स्वयंसिद्ध प्रणाली: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Mathematical term; concerning axioms used to derive theorems}}
{{short description|Mathematical term; concerning axioms used to derive theorems}}
[[गणित]] और [[तर्क]]शास्त्र में, एक [[स्वयंसिद्ध]] प्रणाली सिद्धांतों का कोई [[सेट (गणित)]] है जिसमें से कुछ या सभी स्वयंसिद्धों को तार्किक रूप से व्युत्पन्न [[प्रमेय]]ों के संयोजन के रूप में इस्तेमाल किया जा सकता है। एक [[सिद्धांत (गणितीय तर्क)]] ज्ञान का एक सुसंगत, अपेक्षाकृत आत्म-निहित शरीर है जिसमें आमतौर पर एक स्वयंसिद्ध प्रणाली और इसके सभी व्युत्पन्न प्रमेय शामिल होते हैं। एक स्वयंसिद्ध प्रणाली जो पूरी तरह से वर्णित है, एक विशेष प्रकार की [[औपचारिक प्रणाली]] है। एक औपचारिक सिद्धांत एक स्वयंसिद्ध प्रणाली है (आमतौर पर [[मॉडल सिद्धांत]] के भीतर तैयार की जाती है) जो तार्किक निहितार्थ के तहत बंद किए गए वाक्यों के एक सेट का वर्णन करती है।<ref>{{Cite web|url=http://mathworld.wolfram.com/लिखित.html|title=लिखित|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-10-31}}</ref> एक [[औपचारिक प्रमाण]] एक औपचारिक प्रणाली के भीतर एक [[गणितीय प्रमाण]] का पूर्ण प्रतिपादन है।
[[गणित]] और [[तर्क]]शास्त्र में, एक [[स्वयंसिद्ध]] प्रणाली सिद्धांतों का [[सेट (गणित)|समुच्चय (गणित)]] है जिसमें से कुछ या सभी स्वयंसिद्धों को तार्किक रूप से व्युत्पन्न [[प्रमेय]] के संयोजन के रूप में उपयोग किया जा सकता है। एक [[सिद्धांत (गणितीय तर्क)]] ज्ञान का एक सुसंगत अपेक्षाकृत आत्मनिर्भर निकाय है जिसमें सामान्यतः एक स्वयंसिद्ध प्रणाली और उसके सभी व्युत्पन्न प्रमेय सम्मिलित होते हैं। एक स्वयंसिद्ध प्रणाली जो पूर्ण रूप से  से वर्णित है, यह एक विशेष प्रकार की [[औपचारिक प्रणाली]] है। एक औपचारिक सिद्धांत एक स्वयंसिद्ध प्रणाली है (सामान्यतः [[मॉडल सिद्धांत|आदर्श सिद्धांत]] के अंदर सूत्रबद्ध की जाती है) जो तार्किक निहितार्थ के अनुसार  संवृत्त  किए गए वाक्यों के एक समुच्चय का वर्णन करती है।<ref>{{Cite web|url=http://mathworld.wolfram.com/लिखित.html|title=लिखित|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-10-31}}</ref> एक [[औपचारिक प्रमाण]] एक औपचारिक प्रणाली के अंदर एक [[गणितीय प्रमाण]] का पूर्ण प्रतिपादन है।
 
एक स्वयंसिद्ध प्रणाली को सुसंगत कहा जाता है यदि उसमें [[विरोधाभास]] का अभाव होता है।


== गुण ==
== गुण ==


एक स्वयंसिद्ध प्रणाली को संगति कहा जाता है यदि उसमें [[विरोधाभास]] का अभाव हो। अर्थात्, सिस्टम के स्वयंसिद्धों से एक कथन और उसके निषेध दोनों को प्राप्त करना असंभव है। अधिकांश स्वयंसिद्ध प्रणालियों के लिए संगति एक महत्वपूर्ण आवश्यकता है, क्योंकि विरोधाभास की उपस्थिति किसी भी कथन को सिद्ध करने की अनुमति देती है ([[विस्फोट का सिद्धांत]])।
एक स्वयंसिद्ध प्रणाली को सुसंगत कहा जाता है यदि उसमें [[विरोधाभास]] का अभाव होता है। अर्थात्, प्रणाली के स्वयंसिद्धों से एक कथन और उसके निषेध दोनों को प्राप्त करना असंभव है। अधिकांश स्वयंसिद्ध प्रणालियों के लिए संगति एक महत्वपूर्ण आवश्यकता है, क्योंकि विरोधाभास ([[विस्फोट का सिद्धांत]]) की उपस्थिति किसी भी कथन को सिद्ध करने की अनुमति देती है।


एक स्वयंसिद्ध प्रणाली में, एक स्वयंसिद्ध को [[स्वतंत्रता (गणितीय तर्क)]] कहा जाता है यदि यह प्रणाली में अन्य स्वयंसिद्धों से सिद्ध या अप्रमाणित नहीं किया जा सकता है। एक प्रणाली को स्वतंत्र कहा जाता है यदि इसके प्रत्येक अंतर्निहित स्वयंसिद्ध स्वतंत्र हैं। संगति के विपरीत, एक कार्यशील स्वयंसिद्ध प्रणाली के लिए स्वतंत्रता एक आवश्यक आवश्यकता नहीं है - हालांकि यह आमतौर पर प्रणाली में स्वयंसिद्धों की संख्या को कम करने के लिए मांगी जाती है।
एक स्वयंसिद्ध प्रणाली में, एक स्वयंसिद्ध को [[स्वतंत्रता (गणितीय तर्क)]] कहा जाता है यदि यह प्रणाली में अन्य स्वयंसिद्धों से सिद्ध या अप्रमाणित नहीं किया जा सकता है। एक प्रणाली को स्वतंत्र कहा जाता है यदि इसके प्रत्येक अंतर्निहित स्वयंसिद्ध स्वतंत्र होते हैं। संगति के विपरीत, एक कार्यशील स्वयंसिद्ध प्रणाली के लिए स्वतंत्रता एक आवश्यक आवश्यकता नहीं है - चूंकि यह सामान्यतः प्रणाली में स्वयंसिद्धों की संख्या को कम करने के लिए प्राप्त की जाती है।


एक स्वयंसिद्ध प्रणाली को [[पूर्णता (तर्क)]] कहा जाता है यदि प्रत्येक कथन के लिए, या तो स्वयं या उसका निषेध प्रणाली के स्वयंसिद्धों से व्युत्पन्न होता है (समकक्ष रूप से, प्रत्येक कथन सत्य या असत्य सिद्ध होने में सक्षम है)।<ref>{{Cite web|url=http://mathworld.wolfram.com/CompleteAxiomaticTheory.html|title=Complete Axiomatic Theory|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-10-31}}</ref>
एक स्वयंसिद्ध प्रणाली को [[पूर्णता (तर्क)]] कहा जाता है यदि प्रत्येक कथन के लिए, या तब स्वयं या उसका निषेध प्रणाली के स्वयंसिद्धों से व्युत्पन्न होता है (समकक्ष रूप से, प्रत्येक कथन सत्य या असत्य सिद्ध होने में सक्षम है)।<ref>{{Cite web|url=http://mathworld.wolfram.com/CompleteAxiomaticTheory.html|title=Complete Axiomatic Theory|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-10-31}}</ref>




== सापेक्ष संगति ==
== सापेक्ष संगति ==


संगति से परे, सापेक्ष संगति भी एक सार्थक स्वयंसिद्ध प्रणाली की निशानी है। यह उस परिदृश्य का वर्णन करता है जहां पहले स्वयंसिद्ध प्रणाली की अपरिभाषित शर्तों को दूसरे से परिभाषाएं प्रदान की जाती हैं, जैसे कि पहले के सिद्धांत दूसरे के प्रमेय हैं।
संगति से पृथक, सापेक्ष संगति भी एक सार्थक स्वयंसिद्ध प्रणाली का चिन्ह है। यह उस परिदृश्य का वर्णन करता है जिस स्थान पर  प्रथम  स्वयंसिद्ध प्रणाली की अपरिभाषित नियमों  को दूसरे से परिभाषाएं प्रदान की जाती हैं, जैसे कि पूर्व  के सिद्धांत दूसरे के प्रमेय हैं।


