अर्धसरल मॉड्यूल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Direct sum of irreducible modules}}{{see also|अर्धसरल बीजगणित}}
{{Short description|Direct sum of irreducible modules}}{{see also|अर्धसरल बीजगणित}}
गणित में, विशेष रूप से [[अमूर्त बीजगणित]] के क्षेत्र में जिसे [[मॉड्यूल सिद्धांत]] के रूप में जाना जाता है, एक अर्धसरल मॉड्यूल या पूरी तरह से कम करने योग्य मॉड्यूल एक प्रकार का मॉड्यूल है जिसे इसके भागों से आसानी से समझा जा सकता है। एक वलय (गणित) जो अपने आप में एक अर्धसरल मॉड्यूल है, आर्टिनियन अर्धसरल वलय के रूप में जाना जाता है। कुछ महत्वपूर्ण वलय, जैसे विशेषता शून्य के क्षेत्र (गणित) पर [[परिमित समूह]]ों के समूह वलय, अर्धसरल वलय हैं। एक [[आर्टिनियन अंगूठी]] को प्रारंभ में उसके सबसे बड़े अर्धसरल भागफल के माध्यम से समझा जाता है। आर्टिनियन अर्धसरल छल्लों की संरचना को आर्टिन-वेडरबर्न प्रमेय द्वारा अच्छी तरह से समझा जाता है, जो इन छल्लों को [[मैट्रिक्स रिंग]] के परिमित [[प्रत्यक्ष उत्पाद]]ों के रूप में प्रदर्शित करता है।
गणित में, विशेष रूप से [[अमूर्त बीजगणित]] के क्षेत्र में जिसे [[मॉड्यूल सिद्धांत]] के रूप में जाना जाता है, एक अर्धसरल मॉड्यूल या पूरी तरह से कम करने योग्य मॉड्यूल एक प्रकार का मॉड्यूल है जिसे इसके भागों से आसानी से समझा जा सकता है। एक वलय (गणित) जो अपने आप में एक अर्धसरल मॉड्यूल है, आर्टिनियन अर्धसरल वलय के रूप में जाना जाता है। कुछ महत्वपूर्ण वलय, जैसे विशेषता शून्य के क्षेत्र (गणित) पर [[परिमित समूह]]ों के समूह वलय, अर्धसरल वलय हैं। एक [[आर्टिनियन अंगूठी]] को प्रारंभ में उसके सबसे बड़े अर्धसरल भागफल के माध्यम से समझा जाता है। आर्टिनियन अर्धसरल छल्लों की संरचना को आर्टिन-वेडरबर्न प्रमेय द्वारा अच्छी तरह से समझा जाता है, जो इन छल्लों को [[मैट्रिक्स रिंग|आव्युह रिंग]] के परिमित [[प्रत्यक्ष उत्पाद]]ों के रूप में प्रदर्शित करता है।


समान धारणा के समूह-सिद्धांत एनालॉग के लिए, ''[[अर्धसरल प्रतिनिधित्व]]'' देखें।
समान धारणा के समूह-सिद्धांत एनालॉग के लिए, ''[[अर्धसरल प्रतिनिधित्व]]'' देखें।


== परिभाषा ==
== परिभाषा ==
एक (जरूरी नहीं कि क्रमविनिमेय) रिंग पर एक [[मॉड्यूल (गणित)]] को अर्धसरल (या पूरी तरह से कम करने योग्य) कहा जाता है यदि यह [[सरल मॉड्यूल]] (इरेड्यूसिबल) सबमॉड्यूल के [[मॉड्यूल का प्रत्यक्ष योग]] है।
एक (आवश्यक  नहीं कि क्रमविनिमेय) रिंग पर एक [[मॉड्यूल (गणित)]] को अर्धसरल (या पूरी तरह से कम करने योग्य) कहा जाता है यदि यह [[सरल मॉड्यूल]] (इरेड्यूसिबल) सबमॉड्यूल के [[मॉड्यूल का प्रत्यक्ष योग]] है।


