बाह्य व्युत्पन्न: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{Calculus |Multivariable}} | {{Calculus |Multivariable}} | ||
विभेदक मैनिफोल्ड पर, '''बाह्य व्युत्पन्न''' किसी फलन के पुशफॉरवर्ड (डिफरेंशियल) की अवधारणा को उच्च डिग्री के [[विभेदक रूप|विभेदक प्रपत्रों]] तक विस्तारित करता है। बाह्य व्युत्पन्न को प्रथम बार 1899 में एली कार्टन द्वारा इसके वर्तमान स्वप्रपत्र में वर्णित किया गया था। परिणामी कैलकुलस, जिसे बाह्य कैलकुलस के प्रपत्र में जाना जाता है, [[बाहरी आवरण|बाह्य आवरण]] से स्टोक्स के प्रमेय, गॉस के प्रमेय एवं ग्रीन के प्रमेय के प्राकृतिक, मीट्रिक-स्वतंत्र सामान्यीकरण की अनुमति देता है। | विभेदक मैनिफोल्ड पर, '''बाह्य व्युत्पन्न''' किसी फलन के पुशफॉरवर्ड (डिफरेंशियल) की अवधारणा को उच्च डिग्री के [[विभेदक रूप|विभेदक प्रपत्रों]] तक विस्तारित करता है। बाह्य व्युत्पन्न को प्रथम बार 1899 में एली कार्टन द्वारा इसके वर्तमान स्वप्रपत्र में वर्णित किया जाता है गया था। परिणामी कैलकुलस, जिसे बाह्य कैलकुलस के प्रपत्र में जाना जाता है, [[बाहरी आवरण|बाह्य आवरण]] से स्टोक्स के प्रमेय, गॉस के प्रमेय एवं ग्रीन के प्रमेय के प्राकृतिक, मीट्रिक-स्वतंत्र सामान्यीकरण की अनुमति देता है। | ||
यदि अंतर {{math|''k''}}- प्रपत्र को मैनिफोल्ड के प्रत्येक बिंदु पर अतिसूक्ष्म के {{math|''k''}}- पैरेललेपिप्ड माध्यम से प्रवाह को मापने के प्रपत्र में माना जाता है, तो इसके बाह्य व्युत्पन्न को {{math|(''k'' + 1)}} की सीमा के माध्यम से शुद्ध प्रवाह को मापने के प्रपत्र में माना जा सकता है। | यदि अंतर {{math|''k''}}- प्रपत्र को मैनिफोल्ड के प्रत्येक बिंदु पर अतिसूक्ष्म के {{math|''k''}}- पैरेललेपिप्ड माध्यम से प्रवाह को मापने के प्रपत्र में माना जाता है, तो इसके बाह्य व्युत्पन्न को {{math|(''k'' + 1)}} की सीमा के माध्यम से शुद्ध प्रवाह को मापने के प्रपत्र में माना जा सकता है। | ||
Line 9: | Line 9: | ||
डिग्री {{math|''k''}} के विभेदक प्रपत्र का बाह्य व्युत्पन्न (विभेदक {{math|''k''}}-प्रपत्र, या यहां संक्षिप्तता के लिए केवल {{math|''k''}}- प्रपत्र) डिग्री {{math|''k'' + 1}} का विभेदक प्रपत्र है। | डिग्री {{math|''k''}} के विभेदक प्रपत्र का बाह्य व्युत्पन्न (विभेदक {{math|''k''}}-प्रपत्र, या यहां संक्षिप्तता के लिए केवल {{math|''k''}}- प्रपत्र) डिग्री {{math|''k'' + 1}} का विभेदक प्रपत्र है। | ||
यदि {{math| ''f'' }} सहज फलन ({{math|0}}-प्रपत्र) है, तो {{math| ''f'' }} का बाह्य अवकलज {{math| ''f'' }} का अंतर | यदि {{math| ''f'' }} सहज फलन ({{math|0}}-प्रपत्र) है, तो {{math| ''f'' }} का बाह्य अवकलज {{math| ''f'' }} का अंतर है।अर्थात्, df अद्वितीय 1-रूप है, इस प्रकार कि प्रत्येक चौरस सदिश फ़ील्ड {{math|''X''}} के लिए, {{math|1=''df'' (''X'') = ''d''<sub>''X''</sub> ''f'' }}, जहां {{math|''d''<sub>''X''</sub> ''f'' }} {{math|''X''}} की दिशा में {{math| ''f'' }} का [[दिशात्मक व्युत्पन्न]] है। | ||
विभेदक प्रपत्रों का बाह्य उत्पाद (समान प्रतीक {{math|∧}} से | विभेदक प्रपत्रों का बाह्य उत्पाद (समान प्रतीक {{math|∧}} से प्रदर्शित किया गया है) को उनके [[बिंदुवार]] [[बाहरी उत्पाद|बाह्य उत्पाद]] के प्रपत्र में परिभाषित किया गया है। | ||
किसी सामान्य {{math|''k''}}-प्रपत्र के बाह्य व्युत्पन्न की विभिन्न प्रकार की समतुल्य परिभाषाएँ हैं। | किसी सामान्य {{math|''k''}}-प्रपत्र के बाह्य व्युत्पन्न की विभिन्न प्रकार की समतुल्य परिभाषाएँ हैं। | ||
Line 24: | Line 24: | ||
दूसरी परिभाषित संपत्ति अधिक व्यापकता रखती है:किसी {{math|''k''}}-प्रपत्र {{mvar|α}} के लिए {{math|1=''d''(''dα'') = 0}}; अधिक संक्षेप में, {{math|1=''d''{{i sup|2}} = 0}} होता है।तीसरी परिभाषित संपत्ति का तात्पर्य विशेष विषय के प्रपत्र में है कि यदि {{math| ''f'' }} फलन है एवं {{mvar|α}}, {{math|''k''}}-प्रपत्र है, तो {{math|1=''d''( ''fα'') = ''d''( ''f'' ∧ ''α'') = ''df''  ∧ ''α'' +  ''f''  ∧ ''dα''}} क्योंकि फलन {{math|0}}-प्रपत्र है, एवं अदिश गुणन एवं बाह्य उत्पाद समतुल्य होते हैं जब कोई तर्क अदिश होता है। | दूसरी परिभाषित संपत्ति अधिक व्यापकता रखती है:किसी {{math|''k''}}-प्रपत्र {{mvar|α}} के लिए {{math|1=''d''(''dα'') = 0}}; अधिक संक्षेप में, {{math|1=''d''{{i sup|2}} = 0}} होता है।तीसरी परिभाषित संपत्ति का तात्पर्य विशेष विषय के प्रपत्र में है कि यदि {{math| ''f'' }} फलन है एवं {{mvar|α}}, {{math|''k''}}-प्रपत्र है, तो {{math|1=''d''( ''fα'') = ''d''( ''f'' ∧ ''α'') = ''df''  ∧ ''α'' +  ''f''  ∧ ''dα''}} क्योंकि फलन {{math|0}}-प्रपत्र है, एवं अदिश गुणन एवं बाह्य उत्पाद समतुल्य होते हैं जब कोई तर्क अदिश होता है। | ||