एक अच्छा उदाहरण [[वास्तविक संख्या]] के सिद्धांत के संबंध में निरपेक्ष ज्यामिति की सापेक्ष संगति है। [[रेखा (ज्यामिति)]] और [[बिंदु (ज्यामिति)]] निरपेक्ष ज्यामिति में अपरिभाषित शब्द (जिन्हें [[आदिम धारणा]] भी कहा जाता है) हैं, लेकिन वास्तविक संख्या के सिद्धांत में निर्दिष्ट अर्थ इस तरह से हैं जो दोनों स्वयंसिद्ध प्रणालियों के अनुरूप है।
एक उचित  उदाहरण [[वास्तविक संख्या]] के सिद्धांत के संबंध में निरपेक्ष ज्यामिति की सापेक्ष संगति है। [[रेखा (ज्यामिति)]] और [[बिंदु (ज्यामिति)]] निरपेक्ष ज्यामिति में अपरिभाषित शब्द (जिन्हें [[आदिम धारणा|प्राचीन धारणा]] भी कहा जाता है) हैं, किन्तु वास्तविक संख्या के सिद्धांत में निर्दिष्ट अर्थ इस प्रकार  से हैं जो दोनों स्वयंसिद्ध प्रणालियों के अनुरूप है।






== मॉडल ==
== आदर्श ==


एक स्वैच्छिक प्रणाली के लिए एक [[मॉडल (गणितीय तर्क)]] एक अच्छी तरह से परिभाषित सेट (गणित) है, जो सिस्टम में प्रस्तुत अपरिभाषित शर्तों के लिए अर्थ प्रदान करता है, जो सिस्टम में परिभाषित संबंधों के साथ सही है। ए का अस्तित्व {{Em|concrete model}} एक प्रणाली की स्थिरता प्रमाण साबित करता है. एक मॉडल को ठोस कहा जाता है यदि निर्दिष्ट अर्थ वास्तविक दुनिया से वस्तुएं और संबंध हैं, एक के विपरीत {{Em|abstract model}} जो अन्य स्वयंसिद्ध प्रणालियों पर आधारित है।
एक स्वैच्छिक प्रणाली के लिए एक [[मॉडल (गणितीय तर्क)|आदर्श(गणितीय तर्क)]] एक उचित  प्रकार  से परिभाषित समुच्चय (गणित) है, जो प्रणाली में प्रस्तुत अपरिभाषित नियमों  के लिए अर्थ प्रदान करता है, जो प्रणाली में परिभाषित संबंधों के साथ उचित  है। एक  {{Em|ठोस मॉडल}} अस्तित्व एक प्रणाली की स्थिरता प्रमाण सिद्ध करता है. एक आदर्श को ठोस कहा जाता है यदि निर्दिष्ट अर्थ वास्तविक विश्व से उद्देश्य और संबंध हैं, एक के विपरीत {{Em|अमूर्त आदर्श }} जो अन्य स्वयंसिद्ध प्रणालियों पर आधारित है।


सिस्टम में एक स्वयंसिद्ध की स्वतंत्रता दिखाने के लिए मॉडल का भी उपयोग किया जा सकता है। एक विशिष्ट स्वयंसिद्ध के बिना एक सबसिस्टम के लिए एक मान्य मॉडल का निर्माण करके, हम दिखाते हैं कि छोड़ा गया स्वयंसिद्ध स्वतंत्र है यदि इसकी शुद्धता आवश्यक रूप से सबसिस्टम से नहीं आती है।
प्रणाली में एक स्वयंसिद्ध की स्वतंत्रता प्रदर्शित करने  के लिए आदर्श का भी उपयोग किया जा सकता है। एक विशिष्ट स्वयंसिद्ध के बिना एक उप-प्रणाली के लिए एक मान्य आदर्श का सूत्रीकरण करके, हम दिखाते हैं कि त्यागा गया स्वयंसिद्ध स्वतंत्र है यदि इसकी शुद्धता आवश्यक रूप से उपप्रणाली से अनुसरण नहीं करती है।


दो मॉडलों को [[समाकृतिकता]] कहा जाता है यदि उनके तत्वों के बीच एक-से-एक पत्राचार पाया जा सकता है, जो उनके रिश्ते को बनाए रखता है।<ref>{{Citation|last1=Hodges|first1=Wilfrid|title=First-order Model Theory|date=2018|url=https://plato.stanford.edu/archives/win2018/entries/modeltheory-fo/|encyclopedia=The Stanford Encyclopedia of Philosophy|editor-last=Zalta|editor-first=Edward N.|edition=Winter 2018|publisher=Metaphysics Research Lab, Stanford University|access-date=2019-10-31|last2=Scanlon|first2=Thomas}}</ref> एक स्वयंसिद्ध प्रणाली जिसके लिए प्रत्येक मॉडल दूसरे के लिए आइसोमॉर्फिक है, कहलाता है {{Em|categorial}} (कभी-कभी {{Em|categorical}}). श्रेणीबद्धता (श्रेणीबद्धता) की संपत्ति एक प्रणाली की पूर्णता सुनिश्चित करती है, हालांकि इसका विलोम सत्य नहीं है: पूर्णता किसी प्रणाली की श्रेणीबद्धता (श्रेणीबद्धता) सुनिश्चित नहीं करती है, क्योंकि दो मॉडल गुणों में भिन्न हो सकते हैं जिन्हें शब्दार्थ द्वारा व्यक्त नहीं किया जा सकता है। प्रणाली।
दो आदर्शो को [[समाकृतिकता|समरूपी]] कहा जाता है यदि उनके तत्वों के मध्य  एकाकी सामंजस्य प्राप्त करा  जा सकता है, जो उनके संबंध को संरक्षित रखता है।<ref>{{Citation|last1=Hodges|first1=Wilfrid|title=First-order Model Theory|date=2018|url=https://plato.stanford.edu/archives/win2018/entries/modeltheory-fo/|encyclopedia=The Stanford Encyclopedia of Philosophy|editor-last=Zalta|editor-first=Edward N.|edition=Winter 2018|publisher=Metaphysics Research Lab, Stanford University|access-date=2019-10-31|last2=Scanlon|first2=Thomas}}</ref> एक स्वयंसिद्ध प्रणाली जिसके लिए प्रत्येक आदर्श दूसरे के लिए समरूपी होता है,   {{Em|श्रेणीबद्ध}} (कभी-कभी {{Em|श्रेणीबद्ध}}) कहलाती है। श्रेणीबद्धता (श्रेणीबद्धता) की गुण एक प्रणाली की पूर्णता सुनिश्चित करती है, चूंकि इसका विपरीत सत्य नहीं है।  पूर्णता किसी प्रणाली की श्रेणीबद्धता (श्रेणीबद्धता) सुनिश्चित नहीं करती है, क्योंकि दो आदर्श गुणों में भिन्नता हो सकती हैं जिन्हें शब्दार्थ के माध्यम से  व्यक्त नहीं किया जा सकता है।  


=== उदाहरण ===
=== उदाहरण ===


एक उदाहरण के रूप में, निम्नलिखित स्वयंसिद्ध प्रणाली का निरीक्षण करें, पहले क्रम के तर्क के आधार पर, निम्नलिखित के अतिरिक्त शब्दार्थों के अतिरिक्त शब्दार्थों के साथ असीम रूप से कई स्वयंसिद्ध जोड़े गए हैं (इन्हें एक स्वयंसिद्ध स्कीमा के रूप में आसानी से औपचारिक रूप दिया जा सकता है):
एक उदाहरण के रूप में, निम्नलिखित स्वयंसिद्ध प्रणाली का निरीक्षण करें, प्रथम  क्रम के तर्क के आधार पर, निम्नलिखित के अतिरिक्त शब्दार्थों के अतिरिक्त शब्दार्थों के साथ असंख्य रूप से अनेक  स्वयंसिद्ध सम्मलित करे गए हैं (इन्हें एक स्वयंसिद्ध योजना के रूप में सहजता  से औपचारिक रूप दिया जा सकता है):