मॉड्यूल ''एम'' के लिए, निम्नलिखित समतुल्य हैं:
मॉड्यूल ''एम'' के लिए, निम्नलिखित समतुल्य हैं:
# ''एम'' अर्धसरल है; यानी, इरेड्यूसेबल मॉड्यूल का प्रत्यक्ष योग।
# ''एम'' अर्धसरल है; अर्थात, इरेड्यूसेबल मॉड्यूल का प्रत्यक्ष योग।
# ''एम'' इसके अपरिवर्तनीय उपमॉड्यूल का योग है।
# ''एम'' इसके अपरिवर्तनीय उपमॉड्यूल का योग है।
# ''एम'' का प्रत्येक सबमॉड्यूल एक [[सीधा सारांश]] है: ''एम'' के प्रत्येक सबमॉड्यूल ''एन'' के लिए, एक पूरक ''पी'' है जैसे कि {{nowrap|1=''M'' = ''N'' ⊕ ''P''}}.
# ''एम'' का प्रत्येक सबमॉड्यूल एक [[सीधा सारांश]] है: ''एम'' के प्रत्येक सबमॉड्यूल ''एन'' के लिए, एक पूरक ''पी'' है जैसे कि {{nowrap|1=''M'' = ''N'' ⊕ ''P''}}.
समतुल्यता के प्रमाण के लिए देखें{{section link|अर्धसरल निरूपण#समतुल्य लक्षण वर्णन}}.<!--
समतुल्यता के प्रमाण के लिए देखें{{section link|अर्धसरल निरूपण#समतुल्य लक्षण वर्णन}}.<!--
For <math>3 \Rightarrow 2</math>, the starting idea is to find an irreducible submodule by picking any nonzero <math>x\in M</math> and letting <math>P</math> be a [[maximal submodule]] such that <math>x \notin P</math>.-- by Zorn's lemma? -- It can be shown that the complement of <math>P</math> is irreducible.<ref>Nathan Jacobson, Basic Algebra II (Second Edition), p.120</ref> -->सेमीसिंपल मॉड्यूल का सबसे बुनियादी उदाहरण एक फ़ील्ड पर एक मॉड्यूल है, यानी, एक [[ सदिश स्थल ]]। दूसरी ओर, अंगूठी {{nowrap|'''Z'''}पूर्णांकों का } सबमॉड्यूल के बाद से, अपने आप में एक अर्धसरल मॉड्यूल नहीं है {{nowrap|2'''Z'''}} सीधा सारांश नहीं है.
For <math>3 \Rightarrow 2</math>, the starting idea is to find an irreducible submodule by picking any nonzero <math>x\in M</math> and letting <math>P</math> be a [[maximal submodule]] such that <math>x \notin P</math>.-- by Zorn's lemma? -- It can be shown that the complement of <math>P</math> is irreducible.<ref>Nathan Jacobson, Basic Algebra II (Second Edition), p.120</ref> -->सेमीसिंपल मॉड्यूल का सबसे मूलभूत उदाहरण एक फ़ील्ड पर एक मॉड्यूल है, अर्थात, एक [[ सदिश स्थल ]]। दूसरी ओर, अंगूठी {{nowrap|'''Z'''}पूर्णांकों का } सबमॉड्यूल के पश्चात् से, अपने आप में एक अर्धसरल मॉड्यूल नहीं है {{nowrap|2'''Z'''}} सीधा सारांश नहीं है.
 
सेमीसिंपल, [[अविभाज्य मॉड्यूल]] से अधिक शक्तिशाली  है,


सेमीसिंपल, [[अविभाज्य मॉड्यूल]] से अधिक मजबूत है,
जो कि अविभाज्य मॉड्यूल के मॉड्यूल का प्रत्यक्ष योग है।
जो कि अविभाज्य मॉड्यूल के मॉड्यूल का प्रत्यक्ष योग है।


Line 21: Line 22:
== गुण ==
== गुण ==


* यदि M अर्धसरल है और N एक उप[[सबमॉड्यूल]] है, तो N और M/N भी अर्धसरल हैं।
* यदि M अर्धसरल है और N एक उप[[सबमॉड्यूल]] है, तब N और M/N भी अर्धसरल हैं।
* अर्धसरल मॉड्यूल का एक मनमाना [[प्रत्यक्ष योग]] अर्धसरल है।
* अर्धसरल मॉड्यूल का एक इच्छानुसार [[प्रत्यक्ष योग]] अर्धसरल है।
* एक मॉड्यूल एम [[अंतिम रूप से उत्पन्न मॉड्यूल]] और अर्धसरल है यदि और केवल यदि यह आर्टिनियन है और मॉड्यूल का रेडिकल शून्य है।
* एक मॉड्यूल एम [[अंतिम रूप से उत्पन्न मॉड्यूल]] और अर्धसरल है यदि और केवल यदि यह आर्टिनियन है और मॉड्यूल का रेडिकल शून्य है।


Line 28: Line 29:


* एक रिंग R के ऊपर एक सेमीसिंपल मॉड्यूल M को R से M के [[ एबेलियन समूह ]] एंडोमोर्फिज्म के रिंग में एक [[वलय समरूपता]] के रूप में भी सोचा जा सकता है। इस होमोमोर्फिज्म की छवि एक [[ अर्धआदिम अंगूठी ]] है, और प्रत्येक सेमीप्रिमिटिव रिंग ऐसी छवि के लिए आइसोमोर्फिक है। .
* एक रिंग R के ऊपर एक सेमीसिंपल मॉड्यूल M को R से M के [[ एबेलियन समूह ]] एंडोमोर्फिज्म के रिंग में एक [[वलय समरूपता]] के रूप में भी सोचा जा सकता है। इस होमोमोर्फिज्म की छवि एक [[ अर्धआदिम अंगूठी ]] है, और प्रत्येक सेमीप्रिमिटिव रिंग ऐसी छवि के लिए आइसोमोर्फिक है। .
* सेमीसिंपल मॉड्यूल की [[एंडोमोर्फिज्म रिंग]] न केवल सेमीप्रिमिटिव है, बल्कि वॉन न्यूमैन नियमित रिंग भी है, {{harv|Lam|2001|p=62}}.
* सेमीसिंपल मॉड्यूल की [[एंडोमोर्फिज्म रिंग]] न केवल सेमीप्रिमिटिव है, किंतु वॉन न्यूमैन नियमित रिंग भी है, {{harv|Lam|2001|p=62}}.


== अर्धसरल वलय ==
== अर्धसरल वलय ==
Line 34: Line 35:
एक रिंग को (बाएं-)अर्धसरल कहा जाता है यदि यह अपने ऊपर बाएं मॉड्यूल के रूप में अर्धसरल है।<ref>{{harvnb|Sengupta|2012|p=125}}</ref> हैरानी की बात यह है कि बायां-अर्धसरल वलय दायां-अर्धसरल भी होता है और इसके विपरीत भी। इसलिए बाएं/दाएं का अंतर अनावश्यक है, और कोई भी बिना किसी अस्पष्टता के अर्धसरल छल्लों के बारे में बात कर सकता है।
एक रिंग को (बाएं-)अर्धसरल कहा जाता है यदि यह अपने ऊपर बाएं मॉड्यूल के रूप में अर्धसरल है।<ref>{{harvnb|Sengupta|2012|p=125}}</ref> हैरानी की बात यह है कि बायां-अर्धसरल वलय दायां-अर्धसरल भी होता है और इसके विपरीत भी। इसलिए बाएं/दाएं का अंतर अनावश्यक है, और कोई भी बिना किसी अस्पष्टता के अर्धसरल छल्लों के बारे में बात कर सकता है।


एक अर्धसरल वलय को [[समजात बीजगणित]] के संदर्भ में चित्रित किया जा सकता है: अर्थात्, एक वलय आर अर्धसरल है यदि और केवल तभी जब बाएं (या दाएं) आर-मॉड्यूल का कोई छोटा सटीक अनुक्रम विभाजित हो। अर्थात्, एक [[संक्षिप्त सटीक क्रम]] के लिए
एक अर्धसरल वलय को [[समजात बीजगणित]] के संदर्भ में चित्रित किया जा सकता है: अर्थात्, एक वलय आर अर्धसरल है यदि और केवल तभी जब बाएं (या दाएं) आर-मॉड्यूल का कोई छोटा त्रुटिहीन अनुक्रम विभाजित हो। अर्थात्, एक [[संक्षिप्त सटीक क्रम|संक्षिप्त त्रुटिहीन क्रम]] के लिए
: <math>0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0 </math>
: <math>0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0 </math>
वहां मौजूद {{nowrap|''s'' : ''C'' → ''B''}} ऐसी कि रचना {{nowrap|''g'' ∘ ''s'' : ''C'' → ''C''}}पहचान है. मानचित्र को एक अनुभाग के रूप में जाना जाता है। इससे यह निष्कर्ष निकलता है
वहां उपस्तिथ {{nowrap|''s'' : ''C'' → ''B''}} ऐसी कि रचना {{nowrap|''g'' ∘ ''s'' : ''C'' → ''C''}}पहचान है. मानचित्र को एक अनुभाग के रूप में जाना जाता है। इससे यह निष्कर्ष निकलता है
: <math>B \cong A \oplus C</math>
: <math>B \cong A \oplus C</math>
या अधिक सटीक शब्दों में
या अधिक त्रुटिहीन शब्दों में
: <math>B \cong f(A) \oplus s(C).</math>
: <math>B \cong f(A) \oplus s(C).</math>
विशेष रूप से, सेमीसिंपल रिंग के ऊपर कोई भी मॉड्यूल [[ इंजेक्शन मॉड्यूल ]] और [[प्रोजेक्टिव मॉड्यूल]] होता है। चूँकि प्रक्षेप्य का तात्पर्य सपाट है, एक अर्धसरल वलय एक वॉन न्यूमैन नियमित वलय है।
विशेष रूप से, सेमीसिंपल रिंग के ऊपर कोई भी मॉड्यूल [[ इंजेक्शन मॉड्यूल ]] और [[प्रोजेक्टिव मॉड्यूल]] होता है। चूँकि प्रक्षेप्य का तात्पर्य सपाट है, एक अर्धसरल वलय एक वॉन न्यूमैन नियमित वलय है।


