zbl=1234.16022 | page=121 }}</ref> यह उपरोक्त धारणा से कमोबेश दोहरा है। सहज मामले में, निर्देशांक चुनना औपचारिक समूह रिंग का विशिष्ट आधार लेने के बराबर है।
एक आकारिक वर्ग को कभी-कभी सह-विनिमेय हॉपफ बीजगणित के रूप में परिभाषित किया जाता है (आमतौर पर कुछ अतिरिक्त शर्तों को जोड़ा जाता है, जैसे इंगित किया जाना या जुड़ा होना)।<ref name=Und121>{{cite book | last=Underwood | first=Robert G. | title=हॉपफ बीजगणित का परिचय| location=Berlin | publisher=[[Springer-Verlag]] | year=2011 | isbn=978-0-387-72765-3 | zbl=1234.16022 | page=121 }}</ref> यह उपरोक्त धारणा से कमोबेश दोहरा है। सहज मामले में, निर्देशांक चुनना आकारिक वर्ग रिंग का विशिष्ट आधार लेने के बराबर है।


कुछ लेखक औपचारिक समूह शब्द का प्रयोग औपचारिक समूह कानून के अर्थ में करते हैं।
कुछ लेखक आकारिक वर्ग शब्द का प्रयोग आकारिक वर्ग नियम के अर्थ में करते हैं।


==लुबिन-टेट औपचारिक समूह कानून==
==लुबिन-टेट आकारिक वर्ग नियम==


{{main|Lubin–Tate formal group law}}
{{main|Lubin–Tate formal group law}}


हमने Z को जाने दिया<sub>''p''</sub> p-adic पूर्णांकों का वलय बनें|p-adic पूर्णांकों का। 'लुबिन-टेट औपचारिक समूह कानून' अद्वितीय (1-आयामी) औपचारिक समूह कानून F है जैसे कि e(x) = px + x<sup>पी</sup>दूसरे शब्दों में, एफ का एक एंडोमोर्फिज्म है
हमने Z को जाने दिया<sub>''p''</sub> p-adic पूर्णांकों का वलय बनें|p-adic पूर्णांकों का। 'लुबिन-टेट आकारिक वर्ग नियम' अद्वितीय (1-आयामी) आकारिक वर्ग नियम F है जैसे कि e(x) = px + x<sup>पी</sup>दूसरे शब्दों में, एफ का एक एंडोमोर्फिज्म है
:<math>e(F(x,y)) = F(e(x), e(y)).\ </math>
:<math>e(F(x,y)) = F(e(x), e(y)).\ </math>
अधिक आम तौर पर हम ई को किसी भी शक्ति श्रृंखला के रूप में अनुमति दे सकते हैं जैसे कि ई (एक्स) = पीएक्स + उच्च-डिग्री शब्द और ई (एक्स) = एक्स<sup>पी</sup>मॉड पी. इन शर्तों को पूरा करने वाले ई के विभिन्न विकल्पों के लिए सभी समूह कानून सख्ती से आइसोमोर्फिक हैं।<ref>{{cite book | first1=Yu. I. | last1=Manin | authorlink1=Yuri I. Manin | first2=A. A. | last2=Panchishkin | title=आधुनिक संख्या सिद्धांत का परिचय| series=Encyclopaedia of Mathematical Sciences | volume=49 | edition=Second | year=2007 | isbn=978-3-540-20364-3 | issn=0938-0396 | zbl=1079.11002 | page=168 }}</ref>
अधिक आम तौर पर हम ई को किसी भी शक्ति श्रृंखला के रूप में अनुमति दे सकते हैं जैसे कि ई (एक्स) = पीएक्स + उच्च-डिग्री शब्द और ई (एक्स) = एक्स<sup>पी</sup>मॉड पी. इन शर्तों को पूरा करने वाले ई के विभिन्न विकल्पों के लिए सभी वर्ग नियम सख्ती से आइसोमोर्फिक हैं।<ref>{{cite book | first1=Yu. I. | last1=Manin | authorlink1=Yuri I. Manin | first2=A. A. | last2=Panchishkin | title=आधुनिक संख्या सिद्धांत का परिचय| series=Encyclopaedia of Mathematical Sciences | volume=49 | edition=Second | year=2007 | isbn=978-3-540-20364-3 | issn=0938-0396 | zbl=1079.11002 | page=168 }}</ref>
'Z' में प्रत्येक तत्व a के लिए<sub>''p''</sub> ल्यूबिन-टेट औपचारिक समूह कानून का एक अद्वितीय एंडोमोर्फिज्म एफ है जैसे कि एफ(एक्स) = कुल्हाड़ी + उच्च-डिग्री शब्द। यह वलय 'Z' की क्रिया देता है<sub>''p''</sub> लुबिन-टेट औपचारिक समूह कानून पर।
'Z' में प्रत्येक तत्व a के लिए<sub>''p''</sub> ल्यूबिन-टेट आकारिक वर्ग नियम का एक अद्वितीय एंडोमोर्फिज्म एफ है जैसे कि एफ(एक्स) = कुल्हाड़ी + उच्च-डिग्री शब्द। यह वलय 'Z' की क्रिया देता है<sub>''p''</sub> लुबिन-टेट आकारिक वर्ग नियम पर।


