एबेलियन समूहों की श्रेणी: Difference between revisions

From Vigyanwiki
(Created page with "गणित में, श्रेणी सिद्धांत Ab में वस्तु (श्रेणी सिद्धांत) के रूप मे...")
 
No edit summary
Line 1: Line 1:
गणित में, [[श्रेणी सिद्धांत]] Ab में [[वस्तु (श्रेणी सिद्धांत)]] के रूप में [[एबेलियन समूह]] और आकारिकी के रूप में [[समूह समरूपता]] है। यह एक [[एबेलियन श्रेणी]] का प्रोटोटाइप है:<ref>{{harvnb|Pedicchio|Tholen|2004|p=200}}</ref> वास्तव में, हर [[छोटी श्रेणी]] की एबेलियन श्रेणी को एब में एम्बेड किया जा सकता है।<ref>{{harvnb|Mac Lane|1998|p=209}}</ref>
गणित में, [[श्रेणी सिद्धांत]] Ab में [[वस्तु (श्रेणी सिद्धांत)]] के रूप में [[एबेलियन समूह]] और आकारिकी के रूप में [[समूह समरूपता]] है। यह एक [[एबेलियन श्रेणी]] का प्रोटोटाइप है:<ref>{{harvnb|Pedicchio|Tholen|2004|p=200}}</ref> वास्तव में, हर [[छोटी श्रेणी]] की एबेलियन श्रेणी को '''Ab''' में एम्बेड किया जा सकता है।<ref name=":0">{{harvnb|Mac Lane|1998|p=209}}</ref> '''वास्तव में, हर [[छोटी श्रेणी]] की एबेलियन श्रेणी को Ab में एम्बेड किया जा सकता है।<ref name=":0" />'''
 




Line 5: Line 6:
Ab का [[शून्य वस्तु]] [[तुच्छ समूह]] {0} है जिसमें केवल इसका [[तटस्थ तत्व]] होता है।
Ab का [[शून्य वस्तु]] [[तुच्छ समूह]] {0} है जिसमें केवल इसका [[तटस्थ तत्व]] होता है।


एब में [[एकरूपता]] इंजेक्टिव ग्रुप होमोमोर्फिज्म हैं, [[अधिरूपता]] [[विशेषण]] समूह होमोमोर्फिज्म हैं, और [[ समाकृतिकता ]] [[द्विभाजित]] ग्रुप होमोमोर्फिज्म हैं।
Ab में [[एकरूपता]] इंजेक्टिव ग्रुप समरूपता हैं, [[अधिरूपता]] [[विशेषण]] समूह समरूपता हैं, और [[ समाकृतिकता ]] [[द्विभाजित]] ग्रुप समरूपता हैं।


Ab, Grp की [[पूर्ण]] उपश्रेणी है, समूहों की श्रेणी|''सभी'' समूहों की श्रेणी। एब और जीआरपी के बीच मुख्य अंतर यह है कि एबेलियन समूहों के बीच दो समरूपता ''एफ'' और ''जी'' का योग फिर से एक समूह समरूपता है:
Ab, Grp की [[पूर्ण]] उपश्रेणी है, समूहों की श्रेणी | सभी समूहों की श्रेणी। Ab और Grp के बीच मुख्य अंतर यह है कि एबेलियन समूहों के बीच दो समरूपता ''f'' और g का योग फिर से एक समूह समरूपता है:


:(''f''+''g'')(''x''+''y'') = ''f''(''x''+''y'') + ''जी'' ''(''x''+''y'') = ''f''(''x'') + ''f''(''y'') + ''g''('' x'') + ''g''(''y'')
:: (''f''+''g'')(''x''+''y'') = ''f''(''x''+''y'') + ''g''(''x''+''y'') = ''f''(''x'') + ''f''(''y'') + ''g''(''x'') + ''g''(''y'')
:       = ''f''(''x'') + ''g''(''x'') + ''f''(''y'') + ''g''(''y '') = (''f''+''g'')(''x'') + (''f''+''g'')(''y'')
::       = ''f''(''x'') + ''g''(''x'') + ''f''(''y'') + ''g''(''y'') = (''f''+''g'')(''x'') + (''f''+''g'')(''y'')