अर्धसरल वलय बीजगणितज्ञों के लिए विशेष रुचि रखते हैं। उदाहरण के लिए, यदि बेस रिंग आर अर्धसरल है, तो सभी आर-मॉड्यूल स्वचालित रूप से अर्धसरल होंगे। इसके अलावा, प्रत्येक सरल (बाएं) आर-मॉड्यूल आर के न्यूनतम बाएं आदर्श के लिए आइसोमोर्फिक है, यानी, आर एक बाएं [[ कश रिंग ]] है।
अर्धसरल वलय बीजगणितज्ञों के लिए विशेष रुचि रखते हैं। उदाहरण के लिए, यदि बेस रिंग आर अर्धसरल है, तब सभी आर-मॉड्यूल स्वचालित रूप से अर्धसरल होंगे। इसके अतिरिक्त, प्रत्येक सरल (बाएं) आर-मॉड्यूल आर के न्यूनतम बाएं आदर्श के लिए आइसोमोर्फिक है, अर्थात, आर एक बाएं [[ कश रिंग ]] है।


अर्धसरल वलय आर्टिनियन वलय और नोथेरियन वलय दोनों हैं। उपरोक्त गुणों से, एक वलय अर्धसरल है यदि और केवल यदि यह आर्टिनियन है और इसका [[ जैकबसन कट्टरपंथी ]] शून्य है।
अर्धसरल वलय आर्टिनियन वलय और नोथेरियन वलय दोनों हैं। उपरोक्त गुणों से, एक वलय अर्धसरल है यदि और केवल यदि यह आर्टिनियन है और इसका [[ जैकबसन कट्टरपंथी ]] शून्य है।


यदि एक आर्टिनियन सेमीसिम्पल रिंग में रिंग [[सबरिंग]] के केंद्र के रूप में एक क्षेत्र होता है, तो इसे सेमीसिंपल बीजगणित कहा जाता है।
यदि एक आर्टिनियन सेमीसिम्पल रिंग में रिंग [[सबरिंग]] के केंद्र के रूप में एक क्षेत्र होता है, तब इसे सेमीसिंपल बीजगणित कहा जाता है।


=== उदाहरण ===
=== उदाहरण ===
* एक [[क्रमविनिमेय वलय]] के लिए, निम्नलिखित चार गुण समतुल्य हैं: एक अर्धसरल वलय होना; आर्टिनियन रिंग और कम रिंग होना;<ref>{{harvnb|Bourbaki|2012|loc=VIII, pg. 133.}}</ref> [[क्रुल आयाम]] 0 की एक छोटी अंगूठी नोथेरियन अंगूठी होने के नाते; और खेतों के एक सीमित प्रत्यक्ष उत्पाद के समरूपी होना।
* एक [[क्रमविनिमेय वलय]] के लिए, निम्नलिखित चार गुण समतुल्य हैं: एक अर्धसरल वलय होना; आर्टिनियन रिंग और कम रिंग होना;<ref>{{harvnb|Bourbaki|2012|loc=VIII, pg. 133.}}</ref> [[क्रुल आयाम]] 0 की एक छोटी अंगूठी नोथेरियन अंगूठी होने के नाते; और खेतों के एक सीमित प्रत्यक्ष उत्पाद के समरूपी होना।
* यदि K एक क्षेत्र है और G क्रम n का एक परिमित समूह है, तो समूह वलय K[G] अर्धसरल है यदि और केवल यदि K की [[विशेषता (बीजगणित)]] n को विभाजित नहीं करती है। यह माश्के का प्रमेय है, जो [[समूह प्रतिनिधित्व सिद्धांत]] में एक महत्वपूर्ण परिणाम है।
* यदि K एक क्षेत्र है और G क्रम n का एक परिमित समूह है, मानचित्र समूह वलय K[G] अर्धसरल है यदि और केवल यदि K की [[विशेषता (बीजगणित)]] n को विभाजित नहीं करती है। यह माश्के का प्रमेय है, जो [[समूह प्रतिनिधित्व सिद्धांत]] में एक महत्वपूर्ण परिणाम है।
* वेडरबर्न-आर्टिन प्रमेय के अनुसार, एक यूनिटल रिंग आर अर्धसरल है यदि और केवल यदि यह (आइसोमोर्फिक) है {{nowrap|M<sub>''n''<sub>1</sub></sub>(''D''<sub>1</sub>) × M<sub>''n''<sub>2</sub></sub>(''D''<sub>2</sub>) × ... × M<sub>''n''<sub>''r''</sub></sub>(''D''<sub>''r''</sub>)}}, जहां प्रत्येक डी<sub>''i''</sub> एक विभाजन वलय है और प्रत्येक n<sub>''i''</sub> एक धनात्मक पूर्णांक है, और एम<sub>''n''</sub>(डी) डी में प्रविष्टियों के साथ एन-बाय-एन मैट्रिक्स की अंगूठी को दर्शाता है।
* वेडरबर्न-आर्टिन प्रमेय के अनुसार, एक यूनिटल रिंग आर अर्धसरल है यदि और केवल यदि यह (आइसोमोर्फिक) है {{nowrap|M<sub>''n''<sub>1</sub></sub>(''D''<sub>1</sub>) × M<sub>''n''<sub>2</sub></sub>(''D''<sub>2</sub>) × ... × M<sub>''n''<sub>''r''</sub></sub>(''D''<sub>''r''</sub>)}}, जहां प्रत्येक डी<sub>''i''</sub> एक विभाजन वलय है और प्रत्येक n<sub>''i''</sub> एक धनात्मक पूर्णांक है, और एम<sub>''n''</sub>(डी) डी में प्रविष्टियों के साथ एन-बाय-एन आव्युह की अंगूठी को दर्शाता है।
* अर्धसरल गैर-इकाई वलय का एक उदाहरण M है<sub>∞</sub>(K), एक फ़ील्ड K पर पंक्ति-परिमित, स्तंभ-परिमित, अनंत आव्यूह।
* अर्धसरल गैर-इकाई वलय का एक उदाहरण M है<sub>∞</sub>(K), एक फ़ील्ड K पर पंक्ति-परिमित, स्तंभ-परिमित, अनंत आव्यूह।