Z के साथ एक समान निर्माण है<sub>''p''</sub> मूल्यांकन के परिमित अवशेष क्षेत्र के साथ किसी भी पूर्ण [[असतत मूल्यांकन रिंग]] द्वारा प्रतिस्थापित।<ref>{{cite book | first=Helmut | last=Koch | title=बीजगणितीय संख्या सिद्धांत| publisher=[[Springer-Verlag]] | year=1997 | isbn=3-540-63003-1 | zbl=0819.11044 | series=Encycl. Math. Sci. | volume=62 | edition=2nd printing of 1st | pages=62–63 }}</ref>
Z के साथ एक समान निर्माण है<sub>''p''</sub> मूल्यांकन के परिमित अवशेष क्षेत्र के साथ किसी भी पूर्ण [[असतत मूल्यांकन रिंग]] द्वारा प्रतिस्थापित।<ref>{{cite book | first=Helmut | last=Koch | title=बीजगणितीय संख्या सिद्धांत| publisher=[[Springer-Verlag]] | year=1997 | isbn=3-540-63003-1 | zbl=0819.11044 | series=Encycl. Math. Sci. | volume=62 | edition=2nd printing of 1st | pages=62–63 }}</ref>

Revision as of 08:40, 19 July 2023

गणित में, एक आकारिक वर्ग नियम (मोटे तौर पर कहें तो) एक आकारिक शक्ति श्रृंखला है जो ऐसा व्यवहार करती है जैसे कि यह एक लाई वर्ग का उत्पाद हो। द्वारा उनका परिचय कराया गया S. Bochner (1946). आकारिक वर्ग शब्द का अर्थ कभी-कभी आकारिक वर्ग नियम के समान होता है, और कभी-कभी इसका अर्थ कई सामान्यीकरणों में से एक होता है। आकारिक वर्ग लाई वर्ग (या बीजगणितीय वर्ग) और लाई बीजगणित के बीच मध्यवर्ती होते हैं। इनका उपयोग बीजगणितीय संख्या सिद्धांत और बीजगणितीय टोपोलॉजी में किया जाता है।

परिभाषाएँ

क्रमविनिमेय वलय R पर एक आयामी आकारिक वर्ग नियम R में गुणांक के साथ एक शक्ति श्रृंखला F(x,y) है, जैसे कि

  1. F(x,y) = x + y + उच्च डिग्री के पद
  2. F(x, F(y,z)) = F(F(x ,y), z) (सहयोगिता)।

सबसे सरल उदाहरण योगात्मक आकारिक वर्ग नियम F(x, y) = x + y है। परिभाषा का विचार यह है कि एफ लाई वर्ग के उत्पाद के आकारिक शक्ति श्रृंखला विस्तार जैसा कुछ होना चाहिए, जहां हम निर्देशांक चुनते हैं ताकि लाई वर्ग की पहचान मूल हो।

अधिक सामान्यतः, एन-आयामी आकारिक वर्ग नियम एन शक्ति श्रृंखला का एक संग्रह है एफi(एक्स1, एक्स2, ..., एक्सn, और1, और2, ..., औरn) 2n वेरिएबल्स में, जैसे कि

  1. 'F'('x','y') = 'x' + 'y' + उच्च डिग्री के पद
  2. 'एफ'('एक्स', 'एफ'('वाई','जेड')) = 'एफ'('एफ'('एक्स','वाई'), 'जेड')

जहाँ हम (F) के लिए 'F' लिखते हैं1, ..., एफn), x के लिए (x1, ..., एक्सn), और इसी तरह।