=== | ===समिष्टीय निर्देशांक के संदर्भ में=== | ||
वैकल्पिक प्रपत्र से, कोई पूर्ण प्रपत्र से [[स्थानीय समन्वय प्रणाली]] {{math|(''x''{{sup|1}}, ..., ''x''{{i sup|''n''}})}} में कार्य कर सकता है। समन्वय अंतर {{math|''dx''{{sup|1}}, ..., ''dx''{{i sup|''n''}}}} प्रपत्रों के | वैकल्पिक प्रपत्र से, कोई पूर्ण प्रपत्र से [[स्थानीय समन्वय प्रणाली|समिष्टीय समन्वय प्रणाली]] {{math|(''x''{{sup|1}}, ..., ''x''{{i sup|''n''}})}} में कार्य कर सकता है। समन्वय अंतर {{math|''dx''{{sup|1}}, ..., ''dx''{{i sup|''n''}}}} प्रपत्रों के समिष्ट का आधार बनाते हैं, जिनमें से प्रत्येक समन्वय से जुड़ा होता है। {{math|1 ≤ ''i''{{sub|''p''}} ≤ ''n''}} के लिए {{math|1 ≤ ''p'' ≤ ''k''}} के साथ बहु-सूचकांक {{math|1=''I'' = (''i''{{sub|1}}, ..., ''i''{{sub|''k''}})}} दिया गया है। (एवं {{math|1=''dx''{{i sup|''I''}}}} के साथ {{math|''dx''{{i sup|''i''{{sub|1}}}} ∧ ... ∧ ''dx''{{i sup|''i''{{sub|''k''}}}}}} निप्रपत्रित करते हुए ), (सरल) का बाह्य व्युत्पन्न {{math|''k''}}-प्रपत्र | ||
:<math>\varphi = g\,dx^I = g\,dx^{i_1}\wedge dx^{i_2}\wedge\cdots\wedge dx^{i_k}</math> | :<math>\varphi = g\,dx^I = g\,dx^{i_1}\wedge dx^{i_2}\wedge\cdots\wedge dx^{i_k}</math> | ||
Line 34: | Line 34: | ||
:<math>\omega = f_I \, dx^I,</math> | :<math>\omega = f_I \, dx^I,</math> | ||
जहां मल्टी-इंडेक्स के प्रत्येक घटक {{math|''I''}} में सभी मानों | जहां मल्टी-इंडेक्स के प्रत्येक घटक {{math|''I''}} में सभी मानों {{math|{1, ..., ''n''}<nowiki/>}} का उपयोग किया जाता है। ध्यान दें कि जब भी {{math|''i''}} मल्टी-इंडेक्स {{math|''I''}} के घटकों में से एक के समान होता है, तब {{math|1=''dx''{{i sup|''i''}} ∧ ''dx''{{i sup|''I''}} = 0}} (बाह्य उत्पाद देखें) होता है। | ||
समिष्टीय निर्देशांक में बाह्य व्युत्पन्न की परिभाषा पूर्ववर्ती स्वयंसिद्धों के संदर्भ में अनुसरण करती है। {{math|''k''}}-प्रपत्र के साथ {{math|''φ''}} जैसा कि ऊपर परिभाषित किया गया है, | |||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 47: | Line 47: | ||
&= \frac{\partial g}{\partial x^i} \, dx^i \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k} \\ | &= \frac{\partial g}{\partial x^i} \, dx^i \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k} \\ | ||
\end{align}</math> | \end{align}</math> | ||
यहां {{math|''g''}} व्याख्या {{math|0}}-प्रपत्र प्रपत्र में की है, एवं फिर बाह्य व्युत्पन्न के गुणों को प्रस्तुत | यहां {{math|''g''}} व्याख्या {{math|0}}-प्रपत्र प्रपत्र में की है, एवं फिर बाह्य व्युत्पन्न के गुणों को प्रस्तुत किया जाता है। | ||
यह परिणाम सीधे सामान्य {{math|''k''}}-प्रपत्र {{math|''ω''}} तक विस्तारित होता है | यह परिणाम सीधे सामान्य {{math|''k''}}-प्रपत्र {{math|''ω''}} तक विस्तारित होता है | ||
:<math>d\omega = \frac{\partial f_I}{\partial x^i} \, dx^i \wedge dx^I </math>, | :<math>d\omega = \frac{\partial f_I}{\partial x^i} \, dx^i \wedge dx^I </math>, | ||
विशेष प्रपत्र से, {{math|1}}-प्रपत्र {{math|''ω''}} के लिए, के घटक | विशेष प्रपत्र से, {{math|1}}-प्रपत्र {{math|''ω''}} के लिए, के घटक समिष्टीय समन्वय प्रणाली में {{math|''dω''}} के घटक हैं, | ||
:<math>(d\omega)_{ij} = \partial_i \omega_j - \partial_j \omega_i, </math> | :<math>(d\omega)_{ij} = \partial_i \omega_j - \partial_j \omega_i, </math> | ||
सावधानी: के अर्थ के संबंध में दो परंपराएँ <math>dx^{i_1} \wedge \cdots \wedge dx^{i_k}</math> हैं, अधिकांश वर्तमान लेखक की यह परंपरा है कि | सावधानी: के अर्थ के संबंध में दो परंपराएँ <math>dx^{i_1} \wedge \cdots \wedge dx^{i_k}</math> हैं, अधिकांश वर्तमान लेखक की यह परंपरा है कि | ||