Line 57: Line 58:
{{main|साधारण अंगूठी}}
{{main|साधारण अंगूठी}}


किसी को सावधान रहना चाहिए कि शब्दावली के बावजूद, सभी साधारण वलय अर्धसरल नहीं होते हैं। समस्या यह है कि अंगूठी बहुत बड़ी हो सकती है, यानी (बाएं/दाएं) आर्टिनियन नहीं। वास्तव में, यदि R न्यूनतम बाएँ/दाएँ आदर्श के साथ एक साधारण वलय है, तो R अर्धसरल है।
किसी को सावधान रहना चाहिए कि शब्दावली के अतिरिक्त, सभी साधारण वलय अर्धसरल नहीं होते हैं। समस्या यह है कि अंगूठी बहुत बड़ी हो सकती है, अर्थात (बाएं/दाएं) आर्टिनियन नहीं। वास्तव में, यदि R न्यूनतम बाएँ/दाएँ आदर्श के साथ एक साधारण वलय है, मानचित्र R अर्धसरल है।


सरल, लेकिन अर्धसरल नहीं, छल्लों के उत्कृष्ट उदाहरण [[वेइल बीजगणित]] हैं, जैसे कि <math>\mathbb{Q}</math>-बीजगणित
सरल, किन्तु अर्धसरल नहीं, छल्लों के उत्कृष्ट उदाहरण [[वेइल बीजगणित]] हैं, जैसे कि <math>\mathbb{Q}</math>-बीजगणित
: <math> A=\mathbb{Q}{\left[x,y\right]}/\langle xy-yx-1\rangle\ ,</math>
: <math> A=\mathbb{Q}{\left[x,y\right]}/\langle xy-yx-1\rangle\ ,</math>
जो एक सरल गैर-अनुवांशिक [[डोमेन (रिंग सिद्धांत)]] है। इन और कई अन्य अच्छे उदाहरणों पर कई गैर-अनुवांशिक रिंग सिद्धांत ग्रंथों में अधिक विस्तार से चर्चा की गई है, जिसमें लैम के पाठ का अध्याय 3 भी शामिल है, जिसमें उन्हें गैर-आर्टिनियन सरल रिंगों के रूप में वर्णित किया गया है। वेइल अलजेब्रा के लिए मॉड्यूल सिद्धांत का अच्छी तरह से अध्ययन किया गया है और यह सेमीसिंपल रिंगों से काफी अलग है।
जो एक सरल गैर-अनुवांशिक [[डोमेन (रिंग सिद्धांत)]] है। इन और कई अन्य अच्छे उदाहरणों पर कई गैर-अनुवांशिक रिंग सिद्धांत ग्रंथों में अधिक विस्तार से चर्चा की गई है, जिसमें लैम के पाठ का अध्याय 3 भी सम्मिलित है, जिसमें उन्हें गैर-आर्टिनियन सरल रिंगों के रूप में वर्णित किया गया है। वेइल अलजेब्रा के लिए मॉड्यूल सिद्धांत का अच्छी तरह से अध्ययन किया गया है और यह सेमीसिंपल रिंगों से अधिक  भिन्न है।