यदि F(x,y) = F(y,x) हो तो आकारिक वर्ग नियम को क्रमविनिमेय कहा जाता है। यदि आर मरोड़ मुक्त है, तो कोई आर को क्यू-बीजगणित में एम्बेड कर सकता है और किसी भी एक-आयामी आकारिक वर्ग नियम एफ को एफ के रूप में लिखने के लिए घातांक और लघुगणक का उपयोग कर सकता है। x,y) = exp(log(x) + log(y)), इसलिए F आवश्यक रूप से क्रमविनिमेय है।[1] अधिक सामान्यतः, हमारे पास है:

प्रमेय. R पर प्रत्येक एक-आयामी आकारिक वर्ग नियम क्रमविनिमेय है यदि और केवल तभी जब R में कोई गैर-शून्य मरोड़ निलपोटेंट नहीं है (यानी, कोई भी गैर-शून्य तत्व जो मरोड़ और निलपोटेंट दोनों हैं)।[2]

वर्ग (गणित) के लिए व्युत्क्रम तत्वों के अस्तित्व के अनुरूप किसी स्वयंसिद्ध की आवश्यकता नहीं है, क्योंकि यह आकारिक वर्ग नियम की परिभाषा से स्वचालित रूप से अनुसरण करता है। दूसरे शब्दों में हम हमेशा एक (अद्वितीय) शक्ति श्रृंखला G पा सकते हैं जैसे कि F(x,G(x)) = 0।

आयाम एम के आकारिक वर्ग नियम एफ से एन आयाम के आकारिक वर्ग नियम जी तक एक समरूपता एम चर में एन शक्ति श्रृंखला का एक संग्रह एफ है, जैसे कि

G(f(x), f(y)) = f(F(x,y)).

व्युत्क्रम के साथ एक समरूपता को समरूपता कहा जाता है, और यदि इसके अतिरिक्त f(x) = x + उच्च डिग्री के पद हों तो इसे सख्त समरूपता कहा जाता है। उनके बीच समरूपता वाले दो आकारिक वर्ग नियम अनिवार्य रूप से समान हैं; वे केवल निर्देशांक के परिवर्तन से भिन्न होते हैं।

उदाहरण

  • योगात्मक आकारिक वर्ग नियम द्वारा दिया गया है
  • गुणात्मक आकारिक वर्ग नियम द्वारा दिया गया है
इस नियम को इस प्रकार समझा जा सकता है. रिंग (गणित) आर में उत्पाद जी (गुणक वर्ग) जी (ए, बी) = एबी द्वारा दिया गया है। यदि हम a = 1 + x, b = 1 + y, और G = 1 + F डालकर 0 को पहचान बनाने के लिए निर्देशांक बदलते हैं, तो हम पाते हैं कि F(x,y) = x + y + xy।

तर्कसंगत संख्याओं पर, योगात्मक आकारिक वर्ग नियम से गुणक तक एक समरूपता है, जो द्वारा दी गई है exp(x) − 1. सामान्य क्रमविनिमेय वलय R पर ऐसी कोई समरूपता नहीं है क्योंकि इसे परिभाषित करने के लिए गैर-अभिन्न तर्कसंगत संख्याओं की आवश्यकता होती है, और योगात्मक और गुणक आकारिक वर्ग आमतौर पर आइसोमोर्फिक नहीं होते हैं।

  • आम तौर पर, हम पहचान पर निर्देशांक लेकर और उत्पाद मानचित्र के आकारिक शक्ति श्रृंखला विस्तार को लिखकर, किसी भी बीजगणितीय वर्ग या आयाम n के झूठ वर्ग से आयाम n का एक आकारिक वर्ग नियम बना सकते हैं। योगात्मक और गुणक आकारिक वर्ग नियम इस प्रकार योगात्मक और गुणक बीजगणितीय वर्गों से प्राप्त किए जाते हैं। इसका एक अन्य महत्वपूर्ण विशेष मामला 'अण्डाकार वक्र का आकारिक वर्ग (नियम)' (या एबेलियन किस्म) है।
  • F(x,y) = (x + y)/(1 + xy) एक आकारिक वर्ग नियम है जो हाइपरबोलिक स्पर्शरेखा फ़ंक्शन के अतिरिक्त सूत्र से आता है: tanh(x + y) = F(tanh(x), tanh (y)), और विशेष सापेक्षता में वेगों को जोड़ने का सूत्र भी है (1 के बराबर प्रकाश की गति के साथ)।
  • Z[1/2] पर एक आकारिक वर्ग नियम है जिसे यूलर ने जोड़ सूत्र के रूप में पाया है। अण्डाकार अभिन्न (Strickland):


झूठ बीजगणित

कोई भी एन-आयामी आकारिक वर्ग नियम रिंग आर पर एक एन-आयामी झूठ बीजगणित देता है, जिसे द्विघात भाग एफ के संदर्भ में परिभाषित किया गया है।2 आकारिक वर्ग नियम का.