:<math>\exist x_1: \exist x_2: \lnot (x_1=x_2)</math> (अनौपचारिक रूप से, दो अलग-अलग आइटम मौजूद हैं)।
:<math>\exist x_1: \exist x_2: \lnot (x_1=x_2)</math> (अनौपचारिक रूप से, दो भिन्न-भिन्न उद्देश्य  उपस्थित हैं)।


:<math>\exist x_1: \exist x_2: \exist x_3: \lnot (x_1=x_2) \land \lnot (x_1=x_3) \land \lnot (x_2=x_3)</math> (अनौपचारिक रूप से, तीन अलग-अलग आइटम मौजूद हैं)।
:<math>\exist x_1: \exist x_2: \exist x_3: \lnot (x_1=x_2) \land \lnot (x_1=x_3) \land \lnot (x_2=x_3)</math> (अनौपचारिक रूप से, तीन भिन्न-भिन्न उद्देश्य  उपस्थित हैं)।


:<math>...</math>
:<math>...</math>
अनौपचारिक रूप से, अभिगृहीतों के इस अनंत समुच्चय में कहा गया है कि अपरिमित रूप से अनेक भिन्न वस्तुएँ हैं। हालाँकि, एक [[अनंत सेट]] की अवधारणा को सिस्टम के भीतर परिभाषित नहीं किया जा सकता है - अकेले सेट की कार्डिनैलिटी को छोड़ दें।
अनौपचारिक रूप से, अभिगृहीतों के इस अनंत समुच्चय में कहा गया है कि अपरिमित रूप से अनेक भिन्न उद्देश्य  हैं। चूंकि, एक [[अनंत सेट|अनंत समुच्चय]] की अवधारणा को प्रणाली के अंदर परिभाषित नहीं किया जा सकता है - समुच्चय जैसे की प्रमुखता को त्याग दें।


सिस्टम में कम से कम दो अलग-अलग मॉडल हैं - एक [[प्राकृतिक संख्या]] है (किसी भी अन्य असीमित अनंत सेट के लिए आइसोमोर्फिक), और दूसरा वास्तविक संख्या है (सातत्य के कार्डिनैलिटी के साथ किसी अन्य सेट के लिए आइसोमोर्फिक)वास्तव में, इसमें असीमित संख्या में मॉडल हैं, एक अनंत सेट के प्रत्येक कार्डिनैलिटी के लिए। हालाँकि, इन मॉडलों को अलग करने वाली संपत्ति उनकी [[प्रमुखता]] है - एक संपत्ति जिसे सिस्टम के भीतर परिभाषित नहीं किया जा सकता है। इस प्रकार प्रणाली श्रेणीबद्ध नहीं है। हालांकि इसे पूरा दिखाया जा सकता है।
प्रणाली में कम से कम दो भिन्न-भिन्न आदर्श हैं - एक [[प्राकृतिक संख्या]] है (किसी भी अन्य असीमित अनंत समुच्चय के लिए समरूपी), और दूसरा वास्तविक (सातत्य की प्रमुखता के युक्त किसी अन्य समुच्चय के लिए समरूपी) संख्या है। वास्तव में इसमें अनंत समुच्चय की प्रत्येक प्रमुखता के लिए एक आदर्श  की असीमित संख्या होती है। चूंकि, इन आदर्शो को भिन्न करने वाली गुण उनकी [[प्रमुखता]] है - एक गुण जिसे प्रणाली के अंदर परिभाषित नहीं किया जा सकता है। इस प्रकार प्रणाली श्रेणीबद्ध नहीं है। चूंकि इसे विस्तृत रूप से  दिखाया जा सकता है।


== स्वयंसिद्ध विधि ==
== स्वयंसिद्ध विधि ==


परिभाषाओं और प्रस्तावों को इस तरह से बताते हुए कि प्रत्येक नए शब्द को पूर्व में पेश किए गए शब्दों से औपचारिक रूप से समाप्त किया जा सकता है, [[अनंत प्रतिगमन]] से बचने के लिए आदिम धारणाओं (सिद्धांतों) की आवश्यकता होती है। गणित करने की इस विधि को अभिगृहीत विधि कहते हैं।<ref>"''Set Theory and its Philosophy, a Critical Introduction'' S.6; Michael Potter, Oxford, 2004</ref>
परिभाषाओं और प्रस्तावों को इस प्रकार  से बताते हुए कि प्रत्येक नए शब्द को पूर्व में प्रस्तुत  किए गए शब्दों से औपचारिक रूप से समाप्त किया जा सकता है, [[अनंत प्रतिगमन]] से परिवर्जन  के लिए प्राचीन धारणाओं (सिद्धांतों) की आवश्यकता होती है। गणित कार्य  की इस विधि को अभिगृहीत विधि कहते हैं।<ref>"''Set Theory and its Philosophy, a Critical Introduction'' S.6; Michael Potter, Oxford, 2004</ref>  
स्वयंसिद्ध पद्धति के प्रति एक सामान्य दृष्टिकोण [[तर्कवाद]] है। अपनी पुस्तक प्रिन्सिपिया मेथेमेटिका में, [[अल्फ्रेड नॉर्थ व्हाइटहेड]] और [[बर्ट्रेंड रसेल]] ने यह दिखाने का प्रयास किया कि सभी [[गणितीय सिद्धांत]]ों को स्वयंसिद्धों के कुछ संग्रह तक कम किया जा सकता है। अधिक आम तौर पर, सिद्धांतों के एक विशेष संग्रह के प्रस्तावों के शरीर को कम करना गणितज्ञ के शोध कार्यक्रम के अंतर्गत आता है। बीसवीं शताब्दी के गणित में यह बहुत महत्वपूर्ण था, विशेष रूप से समजातीय बीजगणित पर आधारित विषयों में।
 
स्वयंसिद्ध पद्धति के प्रति एक सामान्य दृष्टिकोण [[तर्कवाद]] है। अपनी पुस्तक प्रिन्सिपिया मेथेमेटिका में, [[अल्फ्रेड नॉर्थ व्हाइटहेड]] और [[बर्ट्रेंड रसेल]] ने यह प्रदर्शित करने  का प्रयास किया कि सभी [[गणितीय सिद्धांत]] को स्वयंसिद्धों के कुछ संग्रह तक कम किया जा सकता है। अधिक सामान्यतः, सिद्धांतों के एक विशेष संग्रह के प्रस्तावों के निकाय  को कम करना गणितज्ञ के शोध कार्यक्रम के अंतर्गत आता है। बीसवीं शताब्दी के गणित में विशेष रूप से समजातीय बीजगणित पर आधारित विषयों में यह बहुत महत्वपूर्ण था।
 
एक सिद्धांत में प्रयुक्त विशेष अभिगृहीतों की व्याख्या अमूर्तता के एक उपयुक्त स्तर को स्पष्ट करने में सहायता  मिल सकती है जिसके साथ गणितज्ञ काम करना चाहेंगे। उदाहरण के रूप मे , गणितज्ञों ने चयन करा कि वृत्त (गणित) को [[क्रमविनिमेय अंगूठी|क्रमविनिमेय वृत्त]] होने की  आवश्यकता  नहीं है, जो [[एमी नोथेर]] के मूल सूत्रीकरण से भिन्न है। गणितज्ञों ने पृथक्करण सिद्धांत के बिना संस्थानिक रिक्त स्थान पर अधिक सामान्यतः विचार करने का निर्णय लिया, जिसे [[फेलिक्स हॉसडॉर्फ]] ने मूल रूप से सूत्रबद्ध किया था।


एक सिद्धांत में प्रयुक्त विशेष अभिगृहीतों की व्याख्या अमूर्तता के एक उपयुक्त स्तर को स्पष्ट करने में मदद कर सकती है जिसके साथ गणितज्ञ काम करना चाहेंगे। उदाहरण के लिए, गणितज्ञों ने चुना कि रिंग (गणित) को [[क्रमविनिमेय अंगूठी]] होना जरूरी नहीं है, जो [[एमी नोथेर]] के मूल सूत्रीकरण से भिन्न है। गणितज्ञों ने मूल रूप से तैयार किए गए [[फेलिक्स हॉसडॉर्फ]] द्वारा जुदाई स्वयंसिद्ध के बिना स्थलीय रिक्त स्थान पर विचार करने का निर्णय लिया।