=== जैकबसन सेमीसिंपल ===
=== जैकबसन सेमीसिंपल ===
{{main|अर्धआदिम अंगूठी}}
{{main|अर्धआदिम अंगूठी}}
एक रिंग को जैकबसन सेमीसिंपल (या जे-सेमीसिंपल या सेमीप्रिमिटिव रिंग) कहा जाता है, यदि अधिकतम बाएं आदर्शों का प्रतिच्छेदन शून्य है, अर्थात, यदि जैकबसन रेडिकल शून्य है। प्रत्येक रिंग जो अपने ऊपर एक मॉड्यूल के रूप में अर्धसरल है, उसमें शून्य जैकबसन रेडिकल है, लेकिन शून्य जैकबसन रेडिकल वाली प्रत्येक रिंग अपने ऊपर एक मॉड्यूल के रूप में अर्धसरल नहीं है। एक जे-सेमीसिंपल रिंग सेमीसिंपल है अगर और केवल अगर यह एक आर्टिनियन रिंग है, तो भ्रम से बचने के लिए सेमीसिंपल रिंग्स को अक्सर आर्टिनियन सेमीसिंपल रिंग्स कहा जाता है।
एक रिंग को जैकबसन सेमीसिंपल (या जे-सेमीसिंपल या सेमीप्रिमिटिव रिंग) कहा जाता है, यदि अधिकतम बाएं आदर्शों का प्रतिच्छेदन शून्य है, अर्थात, यदि जैकबसन रेडिकल शून्य है। प्रत्येक रिंग जो अपने ऊपर एक मॉड्यूल के रूप में अर्धसरल है, उसमें शून्य जैकबसन रेडिकल है, किन्तु शून्य जैकबसन रेडिकल वाली प्रत्येक रिंग अपने ऊपर एक मॉड्यूल के रूप में अर्धसरल नहीं है। एक जे-सेमीसिंपल रिंग सेमीसिंपल है यदि और केवल यदि यह एक आर्टिनियन रिंग है, तब भ्रम से बचने के लिए सेमीसिंपल रिंग्स को अधिकांशतः आर्टिनियन सेमीसिंपल रिंग्स कहा जाता है।


उदाहरण के लिए, पूर्णांकों का वलय, 'Z', J-अर्धसरल है, लेकिन आर्टिनियन अर्धसरल नहीं है।
उदाहरण के लिए, पूर्णांकों का वलय, 'Z', J-अर्धसरल है, किन्तु आर्टिनियन अर्धसरल नहीं है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 20:32, 30 November 2023

गणित में, विशेष रूप से अमूर्त बीजगणित के क्षेत्र में जिसे मॉड्यूल सिद्धांत के रूप में जाना जाता है, एक अर्धसरल मॉड्यूल या पूरी तरह से कम करने योग्य मॉड्यूल एक प्रकार का मॉड्यूल है जिसे इसके भागों से आसानी से समझा जा सकता है। एक वलय (गणित) जो अपने आप में एक अर्धसरल मॉड्यूल है, आर्टिनियन अर्धसरल वलय के रूप में जाना जाता है। कुछ महत्वपूर्ण वलय, जैसे विशेषता शून्य के क्षेत्र (गणित) पर परिमित समूहों के समूह वलय, अर्धसरल वलय हैं। एक आर्टिनियन अंगूठी को प्रारंभ में उसके सबसे बड़े अर्धसरल भागफल के माध्यम से समझा जाता है। आर्टिनियन अर्धसरल छल्लों की संरचना को आर्टिन-वेडरबर्न प्रमेय द्वारा अच्छी तरह से समझा जाता है, जो इन छल्लों को आव्युह रिंग के परिमित प्रत्यक्ष उत्पादों के रूप में प्रदर्शित करता है।

समान धारणा के समूह-सिद्धांत एनालॉग के लिए, अर्धसरल प्रतिनिधित्व देखें।

परिभाषा

एक (आवश्यक नहीं कि क्रमविनिमेय) रिंग पर एक मॉड्यूल (गणित) को अर्धसरल (या पूरी तरह से कम करने योग्य) कहा जाता है यदि यह सरल मॉड्यूल (इरेड्यूसिबल) सबमॉड्यूल के मॉड्यूल का प्रत्यक्ष योग है।

मॉड्यूल एम के लिए, निम्नलिखित समतुल्य हैं:

  1. एम अर्धसरल है; अर्थात, इरेड्यूसेबल मॉड्यूल का प्रत्यक्ष योग।
  2. एम इसके अपरिवर्तनीय उपमॉड्यूल का योग है।
  3. एम का प्रत्येक सबमॉड्यूल एक सीधा सारांश है: एम के प्रत्येक सबमॉड्यूल एन के लिए, एक पूरक पी है जैसे कि M = NP.

समतुल्यता के प्रमाण के लिए देखेंअर्धसरल निरूपण § समतुल्य लक्षण वर्णन.सेमीसिंपल मॉड्यूल का सबसे मूलभूत उदाहरण एक फ़ील्ड पर एक मॉड्यूल है, अर्थात, एक सदिश स्थल । दूसरी ओर, अंगूठी {{nowrap|Z}पूर्णांकों का } सबमॉड्यूल के पश्चात् से, अपने आप में एक अर्धसरल मॉड्यूल नहीं है 2Z सीधा सारांश नहीं है.