[x,y] = एफ2(एक्स,वाई) - एफ2(वाई,एक्स)

लाई वर्गों या बीजगणितीय वर्गों से लेकर लाई बीजगणित तक के प्राकृतिक फ़नकार को लाई वर्गों से लेकर आकारिक वर्ग नियमों तक के ऑपरेटर में विभाजित किया जा सकता है, इसके बाद आकारिक वर्ग के लाई बीजगणित को लिया जा सकता है:

झूठ वर्ग → आकारिक वर्ग नियम → झूठ बीजगणित

विशेषता (बीजगणित) 0 के क्षेत्र (गणित) पर, आकारिक वर्ग नियम अनिवार्य रूप से परिमित-आयामी झूठ बीजगणित के समान होते हैं: अधिक सटीक रूप से, परिमित-आयामी आकारिक वर्ग नियमों से परिमित-आयामी झूठ बीजगणित तक फ़ैक्टर श्रेणियों का एक समतुल्य है।[3] गैर-शून्य विशेषता वाले क्षेत्रों में, आकारिक वर्ग नियम लाई बीजगणित के समकक्ष नहीं हैं। वास्तव में, इस मामले में यह सर्वविदित है कि एक बीजगणितीय वर्ग से उसके लाई बीजगणित में जाने से अक्सर बहुत अधिक जानकारी दूर हो जाती है, लेकिन इसके बजाय आकारिक वर्ग नियम में जाने से अक्सर पर्याप्त जानकारी बच जाती है। तो कुछ अर्थों में आकारिक वर्ग नियम विशेषता पी>0 में लाई बीजगणित के लिए सही विकल्प हैं।

क्रमविनिमेय आकारिक वर्ग नियम का लघुगणक

यदि F, क्रमविनिमेय Q-बीजगणित R पर एक क्रमविनिमेय एन-आयामी आकारिक वर्ग नियम है, तो यह योगात्मक आकारिक वर्ग नियम के लिए सख्ती से समरूपी है।[4] दूसरे शब्दों में, योगात्मक आकारिक वर्ग से F तक एक सख्त समरूपता f है, जिसे F का लघुगणक कहा जाता है, ताकि

f(F(x,y)) = f(x) + f(y).

उदाहरण:

  • F(x,y) = x + y का लघुगणक f(x) = है एक्स
  • F(x,y) = x + y +xy का लघुगणक f(x) है ) = लॉग(1+x), क्योंकि लॉग(1+x+y+xy) = लॉग(1+x)+ लॉग(1+y).

यदि R में परिमेय नहीं है, तो R ⊗ Q तक अदिश राशि के विस्तार द्वारा एक मानचित्र f का निर्माण किया जा सकता है, लेकिन यदि R में सकारात्मक विशेषता है तो यह सब कुछ शून्य पर भेज देगा। रिंग आर पर आकारिक वर्ग नियमों का निर्माण अक्सर उनके लघुगणक को आर ⊗ क्यू में गुणांक के साथ एक शक्ति श्रृंखला के रूप में लिखकर किया जाता है, और फिर यह साबित किया जाता है कि संबंधित आकारिक वर्ग के गुणांक आर पर हैं। ' ⊗ Q वास्तव में R में है। सकारात्मक विशेषता में काम करते समय, आमतौर पर आर को एक मिश्रित विशेषता रिंग से बदल दिया जाता है, जिसका प्रभाव आर पर होता है, जैसे कि विट वेक्टर की रिंग डब्ल्यू(आर), और अंत में R तक कम हो जाता है।

अपरिवर्तनीय अंतर

जब F एक-आयामी है, तो कोई इसका लघुगणक 'अपरिवर्तनीय अंतर' ω(t) के संदर्भ में लिख सकता है।[5] होने देना

कहाँ मुफ़्त है -एक प्रतीक डीटी पर रैंक 1 का मॉड्यूल। तब ω उस अर्थ में अनुवाद अपरिवर्तनीय है
अगर हम लिखें तो कहां , तो परिभाषा के अनुसार एक है
यदि कोई विस्तार पर विचार करता है , सूत्र
F के लघुगणक को परिभाषित करता है।

आकारिक वर्ग नियम का आकारिक वर्ग वलय

एक आकारिक वर्ग नियम का आकारिक वर्ग वलय एक वर्ग के वर्ग वलय और एक ली बीजगणित के सार्वभौमिक आवरण बीजगणित के अनुरूप एक सह-विनिमेय हॉपफ बीजगणित है, जो दोनों सह-अनुकरणीय हॉफ बीजगणित भी हैं। सामान्य तौर पर सह-विनिमेय हॉपफ बीजगणित बहुत हद तक वर्गों की तरह व्यवहार करते हैं।

