श्रेणीकृत सिद्धांत (कैटेगोरिकाल थ्योरी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:




[[मॉडल सिद्धांत]] में, कार्डिनल संख्या के संबंध में एक श्रेणीबद्ध सिद्धांत की धारणा को परिष्कृत किया जाता है। एक सिद्धांत है {{math|''κ''}}-श्रेणीबद्ध (या श्रेणीबद्ध में {{math|''κ''}}) यदि इसमें कार्डिनैलिटी का बिल्कुल एक मॉडल है {{math|''κ''}} समरूपता तक। मॉर्ले की श्रेणीबद्धता प्रमेय एक प्रमेय है {{harvs|txt|authorlink=माइकल डी. मॉर्ले|first=माइकल डी. |last=मॉर्ले|year=1965}} यह बताते हुए कि यदि किसी गणनीय भाषा में प्रथम-क्रम सिद्धांत कुछ असंख्य [[प्रमुखता]] में श्रेणीबद्ध है, तो यह सभी असंख्य कार्डिनैलिटी में श्रेणीबद्ध है।
[[मॉडल सिद्धांत]] में, कार्डिनल संख्या के संबंध में एक श्रेणीबद्ध सिद्धांत की धारणा को परिष्कृत किया जाता है। एक {{math|''κ''}}-श्रेणीबद्ध सिद्धांत है (या श्रेणीबद्ध में {{math|''κ''}}) यदि इसमें कार्डिनैलिटी का बिल्कुल एक मॉडल है {{math|''κ''}} समरूपता तक है। मॉर्ले की श्रेणीबद्धता प्रमेय एक प्रमेय है {{harvs|txt|authorlink=माइकल डी. मॉर्ले|first=माइकल डी. |last=मॉर्ले|year=1965}} यह बताते हुए कि यदि किसी गणनीय भाषा में प्रथम-क्रम सिद्धांत कुछ असंख्य [[प्रमुखता]] में श्रेणीबद्ध है, तो यह सभी असंख्य कार्डिनैलिटी में श्रेणीबद्ध है।


{{harvs|txt|authorlink=Saharon Shelah|first=सहरोन |last=शेला|year=1974}} मॉर्ले के प्रमेय को अनगिनत भाषाओं तक विस्तारित किया: यदि भाषा में प्रमुखता है {{math|''κ''}} और एक सिद्धांत कुछ असंख्य कार्डिनल से अधिक या उसके बराबर में श्रेणीबद्ध है {{math|''κ''}} तो यह सभी प्रमुखताओं में अधिक से अधिक श्रेणीबद्ध {{math|''κ''}} है.
{{harvs|txt|authorlink=Saharon Shelah|first=सहरोन |last=शेला|year=1974}} मॉर्ले के प्रमेय को अनगिनत भाषाओं तक विस्तारित किया: यदि भाषा में प्रमुखता है {{math|''κ''}} और एक सिद्धांत कुछ असंख्य कार्डिनल से अधिक या उसके बराबर में श्रेणीबद्ध है {{math|''κ''}} तो यह सभी प्रमुखताओं में अधिक से अधिक श्रेणीबद्ध {{math|''κ''}} है.