ज़र्मेलो-फ्रेंकेल सेट सिद्धांत | ज़र्मेलो-फ्रेंकेल सेट सिद्धांत, सेट सिद्धांत पर लागू स्वयंसिद्ध पद्धति का एक परिणाम, सेट-सिद्धांत समस्याओं के उचित सूत्रीकरण की अनुमति देता है और Naive set theory|naive set theory के विरोधाभासों से बचने में मदद करता है। ऐसी ही एक समस्या सातत्य परिकल्पना थी। ज़र्मेलो-फ्रेंकेल सेट सिद्धांत, ऐतिहासिक रूप से विवादास्पद पसंद के स्वयंसिद्ध के साथ, आमतौर पर संक्षिप्त रूप से [[ZFC]] है, जहां C का मतलब पसंद है। कई लेखक ज़र्मेलो-फ्रेंकेल सेट सिद्धांत का उपयोग ज़र्मेलो-फ्रेंकेल सेट सिद्धांत के सिद्धांतों को संदर्भित करने के लिए पसंद के स्वयंसिद्ध के साथ करते हैं।<ref>{{Cite web|url=http://mathworld.wolfram.com/Zermelo-FraenkelAxioms.html|title=Zermelo-Fraenkel Axioms|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-10-31}}</ref> आज ZFC स्वयंसिद्ध समुच्चय सिद्धांत का मानक रूप है और इसलिए यह गणित का सबसे सामान्य आधार है।
ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत, समुच्चय सिद्धांत पर प्रयुक्त स्वयंसिद्ध विधि का परिणाम है, जिसने समुच्चय-सिद्धांत समस्याओं के "उचित" सूत्रीकरण की अनुमति दी और नैवे समुच्चय सिद्धांत के विरोधाभासों से परिवर्जन में सहायता करता है। ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत, विकल्प के ऐतिहासिक रूप से विवादास्पद सिद्धांत को सम्मलित करते हुए, सामान्यतः  संक्षिप्त रूप से [[ZFC|जेडएफसी]] है, जिस स्थान पर  "सी" का अर्थ "विकल्प" है। अनेक  लेखकों ने ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत का उपयोग ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के सिद्धांतों को संदर्भित करने के लिए विकल्प के स्वयंसिद्ध के साथ करते हैं।<ref>{{Cite web|url=http://mathworld.wolfram.com/Zermelo-FraenkelAxioms.html|title=Zermelo-Fraenkel Axioms|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-10-31}}</ref> वर्तमान मे जेडएफसी स्वयंसिद्ध समुच्चय सिद्धांत का मानक रूप है और इसलिए यह गणित का सबसे सामान्य आधार है।


=== इतिहास ===
=== इतिहास ===
{{Further|History of Mathematics}}
{{Further|गणित का इतिहास}}
गणितीय तरीके प्राचीन मिस्र, बेबीलोन, भारत और चीन में कुछ हद तक परिष्कृत रूप से विकसित हुए, जाहिरा तौर पर स्वयंसिद्ध पद्धति का उपयोग किए बिना।
 
प्राचीन मिस्र, बेबीलोन, भारत और चीन में गणितीय पद्धतियाँ स्पष्ट रूप से स्वयंसिद्ध पद्धति का उपयोग किए बिना कुछ सीमा  तक परिष्कार तक विकसित हुईं है।
 
[[सिकंदरिया|अलेक्जेंड्रिया]] के [[यूक्लिड]] ने[[यूक्लिडियन ज्यामिति]] और [[संख्या सिद्धांत]] की सबसे प्राचीन स्वयंसिद्ध प्रस्तुति लिखी है। उनका विचार पांच निर्विवाद ज्यामितीय मान्यताओं से प्रारंभ होता है जिन्हें स्वयंसिद्ध कहा जाता है। तत्पश्चात इन स्वयंसिद्धों का उपयोग करके उन्होंने अन्य प्रस्तावों की सत्यता को प्रमाणों के माध्यम से स्थापित करा, इसलिए स्वयंसिद्ध विधि है।
 
उन्नीसवीं सदी में अनेक  स्वयंसिद्ध प्रणालियाँ विकसित की गईं, जिनमें [[गैर-यूक्लिडियन ज्यामिति|अ-यूक्लिडियन ज्यामिति]], [[वास्तविक विश्लेषण]] का मूल, कैंटर का समुच्चय सिद्धांत, मूल पर [[भगवान फ्रीज का शुक्र है|फ्रेडरिक]]  कार्य और एक शोध उपकरण के रूप में  [[डेविड हिल्बर्ट]]  का स्वयंसिद्ध पद्धति का 'नवीन' उपयोग सम्मलित है।  उदाहरण के रूप मे , [[समूह सिद्धांत]] को सर्वप्रथम उस सदी के अंत में एक स्वयंसिद्ध आधार पर रखा गया था। एक बार सिद्धांतों को स्पष्ट कर दिया गया (उदाहरण के रूप मे, विपरीत तत्वों की आवश्यकता होनी चाहिए), यह विषय उन अध्ययनों के [[परिवर्तन समूह]] मूल के संदर्भ के बिना स्वायत्त रूप से अग्रसर हो सकता है।
 


[[सिकंदरिया]] के [[यूक्लिड]] ने [[यूक्लिडियन ज्यामिति]] और [[संख्या सिद्धांत]] की सबसे पुरानी मौजूदा स्वयंसिद्ध प्रस्तुति लिखी। उन्नीसवीं शताब्दी में [[गैर-यूक्लिडियन ज्यामिति]], [[वास्तविक विश्लेषण]] की नींव, [[जॉर्ज कैंटर]] के सेट सिद्धांत, नींव पर [[भगवान फ्रीज का शुक्र है]] के काम, और [[डेविड हिल्बर्ट]] के शोध उपकरण के रूप में स्वयंसिद्ध पद्धति के 'नए' उपयोग सहित कई स्वयंसिद्ध प्रणालियां विकसित की गईं। उदाहरण के लिए, [[समूह सिद्धांत]] को पहली बार उस सदी के अंत में एक स्वयंसिद्ध आधार पर रखा गया था। एक बार सिद्धांतों को स्पष्ट कर दिया गया (उदाहरण के लिए, विपरीत तत्वों की आवश्यकता होनी चाहिए), विषय उन अध्ययनों के [[परिवर्तन समूह]] मूल के संदर्भ के बिना स्वायत्त रूप से आगे बढ़ सकता है।
=== उद्देश्यों ===


=== मुद्दे ===
अभिगृहीतों के वर्णनीय संग्रह के माध्यम से  प्रस्तावों के प्रत्येक सुसंगत निकाय को ग्रहण नहीं किया जा सकता है। पुनरावर्तन सिद्धांत में, स्वयंसिद्धों के संग्रह को [[पुनरावर्ती सेट|पुनरावर्ती समुच्चय]] कहा जाता है यदि कोई कंप्यूटर कार्य  यह पहचान सकता है कि भाषा में दिया गया प्रस्ताव एक प्रमेय है या नहीं है। गोडेल की अपूर्णता प्रमेय | गोडेल की प्रथम  अपूर्णता प्रमेय तब हमें बताती है कि प्रस्तावों के कुछ सुसंगत निकाय हैं जिनमें कोई पुनरावर्ती स्वयंसिद्धता नहीं है।सामान्यतः, कंप्यूटर प्रमेयों को प्राप्त करने के लिए सिद्धांतों और तार्किक नियमों को पहचान सकता है, और कंप्यूटर यह पहचान सकता है कि क्या कोई प्रमाण वैध है या नहीं है, किन्तु यह निर्धारित करने के लिए कि क्या किसी कथन के लिए कोई प्रमाण उपस्थित है, मात्र प्रमाण या खंडन उत्पन्न होने की "प्रतीक्षा" करके ही हल किया जा सकता है। इसका परिणाम यह होता है कि किसी को ज्ञात नहीं होता है कि कौन से प्रस्ताव प्रमेय हैं और स्वयंसिद्ध विधि खंडित हो जाती है। प्रस्तावों के ऐसे निकाय का एक उदाहरण प्राकृतिक संख्याओं का सिद्धांत है, जो पीनो सिद्धांतों (नीचे वर्णित) के माध्यम से  मात्र आंशिक रूप से स्वयंसिद्ध है।