सरलता के लिए हम 1-आयामी मामले का वर्णन करते हैं; उच्च-आयामी मामला समान है सिवाय इसके कि अंकन अधिक शामिल हो जाता है।

मान लीजिए कि F, R के ऊपर एक (1-आयामी) आकारिक वर्ग नियम है। इसका 'आकारिक वर्ग वलय' (जिसे इसका 'हाइपरलेजेब्रा' या इसका 'सहसंयोजक बायलजेब्रा' भी कहा जाता है) एक सह-विनिमेय हॉपफ बीजगणित H है, जिसका निर्माण इस प्रकार किया गया है।

  • आर-मॉड्यूल (गणित) के रूप में, एच एक आधार 1 = डी के साथ मुफ़्त मॉड्यूल है(0), डी(1), डी(2),...
  • सहउत्पाद Δ, ΔD द्वारा दिया जाता है(n) = ΣD(i)‍⊗ डी(n−i) (इसलिए इस कोलजेब्रा का द्वैत केवल आकारिक शक्ति श्रृंखला का वलय है)।
  • गणक η D के गुणांक द्वारा दिया जाता है(0).
  • पहचान 1 = D है(0).
  • एंटीपोड एस डी लेता है(n) से (−1)एनडी(एन).
  • डी का गुणांक(1) उत्पाद डी में(i)D(j)x का गुणांक हैमैंyj F(x,y) में।

इसके विपरीत, एक हॉपफ बीजगणित दिया गया है जिसकी कोलजेब्रा संरचना ऊपर दी गई है, हम इससे एक आकारिक वर्ग नियम एफ पुनर्प्राप्त कर सकते हैं। तो 1-आयामी आकारिक वर्ग नियम अनिवार्य रूप से हॉपफ बीजगणित के समान हैं जिनकी कोलजेब्रा संरचना ऊपर दी गई है।

कार्यकर्ताओं के रूप में आकारिक वर्ग नियम

R पर एक n-आयामी आकारिक वर्ग नियम 'F' और एक क्रमविनिमेय R-बीजगणित S को देखते हुए, हम एक वर्ग 'F'(S) बना सकते हैं जिसका अंतर्निहित सेट N हैn जहां N, S के शून्यप्रभावी तत्वों का समुच्चय है। N के तत्वों को गुणा करने के लिए 'F' का उपयोग करके उत्पाद दिया जाता है।n; मुद्दा यह है कि सभी आकारिक शक्ति श्रृंखलाएं अब एकत्रित हो गई हैं क्योंकि उन्हें शून्य-शक्तिशाली तत्वों पर लागू किया जा रहा है, इसलिए गैर-शून्य शब्दों की केवल एक सीमित संख्या है। यह 'F' को क्रमविनिमेय R-बीजगणित S से वर्गों तक एक फ़नकार बनाता है।

हम 'एफ'(एस) की परिभाषा को कुछ टोपोलॉजिकल बीजगणित|टोपोलॉजिकल आर-बीजगणित तक बढ़ा सकते हैं। विशेष रूप से, यदि S असतत R बीजगणित की व्युत्क्रम सीमा है, तो हम 'F'(S) को संबंधित वर्गों की व्युत्क्रम सीमा के रूप में परिभाषित कर सकते हैं। उदाहरण के लिए, यह हमें 'F'('Z') को परिभाषित करने की अनुमति देता हैp) पी-एडिक संख्या|पी-एडिक संख्याओं में मानों के साथ।

'एफ' के वर्ग-मूल्यवान फ़ैक्टर को 'एफ' के आकारिक वर्ग रिंग एच का उपयोग करके भी वर्णित किया जा सकता है। सरलता के लिए हम मान लेंगे कि 'एफ' 1-आयामी है; सामान्य मामला समान है. किसी भी सह-विनिमेय हॉपफ बीजगणित के लिए, एक तत्व g को 'वर्ग-समान' कहा जाता है यदि Δg = g ⊗ g और εg = 1, और वर्ग-समान तत्व गुणन के तहत एक वर्ग बनाते हैं। एक रिंग पर आकारिक वर्ग नियम के हॉपफ बीजगणित के मामले में, वर्ग जैसे तत्व बिल्कुल फॉर्म के होते हैं

डी(0)+डी(1)x+डी(2)x2 +...