Line 63: | Line 63: | ||
===अपरिवर्तनीय सूत्र के संदर्भ में=== | ===अपरिवर्तनीय सूत्र के संदर्भ में=== | ||
वैकल्पिक प्रपत्र से, {{math|''k''}}-प्रपत्र {{math|''ω''}} के बाह्य व्युत्पन्न के लिए स्पष्ट सूत्र दिया जा सकता है, {{math|''k'' + 1}} से [[वेक्टर फ़ील्ड]] {{math|''V''<sub>0</sub>, ''V''<sub>1</sub>, ..., ''V''<sub>''k''</sub>}} साथ जोड़ा जाता है। <math>d\omega(V_0, \ldots, V_k) = \sum_i(-1)^{i} d_{{}_{V_i}} ( \omega (V_0, \ldots, \widehat V_i, \ldots,V_k )) + \sum_{i<j}(-1)^{i+j}\omega ([V_i, V_j], V_0, \ldots, \widehat V_i, \ldots, \widehat V_j, \ldots, V_k )</math>, | वैकल्पिक प्रपत्र से, {{math|''k''}}-प्रपत्र {{math|''ω''}} के बाह्य व्युत्पन्न के लिए स्पष्ट सूत्र दिया जा सकता है, {{math|''k'' + 1}} से [[वेक्टर फ़ील्ड|सदिश फ़ील्ड]] {{math|''V''<sub>0</sub>, ''V''<sub>1</sub>, ..., ''V''<sub>''k''</sub>}} साथ जोड़ा जाता है। <math>d\omega(V_0, \ldots, V_k) = \sum_i(-1)^{i} d_{{}_{V_i}} ( \omega (V_0, \ldots, \widehat V_i, \ldots,V_k )) + \sum_{i<j}(-1)^{i+j}\omega ([V_i, V_j], V_0, \ldots, \widehat V_i, \ldots, \widehat V_j, \ldots, V_k )</math>, | ||
जहाँ {{math|[''V<sub>i</sub>'', ''V<sub>j</sub>'']}} | जहाँ {{math|[''V<sub>i</sub>'', ''V<sub>j</sub>'']}} सदिश फ़ील्ड के लाई ब्रैकेट को प्रदर्शित करता है एवं हैट उस तत्व की अकृत को प्रदर्शित करती है: | ||
:<math>\omega (V_0, \ldots, \widehat V_i, \ldots, V_k ) = \omega(V_0, \ldots, V_{i-1}, V_{i+1}, \ldots, V_k ),</math> | :<math>\omega (V_0, \ldots, \widehat V_i, \ldots, V_k ) = \omega(V_0, \ldots, V_{i-1}, V_{i+1}, \ldots, V_k ),</math> | ||
Line 79: | Line 79: | ||
== उदाहरण == | == उदाहरण == | ||
उदाहरण 1.अदिश क्षेत्र {{math|''u''}} {{math|1}}-प्रपत्र आधार के लिए {{math|''dx''{{i sup|1}}, ..., ''dx''{{i sup|''n''}}}} पर {{math|1=''σ'' = ''u'' ''dx''{{i sup|1}} ∧ ''dx''{{i sup|2}}}} पर विचार | उदाहरण 1.अदिश क्षेत्र {{math|''u''}} {{math|1}}-प्रपत्र आधार के लिए {{math|''dx''{{i sup|1}}, ..., ''dx''{{i sup|''n''}}}} पर {{math|1=''σ'' = ''u'' ''dx''{{i sup|1}} ∧ ''dx''{{i sup|2}}}} पर विचार किया जाता है, बाह्य व्युत्पन्न है: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 88: | Line 88: | ||
अंतिम सूत्र, जहां से योग {{math|''i'' {{=}} 3}} प्रारंभ होता है, बाह्य उत्पाद के गुणों से सरलता से अनुसरण करता है, अर्थात्, {{math|1=''dx''{{i sup|''i''}} ∧ ''dx''{{i sup|''i''}} = 0}} है। | अंतिम सूत्र, जहां से योग {{math|''i'' {{=}} 3}} प्रारंभ होता है, बाह्य उत्पाद के गुणों से सरलता से अनुसरण करता है, अर्थात्, {{math|1=''dx''{{i sup|''i''}} ∧ ''dx''{{i sup|''i''}} = 0}} है। | ||
उदाहरण 2. मान लीजिए {{math|1=''σ'' = ''u'' ''dx'' + ''v'' ''dy''}} {{math|ℝ{{sup|2}}}} पर परिभाषित {{math|1}}-प्रपत्र है, उपरोक्त सूत्र को प्रत्येक पद पर | उदाहरण 2. मान लीजिए {{math|1=''σ'' = ''u'' ''dx'' + ''v'' ''dy''}} {{math|ℝ{{sup|2}}}} पर परिभाषित {{math|1}}-प्रपत्र है, उपरोक्त सूत्र को प्रत्येक पद पर प्रस्तावित करने पर ({{math|1=''x''{{i sup|1}} = ''x''}} एवं {{math|1=''x''{{i sup|2}} = ''y''}} पर विचार किया जाता है) हमें निम्नलिखित योग प्राप्त होता है, | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 102: | Line 102: | ||
{{main|सामान्यीकृत स्टोक्स प्रमेय}} | {{main|सामान्यीकृत स्टोक्स प्रमेय}} | ||
यदि {{math|''M''}} कॉम्पैक्ट स्मूथ ओरिएंटेबल {{math|''n''}}- सीमा के साथ आयामी मैनिफोल्ड है एवं {{math|''ω''}}, {{math|''M''}} पर {{math|(''n'' − 1)}}- | यदि {{math|''M''}} कॉम्पैक्ट स्मूथ ओरिएंटेबल {{math|''n''}}- सीमा के साथ आयामी मैनिफोल्ड है एवं {{math|''ω''}}, {{math|''M''}} पर {{math|(''n'' − 1)}}- प्रपत्र है, तो सामान्यीकृत स्टोक्स प्रमेय का सामान्यीकृत प्रपत्र बताता है कि: | ||
:<math>\int_M d\omega = \int_{\partial{M}} \omega</math> होता है। | :<math>\int_M d\omega = \int_{\partial{M}} \omega</math> होता है। | ||