अभिगृहीतों के वर्णनीय संग्रह द्वारा प्रस्तावों के प्रत्येक सुसंगत निकाय को ग्रहण नहीं किया जा सकता है। पुनरावर्तन सिद्धांत में, स्वयंसिद्धों के संग्रह को [[पुनरावर्ती सेट]] कहा जाता है यदि कोई कंप्यूटर प्रोग्राम यह पहचान सकता है कि भाषा में दिया गया प्रस्ताव एक प्रमेय है या नहीं। गोडेल की अपूर्णता प्रमेय | गोडेल की पहली अपूर्णता प्रमेय तब हमें बताती है कि प्रस्तावों के कुछ सुसंगत निकाय हैं जिनमें कोई पुनरावर्ती स्वयंसिद्धता नहीं है। आमतौर पर, कंप्यूटर सिद्धांतों को प्राप्त करने के लिए सिद्धांतों और तार्किक नियमों को पहचान सकता है, और कंप्यूटर यह पहचान सकता है कि सबूत मान्य है या नहीं, लेकिन यह निर्धारित करने के लिए कि प्रमाण के लिए सबूत मौजूद है या नहीं, केवल प्रमाण के लिए इंतजार कर या उत्पन्न होने के लिए घुलनशील है। नतीजा यह है कि किसी को पता नहीं चलेगा कि कौन से प्रस्ताव प्रमेय हैं और स्वयंसिद्ध पद्धति टूट जाती है। प्रस्तावों के ऐसे निकाय का एक उदाहरण प्राकृतिक संख्याओं का सिद्धांत है, जो केवल पीनो स्वयंसिद्धों (नीचे वर्णित) द्वारा आंशिक रूप से स्वयंसिद्ध है।


व्यवहार में, प्रत्येक प्रमाण स्वयंसिद्धों पर वापस नहीं जाता है। कभी-कभी, यह भी स्पष्ट नहीं होता है कि कौन से सिद्धांतों का संग्रह सबूत अपील करता है। उदाहरण के लिए, एक संख्या-सैद्धांतिक कथन अंकगणित की भाषा में अभिव्यक्त हो सकता है (अर्थात् पीनो सूक्तियों की भाषा) और एक प्रमाण दिया जा सकता है जो [[टोपोलॉजी]] या [[जटिल विश्लेषण]] के लिए अपील करता है। यह तुरंत स्पष्ट नहीं हो सकता है कि क्या कोई अन्य प्रमाण पाया जा सकता है जो पूरी तरह से पीनो स्वयंसिद्धों से प्राप्त होता है।
व्यवहार में प्रत्येक प्रमाण का ज्ञात स्वयंसिद्धों से नहीं लगाया जाता है। कभी-कभी, यह भी स्पष्ट नहीं होता कि प्रमाण किस स्वयंसिद्ध संग्रह को आकर्षित करता है। उदाहरण के रूप मे , एक संख्या-सैद्धांतिक कथन अंकगणित की भाषा में अभिव्यक्त हो सकता है (अर्थात् पीनो सूक्तियों की भाषा) और एक प्रमाण दिया जा सकता है जो [[टोपोलॉजी|सांस्थिति]] या [[जटिल विश्लेषण]] के लिए निवेदन  करता है। यह तत्काल स्पष्ट नहीं हो सकता है कि क्या कोई अन्य प्रमाण प्राप्त करा  जा सकता है जो पूर्ण रूप से  से पीनो स्वयंसिद्धों से प्राप्त होता है।


अभिगृहीतों की अधिक-या-कम मनमाने ढंग से चुनी गई प्रणाली कुछ गणितीय सिद्धांत का आधार है, लेकिन इस तरह की एक मनमानी स्वयंसिद्ध प्रणाली आवश्यक रूप से विरोधाभासों से मुक्त नहीं होगी, और यदि है भी, तो यह किसी भी चीज़ पर प्रकाश डालने की संभावना नहीं है। गणित के दार्शनिक कभी-कभी जोर देकर कहते हैं कि गणितज्ञ मनमाने ढंग से स्वयंसिद्धों का चयन करते हैं, लेकिन यह संभव है कि हालांकि वे मनमाना दिखाई दे सकते हैं जब केवल कटौतीत्मक तर्क के सिद्धांत के दृष्टिकोण से देखा जाता है, यह उपस्थिति उन उद्देश्यों पर एक सीमा के कारण होती है जो निगमनात्मक तर्क कार्य करते हैं। .
स्वयंसिद्धों की कोई भी न्यूनाधिक इच्छानुसार से चयन करी  गई प्रणाली कुछ गणितीय सिद्धांत का आधार है, किन्तु ऐसी  स्वेच्छाचारी स्वयंसिद्ध प्रणाली आवश्यक रूप से विरोधाभासों से मुक्त नहीं होगी, और यदि ऐसा है भी, तब यह किसी भी विषय पर प्रकाश प्रविष्टि की संभावना नहीं है। गणित के दार्शनिक कभी-कभी इस बात पर बल देते हैं कि गणितज्ञ " इच्छानुसार" स्वयंसिद्ध सिद्धांतों का चयन करते हैं, किन्तु यह संभव है कि यद्यपि वह मात्र निगमनात्मक तर्क के सिद्धांतों के दृष्टिकोण से देखे जाने पर इच्छानुसार दिखाई दे सकते हैं, यह उपस्थिति उन उद्देश्यों पर एक सीमा के कारण है जो निगमनात्मक तर्क पूर्ण करते हैं।


=== उदाहरण: प्राकृतिक संख्याओं का पीनो स्वयंसिद्धीकरण ===
=== उदाहरण: प्राकृतिक संख्याओं का पीनो स्वयंसिद्धीकरण ===
{{Main|Peano axioms}}
{{Main|पीनो अभिगृहीत}}
प्राकृतिक संख्याओं की गणितीय प्रणाली 0, 1, 2, 3, 4, ... एक स्वयंसिद्ध प्रणाली पर आधारित है जिसे सबसे पहले 1889 में गणितज्ञ [[जोसेफ पीनो]] द्वारा तैयार किया गया था। (उत्तरवर्ती कार्य के लिए संक्षिप्त), प्राकृतिक संख्याओं के सेट के लिए:
 
प्राकृतिक संख्याओं की गणितीय प्रणाली 0, 1, 2, 3, 4, ... एक स्वयंसिद्ध प्रणाली पर आधारित है जिसे सर्व-प्रथम  1889 में गणितज्ञ [[जोसेफ पीनो|ग्यूसेप पीनो]] के माध्यम से  निर्मित करा गया गया था।   उन्होंने प्राकृतिक संख्याओं के समुच्चय के लिए एकल एकाधारी फलन प्रतीक S ("उत्तराधिकारी" के लिए संक्षिप्त) की भाषा में स्वयंसिद्धों को चयनित करा:


* एक प्राकृतिक संख्या 0 है।
* एक प्राकृतिक संख्या 0 है।
* प्रत्येक प्राकृत संख्या a का एक परवर्ती होता है, जिसे Sa से निरूपित किया जाता है।
* प्रत्येक प्राकृत संख्या a का एक परवर्ती होता है, जिसे Sa के माध्यम से निरूपित किया जाता है।
* ऐसी कोई प्राकृत संख्या नहीं है जिसका परवर्ती 0 हो।
* ऐसी कोई प्राकृत संख्या नहीं है जिसका परवर्ती 0 हो।
* अलग-अलग प्राकृतिक संख्याओं के अलग-अलग उत्तराधिकारी होते हैं: यदि a ≠ b, तो Sa ≠ Sb।
* भिन्न-भिन्न प्राकृतिक संख्याओं के भिन्न-भिन्न उत्तराधिकारी होते हैं: यदि a ≠ b, तब Sa ≠ Sb है।
* यदि कोई संपत्ति 0 के पास है और उसके पास मौजूद प्रत्येक प्राकृतिक संख्या के उत्तराधिकारी के पास भी है, तो यह सभी प्राकृतिक संख्याओं (गणितीय प्रेरण # प्रेरण के सिद्धांत) के पास है।
* यदि कोई गुण 0 के समीप है और उसके समीप उपस्थित प्रत्येक प्राकृतिक संख्या के उत्तरवर्ती  के समीप भी है, तब यह सभी प्राकृतिक संख्याओं (गणितीय प्रेरण अभिगृहीत सिद्धांत) के समीप है।