शून्यशक्तिशाली तत्वों x के लिए। विशेष रूप से हम H ⊗ S के वर्ग-जैसे तत्वों की पहचान S के निलपोटेंट तत्वों से कर सकते हैं, और H ⊗ S के वर्ग-जैसे तत्वों पर वर्ग संरचना की पहचान 'F'(S) पर वर्ग संरचना से की जाती है।

ऊंचाई

मान लीजिए कि f विशेषता p > 0 के क्षेत्र पर एक-आयामी आकारिक वर्ग नियमों के बीच एक समरूपता है। तब f या तो शून्य है, या इसकी शक्ति श्रृंखला विस्तार में पहला गैर-शून्य शब्द है कुछ गैर-नकारात्मक पूर्णांक h के लिए, जिसे समरूपता f की 'ऊंचाई' कहा जाता है। शून्य समरूपता की ऊंचाई ∞ के रूप में परिभाषित की गई है।

विशेषता p > 0 के क्षेत्र पर एक आयामी आकारिक वर्ग नियम की 'ऊंचाई' को पी मानचित्र द्वारा इसके गुणन की ऊंचाई के रूप में परिभाषित किया गया है।

विशेषता p > 0 के बीजगणितीय रूप से बंद क्षेत्र पर दो एक-आयामी आकारिक वर्ग नियम आइसोमोर्फिक हैं यदि और केवल तभी जब उनकी ऊंचाई समान हो, और ऊंचाई कोई भी सकारात्मक पूर्णांक या ∞ हो सकती है।

उदाहरण:

  • योगात्मक आकारिक वर्ग नियम F(x,y) = x + y की ऊंचाई ∞ है, क्योंकि इसका pth पावर मैप 0 है।
  • गुणात्मक आकारिक वर्ग नियम F(x,y) = x + y + xy की ऊंचाई 1 है, क्योंकि इसका pth पावर मैप (1 + x) हैp - 1 = x.
  • अण्डाकार वक्र के आकारिक वर्ग नियम की ऊंचाई या तो एक या दो होती है, यह इस पर निर्भर करता है कि वक्र सामान्य है या सुपरसिंगुलर। आइज़ेंस्टीन श्रृंखला के लुप्त होने से सुपरसिंग्युलैरिटी का पता लगाया जा सकता है .

लेज़ार्ड रिंग

एक सार्वभौमिक क्रमविनिमेय वलय पर एक सार्वभौमिक क्रमविनिमेय आकारिक वर्ग नियम है जिसे इस प्रकार परिभाषित किया गया है। हम जाने

एफ(एक्स,वाई)

होना

x + y + Σci,j xमैंy

अनिश्चित के लिए

सीi,j,

और हम सार्वभौमिक वलय R को तत्वों c द्वारा उत्पन्न क्रमविनिमेय वलय के रूप में परिभाषित करते हैंi,j, उन संबंधों के साथ जो आकारिक वर्ग नियमों के लिए साहचर्यता और क्रमविनिमेयता नियमों द्वारा मजबूर हैं। परिभाषा के अनुसार कमोबेश, वलय R में निम्नलिखित सार्वभौमिक गुण हैं:

किसी भी क्रमविनिमेय वलय S के लिए, S पर एक-आयामी आकारिक वर्ग नियम R से S तक वलय समरूपता के अनुरूप हैं।

ऊपर निर्मित क्रमविनिमेय वलय R को 'लेज़ार्ड की सार्वभौमिक वलय' के रूप में जाना जाता है। पहली नज़र में यह अविश्वसनीय रूप से जटिल लगता है: इसके जनरेटर के बीच संबंध बहुत गड़बड़ हैं। हालाँकि लैज़ार्ड ने साबित किया कि इसकी एक बहुत ही सरल संरचना है: यह डिग्री 2, 4, 6, ... (जहाँ ci,j डिग्री 2(i+j−1)) है। डेनियल क्विलेन ने असामान्य ग्रेडिंग की व्याख्या करते हुए साबित किया कि जटिल कोबॉर्डिज्म का गुणांक रिंग स्वाभाविक रूप से लैजार्ड की सार्वभौमिक रिंग के लिए एक ग्रेडेड रिंग के रूप में आइसोमोर्फिक है।