तीसरी समानता के लिए समूह को आबेलियन होना आवश्यक है। मोर्फिज्म का यह जोड़ एब को एक पूर्ववर्ती श्रेणी में बदल देता है, और क्योंकि बहुत से एबेलियन समूहों के [[एबेलियन समूहों का प्रत्यक्ष योग]] एक [[सहउत्पाद]] उत्पन्न करता है, हमारे पास वास्तव में एक योगात्मक श्रेणी है।
तीसरी समानता के लिए समूह को आबेलियन होना आवश्यक है। मोर्फिज्म का यह जोड़ Ab को एक पूर्ववर्ती श्रेणी में बदल देता है, और क्योंकि बहुत से एबेलियन समूहों के [[एबेलियन समूहों का प्रत्यक्ष योग]] एक [[सहउत्पाद]] उत्पन्न करता है, हमारे पास वास्तव में एक योगात्मक श्रेणी है।


एब में, कर्नेल (श्रेणी सिद्धांत) की धारणा कर्नेल (बीजगणित) के साथ मेल खाती है, यानी आकारिकी का श्रेणीबद्ध कर्नेल ''f'' : ''A'' → ''B'' उपसमूह ''K'' है '''' की ''के'' द्वारा परिभाषित = {''x'' ∈ '''' : ''एफ''(''x'') = 0}, एक साथ समावेशी समरूपता '' मैं'' : '''' → ''''. [[cokernel]] के लिए भी यही सच है; ''एफ'' का कोकरनेल [[भागफल समूह]] ''सी'' = ''बी'' / ''एफ''('''') एक साथ प्राकृतिक प्रक्षेपण ''पी'' : ''बी '' → ''सी''(एबी और जीआरपी के बीच एक और महत्वपूर्ण अंतर पर ध्यान दें: जीआरपी में यह हो सकता है कि ''एफ''(''ए'') ''बी'' का [[सामान्य उपसमूह]] नहीं है, और इसलिए भागफल समूह ''बी '' / ''f''(''A'') नहीं बनाया जा सकता है।) गुठली और कोकर्नेल के इन ठोस विवरणों के साथ, यह जांचना काफी आसान है कि Ab वास्तव में एक एबेलियन श्रेणी है।
Ab में, कर्नेल (श्रेणी सिद्धांत) की धारणा कर्नेल (बीजगणित) के साथ मेल खाती है, यानी आकारिकी का श्रेणीबद्ध कर्नेल ''f'' : ''A'' → ''B'' उपसमूह ''K'' है ''A'' '''की''' के द्वारा परिभाषित =''K'' = {''x'' ∈ ''A'' : ''f''(''x'') = 0}, एक साथ समावेशी समरूपता '' मैं'' : ''K'' → ''A''. [[cokernel|कोकरनेल]] के लिए भी यही सत्य है; ''f'' का कोकरनेल [[भागफल समूह]] ''C'' = ''B'' / ''f''(''A'') एक साथ प्राकृतिक प्रक्षेपण ''p'' : ''B'' → ''C'' (Ab और Grp के बीच एक और महत्वपूर्ण अंतर पर ध्यान दें: Grp में यह हो सकता है कि f(A), ''B'' का [[सामान्य उपसमूह]] नहीं है, और इसलिए भागफल समूह '''''बी '' / ''f''(''A'')''' नहीं बनाया जा सकता है।) कर्नेल और कोकर्नेल के इन ठोस विवरणों के साथ, यह जांचना काफी सरल है कि Ab वास्तव में एक एबेलियन श्रेणी है।