सेमीसिंपल, अविभाज्य मॉड्यूल से अधिक शक्तिशाली है,

जो कि अविभाज्य मॉड्यूल के मॉड्यूल का प्रत्यक्ष योग है।

मान लीजिए कि A, फ़ील्ड K के ऊपर एक बीजगणित है। तब A के ऊपर एक बाएँ मॉड्यूल M को 'बिल्कुल अर्धसरल' कहा जाता है, यदि K के किसी फ़ील्ड एक्सटेंशन F के लिए, FK M एक अर्धसरल मॉड्यूल है FK A.

गुण

एंडोमोर्फिज्म रिंग्स

  • एक रिंग R के ऊपर एक सेमीसिंपल मॉड्यूल M को R से M के एबेलियन समूह एंडोमोर्फिज्म के रिंग में एक वलय समरूपता के रूप में भी सोचा जा सकता है। इस होमोमोर्फिज्म की छवि एक अर्धआदिम अंगूठी है, और प्रत्येक सेमीप्रिमिटिव रिंग ऐसी छवि के लिए आइसोमोर्फिक है। .
  • सेमीसिंपल मॉड्यूल की एंडोमोर्फिज्म रिंग न केवल सेमीप्रिमिटिव है, किंतु वॉन न्यूमैन नियमित रिंग भी है, (Lam 2001, p. 62).

अर्धसरल वलय

एक रिंग को (बाएं-)अर्धसरल कहा जाता है यदि यह अपने ऊपर बाएं मॉड्यूल के रूप में अर्धसरल है।[1] हैरानी की बात यह है कि बायां-अर्धसरल वलय दायां-अर्धसरल भी होता है और इसके विपरीत भी। इसलिए बाएं/दाएं का अंतर अनावश्यक है, और कोई भी बिना किसी अस्पष्टता के अर्धसरल छल्लों के बारे में बात कर सकता है।

एक अर्धसरल वलय को समजात बीजगणित के संदर्भ में चित्रित किया जा सकता है: अर्थात्, एक वलय आर अर्धसरल है यदि और केवल तभी जब बाएं (या दाएं) आर-मॉड्यूल का कोई छोटा त्रुटिहीन अनुक्रम विभाजित हो। अर्थात्, एक संक्षिप्त त्रुटिहीन क्रम के लिए

वहां उपस्तिथ s : CB ऐसी कि रचना gs : CCपहचान है. मानचित्र को एक अनुभाग के रूप में जाना जाता है। इससे यह निष्कर्ष निकलता है

या अधिक त्रुटिहीन शब्दों में

विशेष रूप से, सेमीसिंपल रिंग के ऊपर कोई भी मॉड्यूल इंजेक्शन मॉड्यूल और प्रोजेक्टिव मॉड्यूल होता है। चूँकि प्रक्षेप्य का तात्पर्य सपाट है, एक अर्धसरल वलय एक वॉन न्यूमैन नियमित वलय है।

अर्धसरल वलय बीजगणितज्ञों के लिए विशेष रुचि रखते हैं। उदाहरण के लिए, यदि बेस रिंग आर अर्धसरल है, तब सभी आर-मॉड्यूल स्वचालित रूप से अर्धसरल होंगे। इसके अतिरिक्त, प्रत्येक सरल (बाएं) आर-मॉड्यूल आर के न्यूनतम बाएं आदर्श के लिए आइसोमोर्फिक है, अर्थात, आर एक बाएं कश रिंग है।

अर्धसरल वलय आर्टिनियन वलय और नोथेरियन वलय दोनों हैं। उपरोक्त गुणों से, एक वलय अर्धसरल है यदि और केवल यदि यह आर्टिनियन है और इसका जैकबसन कट्टरपंथी शून्य है।

यदि एक आर्टिनियन सेमीसिम्पल रिंग में रिंग सबरिंग के केंद्र के रूप में एक क्षेत्र होता है, तब इसे सेमीसिंपल बीजगणित कहा जाता है।

उदाहरण

  • एक क्रमविनिमेय वलय के लिए, निम्नलिखित चार गुण समतुल्य हैं: एक अर्धसरल वलय होना; आर्टिनियन रिंग और कम रिंग होना;[2] क्रुल आयाम 0 की एक छोटी अंगूठी नोथेरियन अंगूठी होने के नाते; और खेतों के एक सीमित प्रत्यक्ष उत्पाद के समरूपी होना।
  • यदि K एक क्षेत्र है और G क्रम n का एक परिमित समूह है, मानचित्र समूह वलय K[G] अर्धसरल है यदि और केवल यदि K की विशेषता (बीजगणित) n को विभाजित नहीं करती है। यह माश्के का प्रमेय है, जो समूह प्रतिनिधित्व सिद्धांत में एक महत्वपूर्ण परिणाम है।
  • वेडरबर्न-आर्टिन प्रमेय के अनुसार, एक यूनिटल रिंग आर अर्धसरल है यदि और केवल यदि यह (आइसोमोर्फिक) है Mn1(D1) × Mn2(D2) × ... × Mnr(Dr), जहां प्रत्येक डीi एक विभाजन वलय है और प्रत्येक ni एक धनात्मक पूर्णांक है, और एमn(डी) डी में प्रविष्टियों के साथ एन-बाय-एन आव्युह की अंगूठी को दर्शाता है।
  • अर्धसरल गैर-इकाई वलय का एक उदाहरण M है(K), एक फ़ील्ड K पर पंक्ति-परिमित, स्तंभ-परिमित, अनंत आव्यूह।