सहज प्रपत्र से, यदि कोई सोचता है कि {{math|''M''}} अतिसूक्ष्म क्षेत्रों में विभाजित होने के कारण, | सहज प्रपत्र से, यदि कोई सोचता है कि {{math|''M''}} अतिसूक्ष्म क्षेत्रों में विभाजित होने के कारण, वह सभी क्षेत्रों की सीमाओं के माध्यम से प्रवाह जोड़ता है,सभी आंतरिक सीमाएं समाप्त हो जाती हैं, जिससे कुल प्रवाह {{math|''M''}} की सीमा के माध्यम से निकल जाता है। | ||
== अन्य गुण == | == अन्य गुण == | ||
===संवृत एवं | ===संवृत एवं त्रुटिहीन प्रपत्र=== | ||
{{main article|संवृत और सटीक रूप}} | {{main article|संवृत और सटीक रूप}} | ||
{{math|''k''}}-प्रपत्र {{math|''ω''}} को संवृत कहा जाता है यदि {{math|1=''dω'' = 0}}; संवृत प्रपत्र {{math|''d''}} [[कर्नेल (बीजगणित)|के कर्नेल (बीजगणित)]] हैं। {{math|''ω''}} को | {{math|''k''}}-प्रपत्र {{math|''ω''}} को संवृत कहा जाता है यदि {{math|1=''dω'' = 0}}; संवृत प्रपत्र {{math|''d''}} [[कर्नेल (बीजगणित)|के कर्नेल (बीजगणित)]] हैं। {{math|''ω''}} को त्रुटिहीन यदि कहा जाता है {{math|1=''ω'' = ''dα''}} कुछ के लिए {{math|(''k'' − 1)}}-प्रपत्र {{math|''α''}}; त्रुटिहीन प्रपत्र {{math|''d''}} की [[छवि (गणित)]] हैं, क्योंकि {{math|1=''d''{{i sup|2}} = 0}}, प्रत्येक त्रुटिहीन प्रपत्र संवृत है। पोंकारे लेम्मा में कहा गया है कि संकुचन योग्य क्षेत्र में, इसका विपरीत सत्य है। | ||
===डी राम कोहोमोलॉजी=== | ===डी राम कोहोमोलॉजी=== | ||
क्योंकि बाह्य व्युत्पन्न {{math|''d''}} में गुण है कि {{math|1=''d''{{i sup|2}} = 0}}, इसका उपयोग कई गुना पर [[डॉ कहलमज गर्भाशय|डी राम कोहोमोलॉजी]] को परिभाषित करने के लिए [[कोचेन कॉम्प्लेक्स]] | क्योंकि बाह्य व्युत्पन्न {{math|''d''}} में गुण है कि {{math|1=''d''{{i sup|2}} = 0}}, इसका उपयोग कई गुना पर [[डॉ कहलमज गर्भाशय|डी राम कोहोमोलॉजी]] को परिभाषित करने के लिए अंतर [[कोचेन कॉम्प्लेक्स|(कोबाउंड्री)]] के प्रपत्र में किया जाता है जा सकता है। के-वें डी राम राम कोहोमोलॉजी (समूह) संवृत {{math|''k''}}-मॉड्यूलो का {{math|''k''}}-प्रपत्र का सदिश समिष्ट है; जैसा कि पूर्व अनुभाग में उल्लेख किया गया है, पोंकारे लेम्मा में कहा गया है कि ये सदिश समिष्ट संकुचन योग्य क्षेत्र {{math|''k'' > 0}} के लिए तुच्छ हैं, सहज विविधताओं के लिए, प्रपत्रों का एकीकरण डी राम कोहोमोलॉजी से से {{math|ℝ}} पर लेकर एकवचन कोहोमोलॉजी तक प्राकृतिक समप्रपत्रता प्रदान करता है। डी राम के प्रमेय से ज्ञात होता है कि यह मानचित्र वास्तव में समप्रपत्रता है, जो पोंकारे लेम्मा का दूरगामी सामान्यीकरण है। जैसा कि सामान्यीकृत स्टोक्स प्रमेय द्वारा सूचित किया गया है, बाह्य व्युत्पन्न एकवचन सरलताओं पर सीमा मानचित्र का "दोहरा" है। | ||
===प्राकृतिकता=== | ===प्राकृतिकता=== | ||
बाह्य व्युत्पन्न तकनीकी अर्थ में स्वाभाविक है: यदि {{math| ''f'' : ''M'' → ''N''}} सहज मानचित्र है एवं {{math|Ω{{sup|''k''}}}} कंट्रावेरिएंट स्मूथ [[ऑपरेटर]] है जो प्रत्येक को कई गुना | बाह्य व्युत्पन्न तकनीकी अर्थ में स्वाभाविक है: यदि {{math| ''f'' : ''M'' → ''N''}} सहज मानचित्र है एवं {{math|Ω{{sup|''k''}}}} कंट्रावेरिएंट स्मूथ [[ऑपरेटर]] है जो प्रत्येक को कई गुना समिष्ट प्रदान करता है {{math|''k''}}-मैनिफोल्ड पर प्रपत्र, फिर निम्नलिखित परिवर्तित होता है, | ||
:[[Image:Exteriorderivnatural.png|none]]इसलिए {{math|1=''d''( ''f''{{i sup|∗}}''ω'') =  ''f''{{i sup|∗}}''dω''}}, जहाँ {{math| ''f''{{i sup|∗}}}}{{math| ''f'' }} के [[पुलबैक (विभेदक ज्यामिति)]] को | :[[Image:Exteriorderivnatural.png|none]]इसलिए {{math|1=''d''( ''f''{{i sup|∗}}''ω'') =  ''f''{{i sup|∗}}''dω''}}, जहाँ {{math| ''f''{{i sup|∗}}}}{{math| ''f'' }} के [[पुलबैक (विभेदक ज्यामिति)]] को प्रदर्शित करता है। यह इस प्रकार है कि {{math| ''f''{{i sup|∗}}''ω''(·)}}, परिभाषा के अनुसार, {{math|''ω''( ''f''<sub>∗</sub>(·))}} है, {{math| ''f''<sub>∗</sub>}} {{math| ''f'' }} का पुशफॉरवर्ड (अंतर) है। इस प्रकार {{math|''d''}} {{math|Ω{{sup|''k''}}}}से {{math|Ω{{sup|''k''+1}}}} [[प्राकृतिक परिवर्तन|तक प्राकृतिक परिवर्तन]] है। | ||
== | == सदिश कलन में बाह्य व्युत्पन्न == | ||
अधिकांश [[वेक्टर कैलकुलस]] ऑपरेटर बाह्य विभेदन की धारणा के विशेष विषय हैं। | अधिकांश [[वेक्टर कैलकुलस|सदिश कैलकुलस]] ऑपरेटर बाह्य विभेदन की धारणा के विशेष विषय हैं। | ||
===क्रमशः=== | ===क्रमशः=== | ||