==इतिहास और प्रेरणा==
==इतिहास और प्रेरणा==
1904 में ओसवाल्ड वेब्लेन ने एक सिद्धांत को श्रेणीबद्ध परिभाषित किया यदि उसके सभी मॉडल समरूपी हैं। उपरोक्त परिभाषा और लोवेनहेम-स्कोलेम प्रमेय से यह निष्कर्ष निकलता है कि अनंत कार्डिनैलिटी के मॉडल वाला कोई भी प्रथम-क्रम सिद्धांत श्रेणीबद्ध नहीं हो सकता है। फिर किसी को तुरंत {{math|''κ''}}-श्रेणीबद्धता की अधिक सूक्ष्म धारणा की ओर ले जाया जाता है, जो पूछती है: किन कार्डिनल्स के लिए दिए गए सिद्धांत T से समरूपता तक कार्डिनैलिटी κ का बिल्कुल एक मॉडल है? यह एक गहरा सवाल है और महत्वपूर्ण प्रगति केवल 1954 में हुई जब जेरज़ी लोज़ ने देखा कि, कम से कम एक अनंत मॉडल के साथ गणनीय भाषाओं पर टी के पूर्ण सिद्धांतों के लिए, वह कुछ {{math|''κ''}} पर T के {{math|''κ''}}-श्रेणीबद्ध होने के लिए केवल तीन तरीके ढूंढ सके:
1904 में ओसवाल्ड वेब्लेन ने एक सिद्धांत को श्रेणीबद्ध परिभाषित किया यदि उसके सभी मॉडल समरूपी हैं। उपरोक्त परिभाषा और लोवेनहेम-स्कोलेम प्रमेय से यह निष्कर्ष निकलता है कि अनंत कार्डिनैलिटी के मॉडल वाला कोई भी प्रथम-क्रम सिद्धांत श्रेणीबद्ध नहीं हो सकता है। फिर किसी को तुरंत {{math|''κ''}}-श्रेणीबद्धता की अधिक सूक्ष्म धारणा की ओर ले जाया जाता है, जो पूछती है: किन कार्डिनल्स के लिए दिए गए सिद्धांत T से समरूपता तक कार्डिनैलिटी {{math|''κ''}} का बिल्कुल एक मॉडल है? यह एक गहरा सवाल है और महत्वपूर्ण प्रगति केवल 1954 में हुई जब जेरज़ी लोज़ ने देखा कि, कम से कम एक अनंत मॉडल के साथ गणनीय भाषाओं पर टी के पूर्ण सिद्धांतों के लिए, वह कुछ {{math|''κ''}} पर T के {{math|''κ''}}-श्रेणीबद्ध होने के लिए केवल तीन तरीके ढूंढ सके:


*T 'पूरी तरह से श्रेणीबद्ध' है, यानी टी है {{math|''κ''}}-सभी अनंत कार्डिनल संख्याओं के लिए {{math|''κ''}} श्रेणीबद्ध है।
*T 'पूरी तरह से श्रेणीबद्ध' है, यानी टी है {{math|''κ''}}-सभी अनंत कार्डिनल संख्याओं के लिए {{math|''κ''}} श्रेणीबद्ध है।
Line 20: Line 20:
==उदाहरण==
==उदाहरण==
ऐसे सिद्धांतों के बहुत से प्राकृतिक उदाहरण नहीं हैं जो कुछ असंख्य कार्डिनल में श्रेणीबद्ध हों। ज्ञात उदाहरणों में सम्मिलित हैं:
ऐसे सिद्धांतों के बहुत से प्राकृतिक उदाहरण नहीं हैं जो कुछ असंख्य कार्डिनल में श्रेणीबद्ध हों। ज्ञात उदाहरणों में सम्मिलित हैं:
* शुद्ध पहचान सिद्धांत (= या स्वयंसिद्धों के अलावा कोई कार्य, स्थिरांक, विधेय नहीं)।
* शुद्ध पहचान सिद्धांत (= या स्वयंसिद्धों के अतिरिक्त कोई कार्य, स्थिरांक, विधेय नहीं)।
* क्लासिक उदाहरण किसी दिए गए लक्षण (बीजगणित) के बीजगणितीय रूप से बंद क्षेत्र क्षेत्र (गणित) का सिद्धांत है। श्रेणीबद्धता यह नहीं कहती है कि जटिल संख्या 'सी' जितनी बड़ी विशेषता 0 के सभी [[बीजगणितीय रूप से बंद फ़ील्ड]] 'C' के समान हैं; यह केवल यह दावा करता है कि वे 'सी' के क्षेत्र के रूप में समरूपी हैं। इससे यह निष्कर्ष निकलता है कि यद्यपि पूर्ण पी-एडिक|पी-एडिक 'सी' को बंद कर देता है<sub>''p''</sub> सी के फ़ील्ड के रूप में सभी आइसोमोर्फिक हैं, उनमें पूरी तरह से अलग-अलग  संस्थानिक और विश्लेषणात्मक गुण हो सकते हैं (और वास्तव में होते हैं)। किसी दिए गए विशेषता के बीजगणितीय रूप से बंद क्षेत्रों का सिद्धांत श्रेणीबद्ध नहीं है {{math|''ω''}} (गणनीय अनंत कार्डिनल); महत्ता की डिग्री 0, 1, 2, ... के मॉडल हैं {{math|''ω''}}.
* क्लासिक उदाहरण किसी दिए गए लक्षण (बीजगणित) के बीजगणितीय रूप से बंद क्षेत्र क्षेत्र (गणित) का सिद्धांत है। श्रेणीबद्धता यह नहीं कहती है कि सम्मिश्र संख्या 'C' जितनी बड़ी विशेषता 0 के सभी [[बीजगणितीय रूप से बंद फ़ील्ड]] 'C' के समान हैं; यह केवल यह दावा करता है कि वे 'C' के क्षेत्र के रूप में समरूपी हैं। इससे यह निष्कर्ष निकलता है कि यद्यपि पूर्ण पी-एडिक 'C<sub>''p''</sub>' को बंद कर देता है'','' सी के फ़ील्ड के रूप में सभी आइसोमोर्फिक हैं, उनमें पूरी तरह से अलग-अलग  संस्थानिक और विश्लेषणात्मक गुण हो सकते हैं (और वास्तव में होते हैं)। किसी दिए गए विशेषता के बीजगणितीय रूप से बंद क्षेत्रों का सिद्धांत श्रेणीबद्ध नहीं है {{math|''ω''}} (गणनीय अनंत कार्डिनल); महत्ता की डिग्री 0, 1, 2, ...{{math|''ω''}} के मॉडल हैं।
* किसी दिए गए गणनीय क्षेत्र पर सदिश रिक्त स्थान है। इसमें दिए गए [[अभाज्य संख्या]] आघूर्ण समूह के [[एबेलियन समूह]] (अनिवार्य रूप से एक परिमित क्षेत्र पर सदिशरिक्त स्थान के समान) और [[विभाज्य समूह]] आघूर्ण मुक्त एबेलियन समूह (अनिवार्य रूप से परिमेय संख्या पर सदिशरिक्त स्थान के समान) सम्मिलित हैं।
* किसी दिए गए गणनीय क्षेत्र पर सदिश रिक्त स्थान है। इसमें दिए गए [[अभाज्य संख्या]] आघूर्ण समूह के [[एबेलियन समूह]] (अनिवार्य रूप से एक परिमित क्षेत्र पर सदिशरिक्त स्थान के समान) और [[विभाज्य समूह]] आघूर्ण मुक्त एबेलियन समूह (अनिवार्य रूप से परिमेय संख्या पर सदिशरिक्त स्थान के समान) सम्मिलित हैं।
*उत्तरवर्ती फलन के साथ [[प्राकृतिक संख्या]]ओं के समुच्चय का सिद्धांत है।
*उत्तरवर्ती फलन के साथ [[प्राकृतिक संख्या]]ओं के समुच्चय का सिद्धांत है।

Revision as of 18:33, 20 July 2023

गणितीय तर्क में, एक सिद्धांत श्रेणीबद्ध होता है यदि इसका बिल्कुल एक मॉडल (आइसोमोर्फिज्म तक) हो।[1] इस तरह के सिद्धांत को मॉडल की संरचना को विशिष्ट रूप से चित्रित करते हुए, उसके मॉडल को परिभाषित करने के रूप में देखा जा सकता है।


प्रथम-क्रम तर्क में, केवल एक परिमित मॉडल वाले सिद्धांत ही श्रेणीबद्ध हो सकते हैं। उच्च-क्रम तर्क में अनंत मॉडल के साथ श्रेणीबद्ध सिद्धांत सम्मिलित हैं। उदाहरण के लिए, दूसरे क्रम के पीनो अभिगृहीत श्रेणीबद्ध होते हैं, जिनमें एक अद्वितीय मॉडल होता है जिसका डोमेन प्राकृतिक संख्याओं का समुच्चय होता है।


मॉडल सिद्धांत में, कार्डिनल संख्या के संबंध में एक श्रेणीबद्ध सिद्धांत की धारणा को परिष्कृत किया जाता है। एक κ-श्रेणीबद्ध सिद्धांत है (या श्रेणीबद्ध में κ) यदि इसमें कार्डिनैलिटी का बिल्कुल एक मॉडल है κ समरूपता तक है। मॉर्ले की श्रेणीबद्धता प्रमेय एक प्रमेय है माइकल डी. मॉर्ले (1965) यह बताते हुए कि यदि किसी गणनीय भाषा में प्रथम-क्रम सिद्धांत कुछ असंख्य प्रमुखता में श्रेणीबद्ध है, तो यह सभी असंख्य कार्डिनैलिटी में श्रेणीबद्ध है।