सरल छल्ले

किसी को सावधान रहना चाहिए कि शब्दावली के अतिरिक्त, सभी साधारण वलय अर्धसरल नहीं होते हैं। समस्या यह है कि अंगूठी बहुत बड़ी हो सकती है, अर्थात (बाएं/दाएं) आर्टिनियन नहीं। वास्तव में, यदि R न्यूनतम बाएँ/दाएँ आदर्श के साथ एक साधारण वलय है, मानचित्र R अर्धसरल है।

सरल, किन्तु अर्धसरल नहीं, छल्लों के उत्कृष्ट उदाहरण वेइल बीजगणित हैं, जैसे कि -बीजगणित

जो एक सरल गैर-अनुवांशिक डोमेन (रिंग सिद्धांत) है। इन और कई अन्य अच्छे उदाहरणों पर कई गैर-अनुवांशिक रिंग सिद्धांत ग्रंथों में अधिक विस्तार से चर्चा की गई है, जिसमें लैम के पाठ का अध्याय 3 भी सम्मिलित है, जिसमें उन्हें गैर-आर्टिनियन सरल रिंगों के रूप में वर्णित किया गया है। वेइल अलजेब्रा के लिए मॉड्यूल सिद्धांत का अच्छी तरह से अध्ययन किया गया है और यह सेमीसिंपल रिंगों से अधिक भिन्न है।

जैकबसन सेमीसिंपल

एक रिंग को जैकबसन सेमीसिंपल (या जे-सेमीसिंपल या सेमीप्रिमिटिव रिंग) कहा जाता है, यदि अधिकतम बाएं आदर्शों का प्रतिच्छेदन शून्य है, अर्थात, यदि जैकबसन रेडिकल शून्य है। प्रत्येक रिंग जो अपने ऊपर एक मॉड्यूल के रूप में अर्धसरल है, उसमें शून्य जैकबसन रेडिकल है, किन्तु शून्य जैकबसन रेडिकल वाली प्रत्येक रिंग अपने ऊपर एक मॉड्यूल के रूप में अर्धसरल नहीं है। एक जे-सेमीसिंपल रिंग सेमीसिंपल है यदि और केवल यदि यह एक आर्टिनियन रिंग है, तब भ्रम से बचने के लिए सेमीसिंपल रिंग्स को अधिकांशतः आर्टिनियन सेमीसिंपल रिंग्स कहा जाता है।

उदाहरण के लिए, पूर्णांकों का वलय, 'Z', J-अर्धसरल है, किन्तु आर्टिनियन अर्धसरल नहीं है।

यह भी देखें

  • सामाजिक (गणित)
  • अर्धसरल बीजगणित

संदर्भ

टिप्पणियाँ

  1. Sengupta 2012, p. 125
  2. Bourbaki 2012, VIII, pg. 133.

संदर्भ

  • बोर्बाकी, निकोलस (2012), बीजगणित चौ. 8 (2nd ed.), बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, ISBN 978-3-540-35315-7
  • जैकबसन, नातान (1989), मूल बीजगणित II (2nd ed.), डब्ल्यू एच फ्रीमैन, ISBN 978-0-7167-1933-5
  • पीटना, त्सित-यूएन (2001), नॉनकम्यूटेटिव रिंग्स में पहला कोर्स, गणित में स्नातक पाठ, vol. 131 (2nd ed.), बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, doi:10.1007/978-1-4419-8616-0, ISBN 978-0-387-95325-0, MR 1838439
  • लैंग, Serge (2002), बीजगणित (3rd ed.), बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, ISBN 978-0387953854
  • प्रवेश करना, आर.एस. (1982), साहचर्य बीजगणित, गणित में स्नातक पाठ, स्प्रिंगर-वेरलाग, ISBN 978-1-4757-0165-4
  • सेनगुप्ता, अंबर (2012). "प्रेरित अभ्यावेदन". परिमित समूहों का प्रतिनिधित्व: एक अर्धसरल परिचय. न्यूयॉर्क. pp. 235–248. doi:10.1007/978-1-4614-1231-1_8. ISBN 9781461412311. OCLC 769756134.{{cite book}}: CS1 maint: location missing publisher (link)