वास्तविक भिन्न-भिन्न मैनिफोल्ड {{math|''M''}} पर सुचारू फलन {{math| ''f'' : ''M'' → ℝ}} {{math|0}}-प्रपत्र है। इसका {{math|0}}-प्रपत्र बाह्य व्युत्पन्न का {{math|1}}-प्रपत्र {{math|''df''}} है। जब आंतरिक उत्पाद {{math|{{langle}}·,·{{rangle}}}} परिभाषित है, फलन | वास्तविक भिन्न-भिन्न मैनिफोल्ड {{math|''M''}} पर सुचारू फलन {{math| ''f'' : ''M'' → ℝ}} {{math|0}}-प्रपत्र है। इसका {{math|0}}-प्रपत्र बाह्य व्युत्पन्न का {{math|1}}-प्रपत्र {{math|''df''}} है। जब आंतरिक उत्पाद {{math|{{langle}}·,·{{rangle}}}} परिभाषित है, फलन {{math| ''f'' }} के[[ ग्रेडियेंट | ग्रेडियेंट]] {{math|∇''f'' }} को {{math|''V''}} में अद्वितीय सदिश के प्रपत्र में परिभाषित किया गया है ऐसा कि इसका {{math|''V''}} के किसी भी तत्व के साथ आंतरिक उत्पाद सदिश के साथ {{math| ''f'' }} का दिशात्मक व्युत्पन्न है, वह | ||
:<math>\langle \nabla f, \cdot \rangle = df = \sum_{i=1}^n \frac{\partial f}{\partial x^i}\, dx^i </math> है। | :<math>\langle \nabla f, \cdot \rangle = df = \sum_{i=1}^n \frac{\partial f}{\partial x^i}\, dx^i </math> है। | ||
वह | वह | ||
:<math>\nabla f = (df)^\sharp = \sum_{i=1}^n \frac{\partial f}{\partial x^i}\, \left(dx^i\right)^\sharp </math> है, | :<math>\nabla f = (df)^\sharp = \sum_{i=1}^n \frac{\partial f}{\partial x^i}\, \left(dx^i\right)^\sharp </math> है, | ||
जहाँ {{math|{{music|sharp}}}} [[संगीत समरूपता|संगीत समप्रपत्रता]] को | जहाँ {{math|{{music|sharp}}}} [[संगीत समरूपता|संगीत समप्रपत्रता]] को प्रदर्शित करता है, {{math|{{music|sharp}} : ''V''{{sup|∗}} → ''V''}} का उल्लेख किया गया है कि आंतरिक उत्पाद से प्रेरित है। वह {{math|1}}-प्रपत्र {{math|''df'' }} [[कोटैंजेंट बंडल]] का खंड है, प्रत्येक बिंदु पर कोटैंजेंट समिष्ट में {{math| ''f'' }} जो समिष्टीय रैखिक सन्निकटन देता है। | ||
===विचलन=== | ===विचलन=== | ||
Line 140: | Line 140: | ||
&= \sum_{i=1}^n (-1)^{(i-1)}v_i \left (dx^1 \wedge \cdots \wedge dx^{i-1} \wedge \widehat{dx^{i}} \wedge dx^{i+1} \wedge \cdots \wedge dx^n \right ) | &= \sum_{i=1}^n (-1)^{(i-1)}v_i \left (dx^1 \wedge \cdots \wedge dx^{i-1} \wedge \widehat{dx^{i}} \wedge dx^{i+1} \wedge \cdots \wedge dx^n \right ) | ||
\end{align}</math> | \end{align}</math> | ||
जहाँ <math>\widehat{dx^{i}}</math> उस तत्व के लोप को | जहाँ <math>\widehat{dx^{i}}</math> उस तत्व के लोप को प्रदर्शित करता है। | ||
(उदाहरण के लिए, जब {{math|1=''n'' = 3}}, अर्थात् त्रि-आयामी अंतरिक्ष में, {{math|2}}-प्रपत्र {{math|''ω<sub>V</sub>''}} | (उदाहरण के लिए, जब {{math|1=''n'' = 3}}, अर्थात् त्रि-आयामी अंतरिक्ष में, {{math|2}}-प्रपत्र {{math|''ω<sub>V</sub>''}} समिष्टीय प्रपत्र {{math|''V''}} के साथ [[अदिश त्रिगुण उत्पाद]] है) हाइपरसतह पर {{math|''ω<sub>V</sub>''}} का अभिन्न अंग उस हाइपरसतह पर {{math|''V''}} का प्रवाह है। | ||
इस {{math|''n''}}-प्रपत्र का | इस {{math|''n''}}-प्रपत्र का बाह्य व्युत्पन्न {{math|(''n'' − 1)}}-प्रपत्र | ||
:<math>d\omega _V = \operatorname{div} V \left (dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n \right )</math>है। | :<math>d\omega _V = \operatorname{div} V \left (dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n \right )</math>है। | ||
Line 153: | Line 153: | ||
:<math>\eta_V = v_1 \, dx^1 + v_2 \, dx^2 + \cdots + v_n \, dx^n,</math> | :<math>\eta_V = v_1 \, dx^1 + v_2 \, dx^2 + \cdots + v_n \, dx^n,</math> | ||
समिष्टीय स्तर पर, {{math|''η<sub>V</sub>''}} {{math|''V''}} के साथ [[डॉट उत्पाद]] है, पथ के साथ {{math|''η<sub>V</sub>''}} का अभिन्न अंग उस पथ के साथ{{math|−''V''}} के विरुद्ध किया जाता है गया कार्य है। | |||
जब {{math|1=''n'' = 3}}, त्रि-आयामी अंतरिक्ष में, {{math|1}}-प्रपत्र {{math|''η<sub>V</sub>''}} का बाह्य व्युत्पन्न {{math|2}}-प्रपत्र | जब {{math|1=''n'' = 3}}, त्रि-आयामी अंतरिक्ष में, {{math|1}}-प्रपत्र {{math|''η<sub>V</sub>''}} का बाह्य व्युत्पन्न {{math|2}}-प्रपत्र | ||
Line 160: | Line 160: | ||
=== | ===सदिश कैलकुलस में ऑपरेटरों के अपरिवर्तनीय प्रपत्रूलेशन=== | ||