सहरोन शेला (1974) मॉर्ले के प्रमेय को अनगिनत भाषाओं तक विस्तारित किया: यदि भाषा में प्रमुखता है κ और एक सिद्धांत कुछ असंख्य कार्डिनल से अधिक या उसके बराबर में श्रेणीबद्ध है κ तो यह सभी प्रमुखताओं में अधिक से अधिक श्रेणीबद्ध κ है.

इतिहास और प्रेरणा

1904 में ओसवाल्ड वेब्लेन ने एक सिद्धांत को श्रेणीबद्ध परिभाषित किया यदि उसके सभी मॉडल समरूपी हैं। उपरोक्त परिभाषा और लोवेनहेम-स्कोलेम प्रमेय से यह निष्कर्ष निकलता है कि अनंत कार्डिनैलिटी के मॉडल वाला कोई भी प्रथम-क्रम सिद्धांत श्रेणीबद्ध नहीं हो सकता है। फिर किसी को तुरंत κ-श्रेणीबद्धता की अधिक सूक्ष्म धारणा की ओर ले जाया जाता है, जो पूछती है: किन कार्डिनल्स के लिए दिए गए सिद्धांत T से समरूपता तक कार्डिनैलिटी κ का बिल्कुल एक मॉडल है? यह एक गहरा सवाल है और महत्वपूर्ण प्रगति केवल 1954 में हुई जब जेरज़ी लोज़ ने देखा कि, कम से कम एक अनंत मॉडल के साथ गणनीय भाषाओं पर टी के पूर्ण सिद्धांतों के लिए, वह कुछ κ पर T के κ-श्रेणीबद्ध होने के लिए केवल तीन तरीके ढूंढ सके:

  • T 'पूरी तरह से श्रेणीबद्ध' है, यानी टी है κ-सभी अनंत कार्डिनल संख्याओं के लिए κ श्रेणीबद्ध है।
  • T 'असंख्य श्रेणीबद्ध' है, अर्थात T है κ-श्रेणीबद्ध यदि और केवल यदि κ एक गणनीय कार्डिनल है।
  • T ओमेगा-श्रेणीबद्ध सिद्धांत है|'गणनीय श्रेणीबद्ध', अर्थात T है κ-श्रेणीबद्ध यदि और केवल यदि κ एक गणनीय कार्डिनल है।

दूसरे शब्दों में, उन्होंने देखा कि, उन सभी मामलों में, जिनके बारे में वह सोच सकते थे, किसी एक बेशुमार कार्डिनल पर κ-श्रेणीबद्धता का अर्थ अन्य सभी बेशुमार कार्डिनल्स पर κ-श्रेणीबद्धता था। इस अवलोकन ने 1960 के दशक में बड़ी मात्रा में अनुसंधान को प्रेरित किया, अंततः माइकल मॉर्ले के प्रसिद्ध परिणाम में परिणत हुआ कि ये वास्तव में एकमात्र संभावनाएं हैं। इस सिद्धांत को बाद में 1970 और उसके बाद सहारोन शेलाह द्वारा विस्तारित और परिष्कृत किया गया, जिससे स्थिरता सिद्धांत और शेलाह का वर्गीकरण सिद्धांत का अधिक सामान्य कार्यक्रम सामने आया है।

उदाहरण

ऐसे सिद्धांतों के बहुत से प्राकृतिक उदाहरण नहीं हैं जो कुछ असंख्य कार्डिनल में श्रेणीबद्ध हों। ज्ञात उदाहरणों में सम्मिलित हैं:

  • शुद्ध पहचान सिद्धांत (= या स्वयंसिद्धों के अतिरिक्त कोई कार्य, स्थिरांक, विधेय नहीं)।
  • क्लासिक उदाहरण किसी दिए गए लक्षण (बीजगणित) के बीजगणितीय रूप से बंद क्षेत्र क्षेत्र (गणित) का सिद्धांत है। श्रेणीबद्धता यह नहीं कहती है कि सम्मिश्र संख्या 'C' जितनी बड़ी विशेषता 0 के सभी बीजगणितीय रूप से बंद फ़ील्ड 'C' के समान हैं; यह केवल यह दावा करता है कि वे 'C' के क्षेत्र के रूप में समरूपी हैं। इससे यह निष्कर्ष निकलता है कि यद्यपि पूर्ण पी-एडिक 'Cp' को बंद कर देता है, सी के फ़ील्ड के रूप में सभी आइसोमोर्फिक हैं, उनमें पूरी तरह से अलग-अलग संस्थानिक और विश्लेषणात्मक गुण हो सकते हैं (और वास्तव में होते हैं)। किसी दिए गए विशेषता के बीजगणितीय रूप से बंद क्षेत्रों का सिद्धांत श्रेणीबद्ध नहीं है ω (गणनीय अनंत कार्डिनल); महत्ता की डिग्री 0, 1, 2, ...ω के मॉडल हैं।
  • किसी दिए गए गणनीय क्षेत्र पर सदिश रिक्त स्थान है। इसमें दिए गए अभाज्य संख्या आघूर्ण समूह के एबेलियन समूह (अनिवार्य रूप से एक परिमित क्षेत्र पर सदिशरिक्त स्थान के समान) और विभाज्य समूह आघूर्ण मुक्त एबेलियन समूह (अनिवार्य रूप से परिमेय संख्या पर सदिशरिक्त स्थान के समान) सम्मिलित हैं।
  • उत्तरवर्ती फलन के साथ प्राकृतिक संख्याओं के समुच्चय का सिद्धांत है।

ऐसे सिद्धांतों के उदाहरण भी हैं जो श्रेणीबद्ध हैं ω लेकिन असंख्य कार्डिनल्स में श्रेणीबद्ध नहीं। सबसे सरल उदाहरण बिल्कुल दो समतुल्य वर्गों के साथ समतुल्य संबंध का सिद्धांत है, जिनमें से दोनों अनंत हैं। एक अन्य उदाहरण बिना किसी समापन बिंदु वाले सघन क्रम वाले रैखिक क्रम का सिद्धांत है; कैंटर ने साबित किया कि ऐसा कोई भी गणनीय रैखिक क्रम तर्कसंगत संख्याओं के लिए आइसोमोर्फिक है: कैंटर की आइसोमोर्फिज्म प्रमेय देखें।

गुण

प्रत्येक श्रेणीबद्ध सिद्धांत पूर्ण सिद्धांत है।[2] हालाँकि, इसका उलटा असर नहीं होता।[3]

कुछ अनंत कार्डिनल κ में श्रेणीबद्ध कोई भी सिद्धांत T पूर्ण होने के बहुत निकट है। अधिक सटीक रूप से, Łoś-Vaught परीक्षण में कहा गया है कि यदि एक संतुष्टि सिद्धांत में कोई सीमित मॉडल नहीं है और यह कुछ अनंत कार्डिनल κ में कम से कम अपनी भाषा की कार्डिनैलिटी के बराबर श्रेणीबद्ध है, तो सिद्धांत पूरा हो गया है। इसका कारण यह है कि सभी अनंत मॉडल लोवेनहेम-स्कोलेम प्रमेय द्वारा कार्डिनल κ के कुछ मॉडल के प्रथम-क्रम समतुल्य हैं, और इसलिए सभी समतुल्य हैं क्योंकि सिद्धांत κ में श्रेणीबद्ध है। इसलिए, सिद्धांत पूरा हो गया है क्योंकि सभी मॉडल समकक्ष हैं। यह धारणा आवश्यक है कि सिद्धांत का कोई सीमित मॉडल नहीं है[4]


यह भी देखें

  • सिद्धांत का स्पेक्ट्रम

टिप्पणियाँ

  1. Some authors define a theory to be categorical if all of its models are isomorphic. This definition makes the inconsistent theory categorical, since it has no models and therefore vacuously meets the criterion.
  2. Monk 1976, p. 349.
  3. Mummert, Carl (2014-09-16). "पूर्णता और श्रेणीबद्धता के बीच अंतर".
  4. Marker (2002) p. 42


संदर्भ