लिउविले का प्रमेय (हैमिल्टनियन): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Key result in Hamiltonian mechanics and statistical mechanics}}
{{Short description|Key result in Hamiltonian mechanics and statistical mechanics}}
{{Classical mechanics|expanded=Formulations}}
{{Classical mechanics|expanded=Formulations}}
भौतिकी में, '''लिउविले का प्रमेय''', जिसका नाम फ्रांसीसी गणितज्ञ [[जोसेफ लिउविल|जोसेफ लिउविले]] के नाम पर रखा गया है, शास्त्रीय [[सांख्यिकीय यांत्रिकी]] और [[हैमिल्टनियन यांत्रिकी]] में प्रमुख प्रमेय है। यह आशय करता है कि [[चरण स्थान]] वितरण फलन प्रणाली के [[प्रक्षेपवक्र|प्रक्षेप पथ]] के साथ स्थिर है - अर्थात चरण-स्थान के माध्यम से यात्रा करने वाले किसी दिए गए प्रणाली बिंदु के निकट के प्रणाली बिंदुओं का घनत्व समय के साथ स्थिर है यह समय-स्वतंत्र घनत्व सांख्यिकीय यांत्रिकी में शास्त्रीय प्राथमिक संभाव्यता के रूप में जाना जाता है।<ref>Harald J. W. Müller-Kirsten, Basics of Statistical Physics, 2nd ed., World Scientific (Singapore, 2013)</ref>
भौतिकी में, '''लिउविले का प्रमेय''', जिसका नाम फ्रांसीसी गणितज्ञ [[जोसेफ लिउविल|जोसेफ लिउविले]] के नाम पर रखा गया है, शास्त्रीय [[सांख्यिकीय यांत्रिकी]] और [[हैमिल्टनियन यांत्रिकी]] में प्रमुख प्रमेय है। यह आशय करता है कि [[चरण स्थान]] वितरण फलन प्रणाली के [[प्रक्षेपवक्र|प्रक्षेप पथ]] के साथ स्थिर है - अर्थात चरण-स्थान के माध्यम से यात्रा करने वाले किसी दिए गए प्रणाली बिंदु के निकट के प्रणाली बिंदुओं का घनत्व समय के साथ स्थिर है यह समय-स्वतंत्र घनत्व सांख्यिकीय यांत्रिकी में शास्त्रीय प्राथमिक संभाव्यता के रूप में जाना जाता है।<ref>Harald J. W. Müller-Kirsten, Basics of Statistical Physics, 2nd ed., World Scientific (Singapore, 2013)</ref>


[[ सिंपलेक्टिक टोपोलॉजी |सिंपलेक्टिक टोपोलॉजी]] और [[एर्गोडिक सिद्धांत]] में संबंधित गणितीय परिणाम हैं; लिउविले के प्रमेय का पालन करने वाली प्रणालियाँ [[रूढ़िवादी प्रणाली|असम्पीडित गतिशील प्रणालियों]] के उदाहरण हैं।
[[ सिंपलेक्टिक टोपोलॉजी |सिंपलेक्टिक टोपोलॉजी]] और [[एर्गोडिक सिद्धांत]] में संबंधित गणितीय परिणाम हैं; लिउविले के प्रमेय का पालन करने वाली प्रणालियाँ [[रूढ़िवादी प्रणाली|असम्पीडित गतिशील प्रणालियों]] के उदाहरण हैं।
Line 8: Line 8:


== लिउविल समीकरण ==
== लिउविल समीकरण ==
[[File:Hamiltonian flow classical.gif|frame|चरण स्थान (शीर्ष) में हैमिल्टनियन यांत्रिकी प्रणालियों के समूह का विकास। प्रत्येक प्रणाली में एक आयामी संभावित कुएं (लाल वक्र, निचला आंकड़ा) में एक विशाल कण होता है। जबकि समूह के एक व्यक्तिगत सदस्य की गति हैमिल्टन के समीकरणों द्वारा दी गई है, लिउविले का समीकरण पूरे वितरण के प्रवाह का वर्णन करता है। यह गति एक असम्पीडित तरल पदार्थ में डाई के समान है।]]लिउविल समीकरण चरण अंतरिक्ष वितरण फलन (भौतिकी) के समय विकास का वर्णन करता है। चूँकि इस समीकरण को सामान्यतः लिउविले समीकरण के रूप में जाना जाता है, [[जोशिया विलार्ड गिब्स]] सांख्यिकीय यांत्रिकी के मौलिक समीकरण के रूप में इस समीकरण के महत्व को पहचानने वाले प्रथम व्यक्ति थे।