मानक | मानक सदिश कैलकुलस ऑपरेटरों को किसी भी [[छद्म-रीमैनियन मैनिफोल्ड]] के लिए सामान्यीकृत किया जाता है जा सकता है, एवं समन्वय-मुक्त नोटेशन में निम्नानुसार लिखा जा सकता है: | ||
:<math>\begin{array}{rcccl} | :<math>\begin{array}{rcccl} | ||
Line 170: | Line 170: | ||
& & \nabla^2 F &=& \left(d{\star}d{\star}\mathord{\left(F^{\flat}\right)} - {\star}d{\star}d\mathord{\left(F^{\flat}\right)}\right)^{\sharp} , \\ | & & \nabla^2 F &=& \left(d{\star}d{\star}\mathord{\left(F^{\flat}\right)} - {\star}d{\star}d\mathord{\left(F^{\flat}\right)}\right)^{\sharp} , \\ | ||
\end{array}</math> | \end{array}</math> | ||
जहाँ {{math|⋆}} [[ हॉज दोहरे ]] है, {{math|{{music|flat}}}} एवं {{math|{{music|sharp}}}} संगीतमय | जहाँ {{math|⋆}} [[ हॉज दोहरे | हॉज स्टार ऑपरेटर]] है, {{math|{{music|flat}}}} एवं {{math|{{music|sharp}}}} संगीतमय समरूपताएं हैं, {{math| ''f'' }} [[अदिश क्षेत्र]] है एवं {{math|''F''}} सदिश क्षेत्र है। | ||
ध्यान दें कि कर्ल के लिए अभिव्यक्ति के लिए {{math|{{music|sharp}}}} को {{math|⋆''d''(''F''{{sup|{{music|flat}}}})}} | ध्यान दें कि कर्ल के लिए अभिव्यक्ति के लिए {{math|{{music|sharp}}}} को {{math|⋆''d''(''F''{{sup|{{music|flat}}}})}} पर कार्य करने की आवश्यकता होती है , जो {{math|''n'' − 2}} डिग्री का प्रपत्र है, ♯ से {{math|''k''}}- डिग्री के प्रपत्रों का एक प्राकृतिक सामान्यीकरण इस अभिव्यक्ति को किसी भी {{math|''n''}} के लिए समझ बनाने की अनुमति देता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 23:54, 14 July 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
विभेदक मैनिफोल्ड पर, बाह्य व्युत्पन्न किसी फलन के पुशफॉरवर्ड (डिफरेंशियल) की अवधारणा को उच्च डिग्री के विभेदक प्रपत्रों तक विस्तारित करता है। बाह्य व्युत्पन्न को प्रथम बार 1899 में एली कार्टन द्वारा इसके वर्तमान स्वप्रपत्र में वर्णित किया जाता है गया था। परिणामी कैलकुलस, जिसे बाह्य कैलकुलस के प्रपत्र में जाना जाता है, बाह्य आवरण से स्टोक्स के प्रमेय, गॉस के प्रमेय एवं ग्रीन के प्रमेय के प्राकृतिक, मीट्रिक-स्वतंत्र सामान्यीकरण की अनुमति देता है।
यदि अंतर k- प्रपत्र को मैनिफोल्ड के प्रत्येक बिंदु पर अतिसूक्ष्म के k- पैरेललेपिप्ड माध्यम से प्रवाह को मापने के प्रपत्र में माना जाता है, तो इसके बाह्य व्युत्पन्न को (k + 1) की सीमा के माध्यम से शुद्ध प्रवाह को मापने के प्रपत्र में माना जा सकता है।
परिभाषा
डिग्री k के विभेदक प्रपत्र का बाह्य व्युत्पन्न (विभेदक k-प्रपत्र, या यहां संक्षिप्तता के लिए केवल k- प्रपत्र) डिग्री k + 1 का विभेदक प्रपत्र है।
यदि f सहज फलन (0-प्रपत्र) है, तो f का बाह्य अवकलज f का अंतर है।अर्थात्, df अद्वितीय 1-रूप है, इस प्रकार कि प्रत्येक चौरस सदिश फ़ील्ड X के लिए, df (X) = dX f , जहां dX f X की दिशा में f का दिशात्मक व्युत्पन्न है।
विभेदक प्रपत्रों का बाह्य उत्पाद (समान प्रतीक ∧ से प्रदर्शित किया गया है) को उनके बिंदुवार बाह्य उत्पाद के प्रपत्र में परिभाषित किया गया है।
किसी सामान्य k-प्रपत्र के बाह्य व्युत्पन्न की विभिन्न प्रकार की समतुल्य परिभाषाएँ हैं।
स्वसिद्धांतों के संदर्भ में
बाह्य व्युत्पन्न को k-प्रपत्र से (k + 1)-प्रपत्र तक अद्वितीय ℝ- रैखिक मानचित्रण के प्रपत्र में परिभाषित किया गया है जिनमें निम्नलिखित गुण हैं:
- df 0-प्रपत्र f के लिए f का अंतर है।
- 0-प्रपत्र f के लिए d(df ) = 0 है।
- d(α ∧ β) = dα ∧ β + (−1)p (α ∧ dβ) जहाँ α है p-प्रपत्र है। इसका तात्पर्य, d विभेदक प्रपत्रों के बाह्य बीजगणित पर डिग्री 1 की व्युत्पत्ति (बीजगणित) है (श्रेणीबद्ध उत्पाद नियम देखें)।
दूसरी परिभाषित संपत्ति अधिक व्यापकता रखती है:किसी k-प्रपत्र α के लिए d(dα) = 0; अधिक संक्षेप में, d2 = 0 होता है।तीसरी परिभाषित संपत्ति का तात्पर्य विशेष विषय के प्रपत्र में है कि यदि f फलन है एवं α, k-प्रपत्र है, तो d( fα) = d( f ∧ α) = df ∧ α + f ∧ dα क्योंकि फलन 0-प्रपत्र है, एवं अदिश गुणन एवं बाह्य उत्पाद समतुल्य होते हैं जब कोई तर्क अदिश होता है।
समिष्टीय निर्देशांक के संदर्भ में