एब में [[उत्पाद (श्रेणी सिद्धांत)]] समूहों के प्रत्यक्ष उत्पाद द्वारा दिया जाता है, जो अंतर्निहित सेटों के कार्टेशियन उत्पाद को ले कर और समूह संचालन घटकवार प्रदर्शन करके बनता है। चूँकि Ab में गुठली होती है, इसलिए कोई यह दिखा सकता है कि Ab एक पूर्ण श्रेणी है। एब में [[द्विउत्पाद]] प्रत्यक्ष योग द्वारा दिया जाता है; चूँकि Ab के पास कोकर्नेल हैं, इसलिए यह अनुसरण करता है कि Ab भी पूर्ण है।
Ab में [[उत्पाद (श्रेणी सिद्धांत)]] समूहों के प्रत्यक्ष उत्पाद द्वारा दिया जाता है, जो अंतर्निहित सेटों के कार्टेशियन उत्पाद को लेकर और समूह संचालन घटकवार प्रदर्शन करके बनता है। चूँकि Ab में कर्नेल होती है, इसलिए कोई यह दिखा सकता है कि Ab एक पूर्ण श्रेणी है। Ab में [[द्विउत्पाद]] प्रत्यक्ष योग द्वारा दिया जाता है; चूँकि Ab के पास कोकर्नेल हैं, इसलिए यह अनुसरण करता है कि Ab भी पूर्ण है।


हमारे पास एक भुलक्कड़ एब → [[सेट की श्रेणी]] है जो प्रत्येक एबेलियन समूह को अंतर्निहित [[सेट (गणित)]], और प्रत्येक समूह होमोमोर्फिज़्म को अंतर्निहित फ़ंक्शन (गणित) प्रदान करता है। यह फ़ंक्टर वफादार फ़ंक्टर है, और इसलिए एब एक [[ठोस श्रेणी]] है। भुलक्कड़ फ़ंक्टर के पास एक सहायक फ़ंक्टर होता है (जो किसी दिए गए सेट के आधार पर [[मुक्त एबेलियन समूह]] को उस सेट के आधार के रूप में जोड़ता है) लेकिन एक सही आसन्न नहीं होता है।
हमारे पास एक भुलक्कड़ फ़ंक्टर Ab→ [[सेट की श्रेणी]] है जो प्रत्येक एबेलियन समूह को अंतर्निहित [[सेट (गणित)]], और प्रत्येक समूह होमोमोर्फिज़्म को अंतर्निहित फलन (गणित) प्रदान करता है। यह फ़ंक्टर वफादार फ़ंक्टर है, और इसलिए Ab एक [[ठोस श्रेणी]] है। भुलक्कड़ फ़ंक्टर के पास एक सहायक फ़ंक्टर होता है (जो किसी दिए गए सेट के आधार पर [[मुक्त एबेलियन समूह]] को उस सेट के आधार के रूप में जोड़ता है) लेकिन एक सही आसन्न नहीं होता है।


Ab में [[प्रत्यक्ष सीमा]]एँ लेना एक सटीक फ़ंक्टर है। चूँकि पूर्णांक Z का समूह एक जनक (श्रेणी सिद्धांत) के रूप में कार्य करता है, इसलिए श्रेणी Ab एक [[ग्रोथेंडिक श्रेणी]] है; वास्तव में यह ग्रोथेंडिक श्रेणी का प्रोटोटाइपिकल उदाहरण है।
Ab में [[प्रत्यक्ष सीमा]]एँ लेना एक सटीक फ़ंक्टर है। चूँकि पूर्णांक Z का समूह एक जनक (श्रेणी सिद्धांत) के रूप में कार्य करता है, इसलिए श्रेणी Ab एक [[ग्रोथेंडिक श्रेणी]] है; वास्तव में यह ग्रोथेंडिक श्रेणी का प्रोटोटाइपिकल उदाहरण है।