आकारिक वर्ग

आकारिक वर्ग आकारिक योजनाओं की श्रेणी (गणित) में एक वर्ग वस्तु है।

  • अगर बीजगणित की कला से वर्गों के लिए एक फ़नकार है जिसे सटीक फ़नकार छोड़ दिया जाता है, तो यह प्रतिनिधित्व योग्य है (जी एक आकारिक वर्ग के बिंदुओं का फ़नकार है। (फ़नकार की बाईं सटीकता परिमित प्रक्षेप्य सीमाओं के साथ आने के बराबर है)।
  • अगर तो यह एक वर्ग योजना है , पहचान पर जी का आकारिक समापन, एक आकारिक वर्ग की संरचना है।
  • एक सुचारु वर्ग योजना का आकारिक समापन समरूपी है . कुछ लोग आकारिक वर्ग योजना को सुचारू कहते हैं यदि इसका विपरीत प्रभाव पड़ता है; अन्य लोग इस रूप की स्थानीय वस्तुओं के लिए आकारिक वर्ग शब्द को आरक्षित रखते हैं।[6]
  • आकारिक सहजता विकृतियों की लिफ्टों के अस्तित्व पर जोर देती है और उन आकारिक योजनाओं पर लागू हो सकती है जो बिंदुओं से बड़ी हैं। एक सुचारु आकारिक वर्ग योजना आकारिक वर्ग योजना का एक विशेष मामला है।
  • एक सुचारू आकारिक वर्ग को देखते हुए, कोई भी अनुभागों का एक समान सेट चुनकर एक आकारिक वर्ग नियम और एक क्षेत्र का निर्माण कर सकता है।
  • मापदंडों के परिवर्तन से प्रेरित आकारिक वर्ग नियमों के बीच (गैर-सख्त) समरूपताएं आकारिक वर्ग पर समन्वय परिवर्तन के वर्ग के तत्व बनाती हैं।

आकारिक वर्गों और आकारिक वर्ग नियमों को केवल क्रमविनिमेय रिंगों या क्षेत्रों के बजाय मनमानी योजना (गणित) पर भी परिभाषित किया जा सकता है, और परिवारों को आधार से पैरामीट्रिज़िंग ऑब्जेक्ट तक मानचित्रों द्वारा वर्गीकृत किया जा सकता है।

आकारिक वर्ग नियमों का मॉड्यूलि स्पेस अनंत-आयामी एफ़िन रिक्त स्थान का एक असंयुक्त संघ है, जिसके घटक आयाम द्वारा पैरामीट्रिज्ड होते हैं, और जिनके बिंदु पावर श्रृंखला 'एफ' के स्वीकार्य गुणांक द्वारा पैरामीट्रिज्ड होते हैं। सुचारू आकारिक वर्गों का संबंधित मॉड्यूलि स्टैक समन्वय परिवर्तनों के अनंत-आयामी वर्ग की विहित कार्रवाई द्वारा इस स्थान का एक भागफल है।

बीजगणितीय रूप से बंद क्षेत्र पर, एक-आयामी आकारिक वर्गों का उप-स्टैक या तो एक बिंदु (विशेषता शून्य में) या स्टैकी पॉइंट पैरामीट्रिज़िंग ऊंचाइयों की एक अनंत श्रृंखला है। विशेषता शून्य में, प्रत्येक बिंदु के बंद होने में अधिक ऊंचाई के सभी बिंदु शामिल होते हैं। यह अंतर आकारिक वर्गों को सकारात्मक और मिश्रित विशेषता में एक समृद्ध ज्यामितीय सिद्धांत देता है, जिसमें स्टीनरोड बीजगणित, पी-विभाज्य वर्ग, डायडोने सिद्धांत और गैलोइस अभ्यावेदन के संबंध हैं। उदाहरण के लिए, सेरे-टेट प्रमेय का तात्पर्य है कि एक वर्ग योजना की विकृतियाँ उसके आकारिक वर्ग द्वारा दृढ़ता से नियंत्रित की जाती हैं, विशेष रूप से सुपरसिंगुलर एबेलियन किस्म के मामले में। सुपरसिंगुलर अण्डाकार वक्रों के लिए, यह नियंत्रण पूर्ण है, और यह विशेषता शून्य स्थिति से काफी अलग है जहां आकारिक वर्ग में कोई विकृति नहीं है।

एक आकारिक वर्ग को कभी-कभी सह-विनिमेय हॉपफ बीजगणित के रूप में परिभाषित किया जाता है (आमतौर पर कुछ अतिरिक्त शर्तों को जोड़ा जाता है, जैसे इंगित किया जाना या जुड़ा होना)।[7] यह उपरोक्त धारणा से कमोबेश दोहरा है। सहज मामले में, निर्देशांक चुनना आकारिक वर्ग रिंग का विशिष्ट आधार लेने के बराबर है।