वैकल्पिक प्रपत्र से, कोई पूर्ण प्रपत्र से समिष्टीय समन्वय प्रणाली (x1, ..., xn) में कार्य कर सकता है। समन्वय अंतर dx1, ..., dxn प्रपत्रों के समिष्ट का आधार बनाते हैं, जिनमें से प्रत्येक समन्वय से जुड़ा होता है। 1 ≤ ip ≤ n के लिए 1 ≤ p ≤ k के साथ बहु-सूचकांक I = (i1, ..., ik) दिया गया है। (एवं dxI के साथ dxi1 ∧ ... ∧ dxik निप्रपत्रित करते हुए ), (सरल) का बाह्य व्युत्पन्न k-प्रपत्र
ऊपर ℝn परिभाषित किया जाता है,
आइंस्टीन संकेतन का उपयोग करके, बाह्य व्युत्पन्न की परिभाषा को सामान्य k-प्रपत्र तक रैखिक प्रपत्र से विस्तारित किया जाता है,
जहां मल्टी-इंडेक्स के प्रत्येक घटक I में सभी मानों {1, ..., n} का उपयोग किया जाता है। ध्यान दें कि जब भी i मल्टी-इंडेक्स I के घटकों में से एक के समान होता है, तब dxi ∧ dxI = 0 (बाह्य उत्पाद देखें) होता है।
समिष्टीय निर्देशांक में बाह्य व्युत्पन्न की परिभाषा पूर्ववर्ती स्वयंसिद्धों के संदर्भ में अनुसरण करती है। k-प्रपत्र के साथ φ जैसा कि ऊपर परिभाषित किया गया है,
यहां g व्याख्या 0-प्रपत्र प्रपत्र में की है, एवं फिर बाह्य व्युत्पन्न के गुणों को प्रस्तुत किया जाता है।
यह परिणाम सीधे सामान्य k-प्रपत्र ω तक विस्तारित होता है
- ,
विशेष प्रपत्र से, 1-प्रपत्र ω के लिए, के घटक समिष्टीय समन्वय प्रणाली में dω के घटक हैं,
सावधानी: के अर्थ के संबंध में दो परंपराएँ हैं, अधिकांश वर्तमान लेखक की यह परंपरा है कि
- होता है।
जबकि कोबायाशी एवं नोमिज़ु या हेल्गासन जैसे पुराने पाठ में
- होता है।
अपरिवर्तनीय सूत्र के संदर्भ में
वैकल्पिक प्रपत्र से, k-प्रपत्र ω के बाह्य व्युत्पन्न के लिए स्पष्ट सूत्र दिया जा सकता है, k + 1 से सदिश फ़ील्ड V0, V1, ..., Vk साथ जोड़ा जाता है। ,
जहाँ [Vi, Vj] सदिश फ़ील्ड के लाई ब्रैकेट को प्रदर्शित करता है एवं हैट उस तत्व की अकृत को प्रदर्शित करती है:
विशेषकर, जब ω 1-प्रपत्र है तो वह हमारे पास dω(X, Y) = dX(ω(Y)) − dY(ω(X)) − ω([X, Y]) है।
नोट: उदाहरण के लिए, कोबायाशी-नोमिज़ु एवं हेल्गासन की परंपराओं के साथ सूत्र कारक 1/k + 1 से भिन्न होता है :
उदाहरण
उदाहरण 1.अदिश क्षेत्र u 1-प्रपत्र आधार के लिए dx1, ..., dxn पर σ = u dx1 ∧ dx2 पर विचार किया जाता है, बाह्य व्युत्पन्न है:
अंतिम सूत्र, जहां से योग i = 3 प्रारंभ होता है, बाह्य उत्पाद के गुणों से सरलता से अनुसरण करता है, अर्थात्, dxi ∧ dxi = 0 है।
उदाहरण 2. मान लीजिए σ = u dx + v dy ℝ2 पर परिभाषित 1-प्रपत्र है, उपरोक्त सूत्र को प्रत्येक पद पर प्रस्तावित करने पर (x1 = x एवं x2 = y पर विचार किया जाता है) हमें निम्नलिखित योग प्राप्त होता है,
मैनिफोल्ड्स पर स्टोक्स प्रमेय
यदि M कॉम्पैक्ट स्मूथ ओरिएंटेबल n- सीमा के साथ आयामी मैनिफोल्ड है एवं ω, M पर (n − 1)- प्रपत्र है, तो सामान्यीकृत स्टोक्स प्रमेय का सामान्यीकृत प्रपत्र बताता है कि:
- होता है।
सहज प्रपत्र से, यदि कोई सोचता है कि M अतिसूक्ष्म क्षेत्रों में विभाजित होने के कारण, वह सभी क्षेत्रों की सीमाओं के माध्यम से प्रवाह जोड़ता है,सभी आंतरिक सीमाएं समाप्त हो जाती हैं, जिससे कुल प्रवाह M की सीमा के माध्यम से निकल जाता है।
अन्य गुण
संवृत एवं त्रुटिहीन प्रपत्र
k-प्रपत्र ω को संवृत कहा जाता है यदि dω = 0; संवृत प्रपत्र d के कर्नेल (बीजगणित) हैं। ω को त्रुटिहीन यदि कहा जाता है ω = dα कुछ के लिए (k − 1)-प्रपत्र α; त्रुटिहीन प्रपत्र d की छवि (गणित) हैं, क्योंकि d2 = 0, प्रत्येक त्रुटिहीन प्रपत्र संवृत है। पोंकारे लेम्मा में कहा गया है कि संकुचन योग्य क्षेत्र में, इसका विपरीत सत्य है।
डी राम कोहोमोलॉजी
क्योंकि बाह्य व्युत्पन्न d में गुण है कि d2 = 0, इसका उपयोग कई गुना पर डी राम कोहोमोलॉजी को परिभाषित करने के लिए अंतर (कोबाउंड्री) के प्रपत्र में किया जाता है जा सकता है। के-वें डी राम राम कोहोमोलॉजी (समूह) संवृत k-मॉड्यूलो का k-प्रपत्र का सदिश समिष्ट है; जैसा कि पूर्व अनुभाग में उल्लेख किया गया है, पोंकारे लेम्मा में कहा गया है कि ये सदिश समिष्ट संकुचन योग्य क्षेत्र k > 0 के लिए तुच्छ हैं, सहज विविधताओं के लिए, प्रपत्रों का एकीकरण डी राम कोहोमोलॉजी से से ℝ पर लेकर एकवचन कोहोमोलॉजी तक प्राकृतिक समप्रपत्रता प्रदान करता है। डी राम के प्रमेय से ज्ञात होता है कि यह मानचित्र वास्तव में समप्रपत्रता है, जो पोंकारे लेम्मा का दूरगामी सामान्यीकरण है। जैसा कि सामान्यीकृत स्टोक्स प्रमेय द्वारा सूचित किया गया है, बाह्य व्युत्पन्न एकवचन सरलताओं पर सीमा मानचित्र का "दोहरा" है।
प्राकृतिकता