एबी में एक वस्तु [[[[इंजेक्शन]] मॉड्यूल]] है अगर और केवल अगर यह एक [[विभाज्य समूह]] है; यह [[ प्रक्षेपी मॉड्यूल ]] है अगर और केवल अगर यह एक मुक्त एबेलियन समूह है। श्रेणी में एक प्रोजेक्टिव जेनरेटर (जेड) और [[इंजेक्शन कोजेनरेटर]] (क्यू/जेड) है।
Ab में एक वस्तु [[[[इंजेक्शन]] मॉड्यूल]] है अगर और केवल अगर यह एक [[विभाज्य समूह]] है; यह [[ प्रक्षेपी मॉड्यूल ]] है अगर और केवल अगर यह एक मुक्त एबेलियन समूह है। श्रेणी में एक प्रोजेक्टिव जेनरेटर (जेड) और [[इंजेक्शन कोजेनरेटर]] ('''Q'''/'''Z''') है।


दो एबेलियन समूहों '''' और ''बी'' को देखते हुए, उनके टेन्सर उत्पाद ''''⊗''बी'' को परिभाषित किया गया है; यह फिर से एक एबेलियन समूह है। उत्पाद की इस धारणा के साथ, एबी एक बंद [[मोनोइडल श्रेणी]] मोनोइडल श्रेणी है।
दो एबेलियन समूहों ''A'' और ''B'' को देखते हुए, उनके टेन्सर उत्पाद ''A''⊗''B''को परिभाषित किया गया है; यह फिर से एक एबेलियन समूह है। उत्पाद की इस धारणा के साथ, Ab एक बंद [[मोनोइडल श्रेणी]] मोनोइडल श्रेणी है।


एब [[ topos ]] नहीं है क्योंकि उदा। इसकी एक शून्य वस्तु है।
Ab[[ topos | टोपोज़]] नहीं है क्योंकि उदा। इसकी एक शून्य वस्तु है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 20:44, 16 May 2023

गणित में, श्रेणी सिद्धांत Ab में वस्तु (श्रेणी सिद्धांत) के रूप में एबेलियन समूह और आकारिकी के रूप में समूह समरूपता है। यह एक एबेलियन श्रेणी का प्रोटोटाइप है:[1] वास्तव में, हर छोटी श्रेणी की एबेलियन श्रेणी को Ab में एम्बेड किया जा सकता है।[2] वास्तव में, हर छोटी श्रेणी की एबेलियन श्रेणी को Ab में एम्बेड किया जा सकता है।[2]


गुण

Ab का शून्य वस्तु तुच्छ समूह {0} है जिसमें केवल इसका तटस्थ तत्व होता है।

Ab में एकरूपता इंजेक्टिव ग्रुप समरूपता हैं, अधिरूपता विशेषण समूह समरूपता हैं, और समाकृतिकता द्विभाजित ग्रुप समरूपता हैं।

Ab, Grp की पूर्ण उपश्रेणी है, समूहों की श्रेणी | सभी समूहों की श्रेणी। Ab और Grp के बीच मुख्य अंतर यह है कि एबेलियन समूहों के बीच दो समरूपता f और g का योग फिर से एक समूह समरूपता है:

(f+g)(x+y) = f(x+y) + g(x+y) = f(x) + f(y) + g(x) + g(y)
      = f(x) + g(x) + f(y) + g(y) = (f+g)(x) + (f+g)(y)

तीसरी समानता के लिए समूह को आबेलियन होना आवश्यक है। मोर्फिज्म का यह जोड़ Ab को एक पूर्ववर्ती श्रेणी में बदल देता है, और क्योंकि बहुत से एबेलियन समूहों के एबेलियन समूहों का प्रत्यक्ष योग एक सहउत्पाद उत्पन्न करता है, हमारे पास वास्तव में एक योगात्मक श्रेणी है।