=== स्वयंसिद्धकरण ===
=== स्वयंसिद्धकरण ===


गणित में, अभिगृहीतीकरण, ज्ञान का एक निकाय लेने और इसके स्वयंसिद्धों की ओर पीछे की ओर काम करने की प्रक्रिया है। यह कथनों की एक प्रणाली (अर्थात स्वयंसिद्ध) का सूत्रीकरण है जो कई आदिम शब्दों से संबंधित है - ताकि [[बूलियन-मूल्यवान फ़ंक्शन]] का एक सुसंगत प्रमाण निकाय इन कथनों से कटौतीत्मक तर्क प्राप्त कर सके। इसके बाद, किसी भी तर्कवाक्य का गणितीय प्रमाण, सिद्धांत रूप में, इन स्वयंसिद्धों पर वापस जाने योग्य होना चाहिए।
गणित में, अभिगृहीतीकरण, ज्ञान का एक निकाय प्राप्त करने और इसके स्वयंसिद्धों के विपरीत की ओर कार्य करने की प्रक्रिया है। यह कथनों की एक प्रणाली (अर्थात स्वयंसिद्ध) का सूत्रीकरण है जो अनेक प्राचीन  शब्दों से संबंधित है - जिससे  [[बूलियन-मूल्यवान फ़ंक्शन|बूलियन-मूल्यवान फलन]] कथनों से प्रस्तावों का एक सुसंगत निकाय निगमनात्मक रूप से प्राप्त किया जा सके। इसके पश्चात् किसी भी प्रस्ताव का प्रमाण सैद्धांतिक रूप से इन सिद्धांतों पर आधारित होना चाहिए।


== यह भी देखें ==
== यह भी देखें ==
{{Portal|Philosophy|Mathematics}}
{{Portal|Philosophy|Mathematics}}
{{wikiquote}}
{{wikiquote}}
* {{annotated link|Axiom schema}}
* {{annotated link|स्वयंसिद्ध योजना }}- एक स्वयंसिद्ध प्रणाली की धातुभाषा में एक सूत्र जिसमें एक या अधिक योजनाबद्ध चर दिखाई देते हैं।
* {{annotated link|Formalism (philosophy of mathematics)|Formalism}}
* {{annotated link|औपचारिकता (गणित  दर्शन) |नियम-निष्ठता}}- यह देखें कि गणित आवश्यक रूप से वास्तविकता का प्रतिनिधित्व नहीं करता है किन्तु यह एक खेल के समान है।
* {{annotated link|Gödel's incompleteness theorems}}
* {{annotated link|गोडेल की अपूर्णता प्रमेय}}- गणितीय तर्क में सीमित परिणाम है।
* {{annotated link|Hilbert-style deduction system}}
* {{annotated link|हिल्बर्ट-शैली परिणाम प्रणाली}}- तर्क में औपचारिक परिणाम की प्रणाली है।
* {{annotated link|History of logic}}
* {{annotated link|तर्क का इतिहास}}
* {{annotated link|List of logic systems}}
* {{annotated link|तर्क प्रणालियों की सूची}}
* {{annotated link|Logicism}}
* {{annotated link|तर्कवाद}} गणित के दर्शन-शास्त्र में कार्यक्रम:
* {{annotated link|Zermelo–Fraenkel set theory}}सेट सिद्धांत के लिए एक स्वयंसिद्ध प्रणाली और गणित के लिए आज की सबसे आम नींव।
* {{annotated link|ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत}}- स्वयंसिद्ध समुच्चय सिद्धांत की मानक प्रणाली, समुच्चय सिद्धांत के लिए एक स्वयंसिद्ध प्रणाली और गणित के लिए वर्तमान का सबसे सामान्य आधार है।


== संदर्भ ==
== संदर्भ ==

Revision as of 14:17, 22 July 2023

गणित और तर्कशास्त्र में, एक स्वयंसिद्ध प्रणाली सिद्धांतों का समुच्चय (गणित) है जिसमें से कुछ या सभी स्वयंसिद्धों को तार्किक रूप से व्युत्पन्न प्रमेय के संयोजन के रूप में उपयोग किया जा सकता है। एक सिद्धांत (गणितीय तर्क) ज्ञान का एक सुसंगत अपेक्षाकृत आत्मनिर्भर निकाय है जिसमें सामान्यतः एक स्वयंसिद्ध प्रणाली और उसके सभी व्युत्पन्न प्रमेय सम्मिलित होते हैं। एक स्वयंसिद्ध प्रणाली जो पूर्ण रूप से से वर्णित है, यह एक विशेष प्रकार की औपचारिक प्रणाली है। एक औपचारिक सिद्धांत एक स्वयंसिद्ध प्रणाली है (सामान्यतः आदर्श सिद्धांत के अंदर सूत्रबद्ध की जाती है) जो तार्किक निहितार्थ के अनुसार संवृत्त किए गए वाक्यों के एक समुच्चय का वर्णन करती है।[1] एक औपचारिक प्रमाण एक औपचारिक प्रणाली के अंदर एक गणितीय प्रमाण का पूर्ण प्रतिपादन है।

एक स्वयंसिद्ध प्रणाली को सुसंगत कहा जाता है यदि उसमें विरोधाभास का अभाव होता है।

गुण

एक स्वयंसिद्ध प्रणाली को सुसंगत कहा जाता है यदि उसमें विरोधाभास का अभाव होता है। अर्थात्, प्रणाली के स्वयंसिद्धों से एक कथन और उसके निषेध दोनों को प्राप्त करना असंभव है। अधिकांश स्वयंसिद्ध प्रणालियों के लिए संगति एक महत्वपूर्ण आवश्यकता है, क्योंकि विरोधाभास (विस्फोट का सिद्धांत) की उपस्थिति किसी भी कथन को सिद्ध करने की अनुमति देती है।

एक स्वयंसिद्ध प्रणाली में, एक स्वयंसिद्ध को स्वतंत्रता (गणितीय तर्क) कहा जाता है यदि यह प्रणाली में अन्य स्वयंसिद्धों से सिद्ध या अप्रमाणित नहीं किया जा सकता है। एक प्रणाली को स्वतंत्र कहा जाता है यदि इसके प्रत्येक अंतर्निहित स्वयंसिद्ध स्वतंत्र होते हैं। संगति के विपरीत, एक कार्यशील स्वयंसिद्ध प्रणाली के लिए स्वतंत्रता एक आवश्यक आवश्यकता नहीं है - चूंकि यह सामान्यतः प्रणाली में स्वयंसिद्धों की संख्या को कम करने के लिए प्राप्त की जाती है।

एक स्वयंसिद्ध प्रणाली को पूर्णता (तर्क) कहा जाता है यदि प्रत्येक कथन के लिए, या तब स्वयं या उसका निषेध प्रणाली के स्वयंसिद्धों से व्युत्पन्न होता है (समकक्ष रूप से, प्रत्येक कथन सत्य या असत्य सिद्ध होने में सक्षम है)।[2]


सापेक्ष संगति

संगति से पृथक, सापेक्ष संगति भी एक सार्थक स्वयंसिद्ध प्रणाली का चिन्ह है। यह उस परिदृश्य का वर्णन करता है जिस स्थान पर प्रथम स्वयंसिद्ध प्रणाली की अपरिभाषित नियमों को दूसरे से परिभाषाएं प्रदान की जाती हैं, जैसे कि पूर्व के सिद्धांत दूसरे के प्रमेय हैं।

एक उचित उदाहरण वास्तविक संख्या के सिद्धांत के संबंध में निरपेक्ष ज्यामिति की सापेक्ष संगति है। रेखा (ज्यामिति) और बिंदु (ज्यामिति) निरपेक्ष ज्यामिति में अपरिभाषित शब्द (जिन्हें प्राचीन धारणा भी कहा जाता है) हैं, किन्तु वास्तविक संख्या के सिद्धांत में निर्दिष्ट अर्थ इस प्रकार से हैं जो दोनों स्वयंसिद्ध प्रणालियों के अनुरूप है।