बाह्य व्युत्पन्न तकनीकी अर्थ में स्वाभाविक है: यदि f : M → N सहज मानचित्र है एवं Ωk कंट्रावेरिएंट स्मूथ ऑपरेटर है जो प्रत्येक को कई गुना समिष्ट प्रदान करता है k-मैनिफोल्ड पर प्रपत्र, फिर निम्नलिखित परिवर्तित होता है,
- इसलिए d( f∗ω) = f∗dω, जहाँ f∗ f के पुलबैक (विभेदक ज्यामिति) को प्रदर्शित करता है। यह इस प्रकार है कि f∗ω(·), परिभाषा के अनुसार, ω( f∗(·)) है, f∗ f का पुशफॉरवर्ड (अंतर) है। इस प्रकार d Ωkसे Ωk+1 तक प्राकृतिक परिवर्तन है।
सदिश कलन में बाह्य व्युत्पन्न
अधिकांश सदिश कैलकुलस ऑपरेटर बाह्य विभेदन की धारणा के विशेष विषय हैं।
क्रमशः
वास्तविक भिन्न-भिन्न मैनिफोल्ड M पर सुचारू फलन f : M → ℝ 0-प्रपत्र है। इसका 0-प्रपत्र बाह्य व्युत्पन्न का 1-प्रपत्र df है। जब आंतरिक उत्पाद ⟨·,·⟩ परिभाषित है, फलन f के ग्रेडियेंट ∇f को V में अद्वितीय सदिश के प्रपत्र में परिभाषित किया गया है ऐसा कि इसका V के किसी भी तत्व के साथ आंतरिक उत्पाद सदिश के साथ f का दिशात्मक व्युत्पन्न है, वह
- है।
वह
- है,
जहाँ ♯ संगीत समप्रपत्रता को प्रदर्शित करता है, ♯ : V∗ → V का उल्लेख किया गया है कि आंतरिक उत्पाद से प्रेरित है। वह 1-प्रपत्र df कोटैंजेंट बंडल का खंड है, प्रत्येक बिंदु पर कोटैंजेंट समिष्ट में f जो समिष्टीय रैखिक सन्निकटन देता है।
विचलन
सदिश क्षेत्र V = (v1, v2, ..., vn) पर ℝn के पास संगत (n − 1)-प्रपत्र है,
जहाँ उस तत्व के लोप को प्रदर्शित करता है।
(उदाहरण के लिए, जब n = 3, अर्थात् त्रि-आयामी अंतरिक्ष में, 2-प्रपत्र ωV समिष्टीय प्रपत्र V के साथ अदिश त्रिगुण उत्पाद है) हाइपरसतह पर ωV का अभिन्न अंग उस हाइपरसतह पर V का प्रवाह है।
इस n-प्रपत्र का बाह्य व्युत्पन्न (n − 1)-प्रपत्र
- है।
कर्ल
ℝn पर सदिश क्षेत्र V का संगत ( n-1)- प्रपत्र
समिष्टीय स्तर पर, ηV V के साथ डॉट उत्पाद है, पथ के साथ ηV का अभिन्न अंग उस पथ के साथ−V के विरुद्ध किया जाता है गया कार्य है।
जब n = 3, त्रि-आयामी अंतरिक्ष में, 1-प्रपत्र ηV का बाह्य व्युत्पन्न 2-प्रपत्र
- है।
सदिश कैलकुलस में ऑपरेटरों के अपरिवर्तनीय प्रपत्रूलेशन
मानक सदिश कैलकुलस ऑपरेटरों को किसी भी छद्म-रीमैनियन मैनिफोल्ड के लिए सामान्यीकृत किया जाता है जा सकता है, एवं समन्वय-मुक्त नोटेशन में निम्नानुसार लिखा जा सकता है:
जहाँ ⋆ हॉज स्टार ऑपरेटर है, ♭ एवं ♯ संगीतमय समरूपताएं हैं, f अदिश क्षेत्र है एवं F सदिश क्षेत्र है।
ध्यान दें कि कर्ल के लिए अभिव्यक्ति के लिए ♯ को ⋆d(F♭) पर कार्य करने की आवश्यकता होती है , जो n − 2 डिग्री का प्रपत्र है, ♯ से k- डिग्री के प्रपत्रों का एक प्राकृतिक सामान्यीकरण इस अभिव्यक्ति को किसी भी n के लिए समझ बनाने की अनुमति देता है।
यह भी देखें
- बाहरी सहसंयोजक व्युत्पन्न
- राम परिसर का
- परिमित तत्व बाह्य कलन
- विभिन्न बाहरी कलन
- ग्रीन का प्रमेय
- झूठ व्युत्पन्न
- स्टोक्स प्रमेय
- फ्रैक्टल व्युत्पन्न
टिप्पणियाँ
संदर्भ
- Cartan, Élie (1899). "Sur certaines expressions différentielles et le problème de Pfaff". Annales Scientifiques de l'École Normale Supérieure. Série 3 (in français). Paris: Gauthier-Villars. 16: 239–332. doi:10.24033/asens.467. ISSN 0012-9593. JFM 30.0313.04. Retrieved 2 Feb 2016.
- Conlon, Lawrence (2001). Differentiable manifolds. Basel, Switzerland: Birkhäuser. p. 239. ISBN 0-8176-4134-3.
- Darling, R. W. R. (1994). Differential forms and connections. Cambridge, UK: Cambridge University Press. p. 35. ISBN 0-521-46800-0.
- Flanders, Harley (1989). Differential forms with applications to the physical sciences. New York: Dover Publications. p. 20. ISBN 0-486-66169-5.
- Loomis, Lynn H.; Sternberg, Shlomo (1989). Advanced Calculus. Boston: Jones and Bartlett. pp. 304–473 (ch. 7–11). ISBN 0-486-66169-5.
- Ramanan, S. (2005). Global calculus. Providence, Rhode Island: American Mathematical Society. p. 54. ISBN 0-8218-3702-8.
- Spivak, Michael (1971). Calculus on Manifolds. Boulder, Colorado: Westview Press. ISBN 9780805390216.
- Warner, Frank W. (1983), Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, Springer, ISBN 0-387-90894-3
बाह्य संबंध
- Archived at Ghostarchive and the Wayback Machine: "The derivative isn't what you think it is". Aleph Zero. November 3, 2020 – via YouTube.