कुछ लेखक आकारिक वर्ग शब्द का प्रयोग आकारिक वर्ग नियम के अर्थ में करते हैं।

लुबिन-टेट आकारिक वर्ग नियम

हमने Z को जाने दियाp p-adic पूर्णांकों का वलय बनें|p-adic पूर्णांकों का। 'लुबिन-टेट आकारिक वर्ग नियम' अद्वितीय (1-आयामी) आकारिक वर्ग नियम F है जैसे कि e(x) = px + xपीदूसरे शब्दों में, एफ का एक एंडोमोर्फिज्म है

अधिक आम तौर पर हम ई को किसी भी शक्ति श्रृंखला के रूप में अनुमति दे सकते हैं जैसे कि ई (एक्स) = पीएक्स + उच्च-डिग्री शब्द और ई (एक्स) = एक्सपीमॉड पी. इन शर्तों को पूरा करने वाले ई के विभिन्न विकल्पों के लिए सभी वर्ग नियम सख्ती से आइसोमोर्फिक हैं।[8] 'Z' में प्रत्येक तत्व a के लिएp ल्यूबिन-टेट आकारिक वर्ग नियम का एक अद्वितीय एंडोमोर्फिज्म एफ है जैसे कि एफ(एक्स) = कुल्हाड़ी + उच्च-डिग्री शब्द। यह वलय 'Z' की क्रिया देता हैp लुबिन-टेट आकारिक वर्ग नियम पर।

Z के साथ एक समान निर्माण हैp मूल्यांकन के परिमित अवशेष क्षेत्र के साथ किसी भी पूर्ण असतत मूल्यांकन रिंग द्वारा प्रतिस्थापित।[9] यह निर्माण किसके द्वारा शुरू किया गया था? Lubin & Tate (1965), अण्डाकार कार्यों के जटिल गुणन के शास्त्रीय सिद्धांत के स्थानीय क्षेत्र भाग को अलग करने के सफल प्रयास में। यह स्थानीय वर्ग क्षेत्र सिद्धांत के कुछ दृष्टिकोणों में भी एक प्रमुख घटक है[10] और रंगीन समरूपता सिद्धांत में मोरावा ई-सिद्धांत के निर्माण में एक आवश्यक घटक।[11]


यह भी देखें

संदर्भ

  1. Note that the formula for the logarithm in terms of the invariant differential given in dimension one does not assume that F is commutative.
  2. Hazewinkel, Michiel. औपचारिक समूह और अनुप्रयोग. §6.1.
  3. Hazewinkel, Michiel. औपचारिक समूह और अनुप्रयोग. §14.2.3.
  4. Hazewinkel, Michiel. औपचारिक समूह और अनुप्रयोग. §11.1.6.
  5. Mavraki, Niki Myrto. "औपचारिक समूह" (PDF). Archived (PDF) from the original on 2022-09-12.
  6. Weinstein, Jared. "ल्यूबिन-टेट स्पेस की ज्यामिति" (PDF).
  7. Underwood, Robert G. (2011). हॉपफ बीजगणित का परिचय. Berlin: Springer-Verlag. p. 121. ISBN 978-0-387-72765-3. Zbl 1234.16022.
  8. Manin, Yu. I.; Panchishkin, A. A. (2007). आधुनिक संख्या सिद्धांत का परिचय. Encyclopaedia of Mathematical Sciences. Vol. 49 (Second ed.). p. 168. ISBN 978-3-540-20364-3. ISSN 0938-0396. Zbl 1079.11002.
  9. Koch, Helmut (1997). बीजगणितीय संख्या सिद्धांत. Encycl. Math. Sci. Vol. 62 (2nd printing of 1st ed.). Springer-Verlag. pp. 62–63. ISBN 3-540-63003-1. Zbl 0819.11044.
  10. e.g. Serre, Jean-Pierre (1967). "Local class field theory". In Cassels, J.W.S.; Fröhlich, Albrecht (eds.). Algebraic Number Theory. Academic Press. pp. 128–161. Zbl 0153.07403.Hazewinkel, Michiel (1975). "Local class field theory is easy". Advances in Mathematics. 18 (2): 148–181. doi:10.1016/0001-8708(75)90156-5. Zbl 0312.12022.Iwasawa, Kenkichi (1986). Local class field theory. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press. ISBN 978-0-19-504030-2. MR 0863740. Zbl 0604.12014.
  11. Lurie, Jacob (April 27, 2010). "Lubin-Tate Theory (Lecture 21)" (PDF). harvard.edu. Retrieved June 23, 2023.