आदर्श

एक स्वैच्छिक प्रणाली के लिए एक आदर्श(गणितीय तर्क) एक उचित प्रकार से परिभाषित समुच्चय (गणित) है, जो प्रणाली में प्रस्तुत अपरिभाषित नियमों के लिए अर्थ प्रदान करता है, जो प्रणाली में परिभाषित संबंधों के साथ उचित है। एक ठोस मॉडल अस्तित्व एक प्रणाली की स्थिरता प्रमाण सिद्ध करता है. एक आदर्श को ठोस कहा जाता है यदि निर्दिष्ट अर्थ वास्तविक विश्व से उद्देश्य और संबंध हैं, एक के विपरीत अमूर्त आदर्श जो अन्य स्वयंसिद्ध प्रणालियों पर आधारित है।

प्रणाली में एक स्वयंसिद्ध की स्वतंत्रता प्रदर्शित करने के लिए आदर्श का भी उपयोग किया जा सकता है। एक विशिष्ट स्वयंसिद्ध के बिना एक उप-प्रणाली के लिए एक मान्य आदर्श का सूत्रीकरण करके, हम दिखाते हैं कि त्यागा गया स्वयंसिद्ध स्वतंत्र है यदि इसकी शुद्धता आवश्यक रूप से उपप्रणाली से अनुसरण नहीं करती है।

दो आदर्शो को समरूपी कहा जाता है यदि उनके तत्वों के मध्य एकाकी सामंजस्य प्राप्त करा जा सकता है, जो उनके संबंध को संरक्षित रखता है।[3] एक स्वयंसिद्ध प्रणाली जिसके लिए प्रत्येक आदर्श दूसरे के लिए समरूपी होता है, श्रेणीबद्ध (कभी-कभी श्रेणीबद्ध) कहलाती है। श्रेणीबद्धता (श्रेणीबद्धता) की गुण एक प्रणाली की पूर्णता सुनिश्चित करती है, चूंकि इसका विपरीत सत्य नहीं है। पूर्णता किसी प्रणाली की श्रेणीबद्धता (श्रेणीबद्धता) सुनिश्चित नहीं करती है, क्योंकि दो आदर्श गुणों में भिन्नता हो सकती हैं जिन्हें शब्दार्थ के माध्यम से व्यक्त नहीं किया जा सकता है।

उदाहरण

एक उदाहरण के रूप में, निम्नलिखित स्वयंसिद्ध प्रणाली का निरीक्षण करें, प्रथम क्रम के तर्क के आधार पर, निम्नलिखित के अतिरिक्त शब्दार्थों के अतिरिक्त शब्दार्थों के साथ असंख्य रूप से अनेक स्वयंसिद्ध सम्मलित करे गए हैं (इन्हें एक स्वयंसिद्ध योजना के रूप में सहजता से औपचारिक रूप दिया जा सकता है):

(अनौपचारिक रूप से, दो भिन्न-भिन्न उद्देश्य उपस्थित हैं)।
(अनौपचारिक रूप से, तीन भिन्न-भिन्न उद्देश्य उपस्थित हैं)।

अनौपचारिक रूप से, अभिगृहीतों के इस अनंत समुच्चय में कहा गया है कि अपरिमित रूप से अनेक भिन्न उद्देश्य हैं। चूंकि, एक अनंत समुच्चय की अवधारणा को प्रणाली के अंदर परिभाषित नहीं किया जा सकता है - समुच्चय जैसे की प्रमुखता को त्याग दें।

प्रणाली में कम से कम दो भिन्न-भिन्न आदर्श हैं - एक प्राकृतिक संख्या है (किसी भी अन्य असीमित अनंत समुच्चय के लिए समरूपी), और दूसरा वास्तविक (सातत्य की प्रमुखता के युक्त किसी अन्य समुच्चय के लिए समरूपी) संख्या है। वास्तव में इसमें अनंत समुच्चय की प्रत्येक प्रमुखता के लिए एक आदर्श की असीमित संख्या होती है। चूंकि, इन आदर्शो को भिन्न करने वाली गुण उनकी प्रमुखता है - एक गुण जिसे प्रणाली के अंदर परिभाषित नहीं किया जा सकता है। इस प्रकार प्रणाली श्रेणीबद्ध नहीं है। चूंकि इसे विस्तृत रूप से दिखाया जा सकता है।

स्वयंसिद्ध विधि

परिभाषाओं और प्रस्तावों को इस प्रकार से बताते हुए कि प्रत्येक नए शब्द को पूर्व में प्रस्तुत किए गए शब्दों से औपचारिक रूप से समाप्त किया जा सकता है, अनंत प्रतिगमन से परिवर्जन के लिए प्राचीन धारणाओं (सिद्धांतों) की आवश्यकता होती है। गणित कार्य की इस विधि को अभिगृहीत विधि कहते हैं।[4]

स्वयंसिद्ध पद्धति के प्रति एक सामान्य दृष्टिकोण तर्कवाद है। अपनी पुस्तक प्रिन्सिपिया मेथेमेटिका में, अल्फ्रेड नॉर्थ व्हाइटहेड और बर्ट्रेंड रसेल ने यह प्रदर्शित करने का प्रयास किया कि सभी गणितीय सिद्धांत को स्वयंसिद्धों के कुछ संग्रह तक कम किया जा सकता है। अधिक सामान्यतः, सिद्धांतों के एक विशेष संग्रह के प्रस्तावों के निकाय को कम करना गणितज्ञ के शोध कार्यक्रम के अंतर्गत आता है। बीसवीं शताब्दी के गणित में विशेष रूप से समजातीय बीजगणित पर आधारित विषयों में यह बहुत महत्वपूर्ण था।

एक सिद्धांत में प्रयुक्त विशेष अभिगृहीतों की व्याख्या अमूर्तता के एक उपयुक्त स्तर को स्पष्ट करने में सहायता मिल सकती है जिसके साथ गणितज्ञ काम करना चाहेंगे। उदाहरण के रूप मे , गणितज्ञों ने चयन करा कि वृत्त (गणित) को क्रमविनिमेय वृत्त होने की आवश्यकता नहीं है, जो एमी नोथेर के मूल सूत्रीकरण से भिन्न है। गणितज्ञों ने पृथक्करण सिद्धांत के बिना संस्थानिक रिक्त स्थान पर अधिक सामान्यतः विचार करने का निर्णय लिया, जिसे फेलिक्स हॉसडॉर्फ ने मूल रूप से सूत्रबद्ध किया था।


ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत, समुच्चय सिद्धांत पर प्रयुक्त स्वयंसिद्ध विधि का परिणाम है, जिसने समुच्चय-सिद्धांत समस्याओं के "उचित" सूत्रीकरण की अनुमति दी और नैवे समुच्चय सिद्धांत के विरोधाभासों से परिवर्जन में सहायता करता है। ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत, विकल्प के ऐतिहासिक रूप से विवादास्पद सिद्धांत को सम्मलित करते हुए, सामान्यतः संक्षिप्त रूप से जेडएफसी है, जिस स्थान पर "सी" का अर्थ "विकल्प" है। अनेक लेखकों ने ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत का उपयोग ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के सिद्धांतों को संदर्भित करने के लिए विकल्प के स्वयंसिद्ध के साथ करते हैं।[5] वर्तमान मे जेडएफसी स्वयंसिद्ध समुच्चय सिद्धांत का मानक रूप है और इसलिए यह गणित का सबसे सामान्य आधार है।

इतिहास

प्राचीन मिस्र, बेबीलोन, भारत और चीन में गणितीय पद्धतियाँ स्पष्ट रूप से स्वयंसिद्ध पद्धति का उपयोग किए बिना कुछ सीमा तक परिष्कार तक विकसित हुईं है।