Ab में, कर्नेल (श्रेणी सिद्धांत) की धारणा कर्नेल (बीजगणित) के साथ मेल खाती है, यानी आकारिकी का श्रेणीबद्ध कर्नेल f : AB उपसमूह K है A की के द्वारा परिभाषित =K = {xA : f(x) = 0}, एक साथ समावेशी समरूपता मैं : KA. कोकरनेल के लिए भी यही सत्य है; f का कोकरनेल भागफल समूह C = B / f(A) एक साथ प्राकृतिक प्रक्षेपण p : BC (Ab और Grp के बीच एक और महत्वपूर्ण अंतर पर ध्यान दें: Grp में यह हो सकता है कि f(A), B का सामान्य उपसमूह नहीं है, और इसलिए भागफल समूह बी / f(A) नहीं बनाया जा सकता है।) कर्नेल और कोकर्नेल के इन ठोस विवरणों के साथ, यह जांचना काफी सरल है कि Ab वास्तव में एक एबेलियन श्रेणी है।

Ab में उत्पाद (श्रेणी सिद्धांत) समूहों के प्रत्यक्ष उत्पाद द्वारा दिया जाता है, जो अंतर्निहित सेटों के कार्टेशियन उत्पाद को लेकर और समूह संचालन घटकवार प्रदर्शन करके बनता है। चूँकि Ab में कर्नेल होती है, इसलिए कोई यह दिखा सकता है कि Ab एक पूर्ण श्रेणी है। Ab में द्विउत्पाद प्रत्यक्ष योग द्वारा दिया जाता है; चूँकि Ab के पास कोकर्नेल हैं, इसलिए यह अनुसरण करता है कि Ab भी पूर्ण है।

हमारे पास एक भुलक्कड़ फ़ंक्टर Ab→ सेट की श्रेणी है जो प्रत्येक एबेलियन समूह को अंतर्निहित सेट (गणित), और प्रत्येक समूह होमोमोर्फिज़्म को अंतर्निहित फलन (गणित) प्रदान करता है। यह फ़ंक्टर वफादार फ़ंक्टर है, और इसलिए Ab एक ठोस श्रेणी है। भुलक्कड़ फ़ंक्टर के पास एक सहायक फ़ंक्टर होता है (जो किसी दिए गए सेट के आधार पर मुक्त एबेलियन समूह को उस सेट के आधार के रूप में जोड़ता है) लेकिन एक सही आसन्न नहीं होता है।

Ab में प्रत्यक्ष सीमाएँ लेना एक सटीक फ़ंक्टर है। चूँकि पूर्णांक Z का समूह एक जनक (श्रेणी सिद्धांत) के रूप में कार्य करता है, इसलिए श्रेणी Ab एक ग्रोथेंडिक श्रेणी है; वास्तव में यह ग्रोथेंडिक श्रेणी का प्रोटोटाइपिकल उदाहरण है।

Ab में एक वस्तु [[इंजेक्शन मॉड्यूल]] है अगर और केवल अगर यह एक विभाज्य समूह है; यह प्रक्षेपी मॉड्यूल है अगर और केवल अगर यह एक मुक्त एबेलियन समूह है। श्रेणी में एक प्रोजेक्टिव जेनरेटर (जेड) और इंजेक्शन कोजेनरेटर (Q/Z) है।

दो एबेलियन समूहों A और B को देखते हुए, उनके टेन्सर उत्पाद ABको परिभाषित किया गया है; यह फिर से एक एबेलियन समूह है। उत्पाद की इस धारणा के साथ, Ab एक बंद मोनोइडल श्रेणी मोनोइडल श्रेणी है।

Ab टोपोज़ नहीं है क्योंकि उदा। इसकी एक शून्य वस्तु है।

यह भी देखें

संदर्भ

  • Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556
  • Mac Lane, Saunders (1998). Categories for the Working Mathematician. Graduate Texts in Mathematics. Vol. 5 (2nd ed.). Springer. ISBN 0-387-98403-8. Zbl 0906.18001.
  • Pedicchio, Maria Cristina; Tholen, Walter, eds. (2004). Categorical foundations. Special topics in order, topology, algebra, and sheaf theory. Encyclopedia of Mathematics and Its Applications. Vol. 97. Cambridge University Press. ISBN 0-521-83414-7. Zbl 1034.18001.