अलेक्जेंड्रिया के यूक्लिड नेयूक्लिडियन ज्यामिति और संख्या सिद्धांत की सबसे प्राचीन स्वयंसिद्ध प्रस्तुति लिखी है। उनका विचार पांच निर्विवाद ज्यामितीय मान्यताओं से प्रारंभ होता है जिन्हें स्वयंसिद्ध कहा जाता है। तत्पश्चात इन स्वयंसिद्धों का उपयोग करके उन्होंने अन्य प्रस्तावों की सत्यता को प्रमाणों के माध्यम से स्थापित करा, इसलिए स्वयंसिद्ध विधि है।

उन्नीसवीं सदी में अनेक स्वयंसिद्ध प्रणालियाँ विकसित की गईं, जिनमें अ-यूक्लिडियन ज्यामिति, वास्तविक विश्लेषण का मूल, कैंटर का समुच्चय सिद्धांत, मूल पर फ्रेडरिक कार्य और एक शोध उपकरण के रूप में डेविड हिल्बर्ट का स्वयंसिद्ध पद्धति का 'नवीन' उपयोग सम्मलित है। उदाहरण के रूप मे , समूह सिद्धांत को सर्वप्रथम उस सदी के अंत में एक स्वयंसिद्ध आधार पर रखा गया था। एक बार सिद्धांतों को स्पष्ट कर दिया गया (उदाहरण के रूप मे, विपरीत तत्वों की आवश्यकता होनी चाहिए), यह विषय उन अध्ययनों के परिवर्तन समूह मूल के संदर्भ के बिना स्वायत्त रूप से अग्रसर हो सकता है।


उद्देश्यों

अभिगृहीतों के वर्णनीय संग्रह के माध्यम से प्रस्तावों के प्रत्येक सुसंगत निकाय को ग्रहण नहीं किया जा सकता है। पुनरावर्तन सिद्धांत में, स्वयंसिद्धों के संग्रह को पुनरावर्ती समुच्चय कहा जाता है यदि कोई कंप्यूटर कार्य यह पहचान सकता है कि भाषा में दिया गया प्रस्ताव एक प्रमेय है या नहीं है। गोडेल की अपूर्णता प्रमेय | गोडेल की प्रथम अपूर्णता प्रमेय तब हमें बताती है कि प्रस्तावों के कुछ सुसंगत निकाय हैं जिनमें कोई पुनरावर्ती स्वयंसिद्धता नहीं है।सामान्यतः, कंप्यूटर प्रमेयों को प्राप्त करने के लिए सिद्धांतों और तार्किक नियमों को पहचान सकता है, और कंप्यूटर यह पहचान सकता है कि क्या कोई प्रमाण वैध है या नहीं है, किन्तु यह निर्धारित करने के लिए कि क्या किसी कथन के लिए कोई प्रमाण उपस्थित है, मात्र प्रमाण या खंडन उत्पन्न होने की "प्रतीक्षा" करके ही हल किया जा सकता है। इसका परिणाम यह होता है कि किसी को ज्ञात नहीं होता है कि कौन से प्रस्ताव प्रमेय हैं और स्वयंसिद्ध विधि खंडित हो जाती है। प्रस्तावों के ऐसे निकाय का एक उदाहरण प्राकृतिक संख्याओं का सिद्धांत है, जो पीनो सिद्धांतों (नीचे वर्णित) के माध्यम से मात्र आंशिक रूप से स्वयंसिद्ध है।


व्यवहार में प्रत्येक प्रमाण का ज्ञात स्वयंसिद्धों से नहीं लगाया जाता है। कभी-कभी, यह भी स्पष्ट नहीं होता कि प्रमाण किस स्वयंसिद्ध संग्रह को आकर्षित करता है। उदाहरण के रूप मे , एक संख्या-सैद्धांतिक कथन अंकगणित की भाषा में अभिव्यक्त हो सकता है (अर्थात् पीनो सूक्तियों की भाषा) और एक प्रमाण दिया जा सकता है जो सांस्थिति या जटिल विश्लेषण के लिए निवेदन करता है। यह तत्काल स्पष्ट नहीं हो सकता है कि क्या कोई अन्य प्रमाण प्राप्त करा जा सकता है जो पूर्ण रूप से से पीनो स्वयंसिद्धों से प्राप्त होता है।

स्वयंसिद्धों की कोई भी न्यूनाधिक इच्छानुसार से चयन करी गई प्रणाली कुछ गणितीय सिद्धांत का आधार है, किन्तु ऐसी स्वेच्छाचारी स्वयंसिद्ध प्रणाली आवश्यक रूप से विरोधाभासों से मुक्त नहीं होगी, और यदि ऐसा है भी, तब यह किसी भी विषय पर प्रकाश प्रविष्टि की संभावना नहीं है। गणित के दार्शनिक कभी-कभी इस बात पर बल देते हैं कि गणितज्ञ " इच्छानुसार" स्वयंसिद्ध सिद्धांतों का चयन करते हैं, किन्तु यह संभव है कि यद्यपि वह मात्र निगमनात्मक तर्क के सिद्धांतों के दृष्टिकोण से देखे जाने पर इच्छानुसार दिखाई दे सकते हैं, यह उपस्थिति उन उद्देश्यों पर एक सीमा के कारण है जो निगमनात्मक तर्क पूर्ण करते हैं।

उदाहरण: प्राकृतिक संख्याओं का पीनो स्वयंसिद्धीकरण

प्राकृतिक संख्याओं की गणितीय प्रणाली 0, 1, 2, 3, 4, ... एक स्वयंसिद्ध प्रणाली पर आधारित है जिसे सर्व-प्रथम 1889 में गणितज्ञ ग्यूसेप पीनो के माध्यम से निर्मित करा गया गया था। उन्होंने प्राकृतिक संख्याओं के समुच्चय के लिए एकल एकाधारी फलन प्रतीक S ("उत्तराधिकारी" के लिए संक्षिप्त) की भाषा में स्वयंसिद्धों को चयनित करा:

  • एक प्राकृतिक संख्या 0 है।
  • प्रत्येक प्राकृत संख्या a का एक परवर्ती होता है, जिसे Sa के माध्यम से निरूपित किया जाता है।
  • ऐसी कोई प्राकृत संख्या नहीं है जिसका परवर्ती 0 हो।
  • भिन्न-भिन्न प्राकृतिक संख्याओं के भिन्न-भिन्न उत्तराधिकारी होते हैं: यदि a ≠ b, तब Sa ≠ Sb है।
  • यदि कोई गुण 0 के समीप है और उसके समीप उपस्थित प्रत्येक प्राकृतिक संख्या के उत्तरवर्ती के समीप भी है, तब यह सभी प्राकृतिक संख्याओं (गणितीय प्रेरण अभिगृहीत सिद्धांत) के समीप है।

स्वयंसिद्धकरण

गणित में, अभिगृहीतीकरण, ज्ञान का एक निकाय प्राप्त करने और इसके स्वयंसिद्धों के विपरीत की ओर कार्य करने की प्रक्रिया है। यह कथनों की एक प्रणाली (अर्थात स्वयंसिद्ध) का सूत्रीकरण है जो अनेक प्राचीन शब्दों से संबंधित है - जिससे बूलियन-मूल्यवान फलन कथनों से प्रस्तावों का एक सुसंगत निकाय निगमनात्मक रूप से प्राप्त किया जा सके। इसके पश्चात् किसी भी प्रस्ताव का प्रमाण सैद्धांतिक रूप से इन सिद्धांतों पर आधारित होना चाहिए।

यह भी देखें

संदर्भ

  1. Weisstein, Eric W. "लिखित". mathworld.wolfram.com (in English). Retrieved 2019-10-31.
  2. Weisstein, Eric W. "Complete Axiomatic Theory". mathworld.wolfram.com (in English). Retrieved 2019-10-31.
  3. Hodges, Wilfrid; Scanlon, Thomas (2018), "First-order Model Theory", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Winter 2018 ed.), Metaphysics Research Lab, Stanford University, retrieved 2019-10-31
  4. "Set Theory and its Philosophy, a Critical Introduction S.6; Michael Potter, Oxford, 2004
  5. Weisstein, Eric W. "Zermelo-Fraenkel Axioms". mathworld.wolfram.com (in English). Retrieved 2019-10-31.


आगे की पढाई