<ref>J. W. Gibbs, "On the Fundamental Formula of Statistical Mechanics, with Applications to Astronomy and Thermodynamics." Proceedings of the American Association for the Advancement of Science, '''33''', 57–58 (1884). Reproduced in ''The Scientific Papers of J. Willard Gibbs, Vol II'' (1906), [https://archive.org/stream/scientificpapers02gibbuoft#page/16/mode/2up p.&nbsp;16].</ref><ref>{{cite book |last=Gibbs |first=Josiah Willard |author-link=Josiah Willard Gibbs |title=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत|title-link=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत|year=1902 |publisher=[[Charles Scribner's Sons]] |location=New York}}</ref> इसे लिउविले समीकरण के रूप में जाना जाता है क्योंकि अविहित प्रणालियों के लिए इसकी व्युत्पत्ति 1838 में लिउविले द्वारा सर्वप्रथम प्राप्त की गई पहचान का उपयोग करती है।<ref>{{Cite journal|last=Liouville|first=Joseph|year=1838|title=मनमाना स्थिरांकों की भिन्नता के सिद्धांत पर|url=http://sites.mathdoc.fr/JMPA/PDF/JMPA_1838_1_3_A26_0.pdf|journal=Journal de mathématiques pures et appliquées|volume=3|pages=342–349}}</ref><ref>{{Cite book|last=Ehrendorfer|first=Martin|url=https://www.ecmwf.net/sites/default/files/elibrary/2003/9271-liouville-equation-atmospheric-predictability.pdf|title=वायुमंडलीय पूर्वानुमान में लिउविले समीकरण|pages=48–49|chapter=The Liouville Equation: Background - Historical Background}}</ref>[[विहित निर्देशांक]] के साथ [[हैमिल्टनियन प्रणाली|हैमिल्टनियन गतिशील प्रणाली]] पर विचार करें <math>q_i</math> और [[संयुग्मित क्षण|संयुग्म संवेग]] <math>p_i</math>, जहाँ <math>i=1,\dots,n</math> फिर चरण स्थान वितरण <math>\rho(p,q)</math> संभाव्यता निर्धारित करता है यह प्रणाली <math>\rho(p,q)\; \mathrm{d}^nq\,\mathrm{d}^n p</math> अतिसूक्ष्म चरण अंतरिक्ष आयतन में पाई जाएगी, लिउविल समीकरण <math>\mathrm{d} ^nq\,\mathrm{d}^n p</math> किसके विकास को नियंत्रित करता है? <math>\rho(p,q;t)</math> समय के भीतर <math>t</math> इस प्रकार है:
[[File:Hamiltonian flow classical.gif|frame|चरण स्थान (शीर्ष) में हैमिल्टनियन यांत्रिकी प्रणालियों के समूह का विकास है। प्रत्येक प्रणाली में आयामी संभावित वेल (लाल वक्र, निचला आंकड़ा) में विशाल कण होता है। जबकि समूह के व्यक्तिगत सदस्य की गति हैमिल्टन के समीकरणों द्वारा दी गई है, लिउविले का समीकरण सम्पूर्ण वितरण के प्रवाह का वर्णन करता है। यह गति असम्पीडित तरल पदार्थ में डाई के समान है।]]लिउविल समीकरण चरण स्थान वितरण फलन (भौतिकी) के समय विकास का वर्णन करता है। चूँकि इस समीकरण को सामान्यतः लिउविले समीकरण के रूप में जाना जाता है, [[जोशिया विलार्ड गिब्स]] सांख्यिकीय यांत्रिकी के मौलिक समीकरण के रूप में इस समीकरण के महत्व को पहचानने वाले प्रथम व्यक्ति थे।<ref>J. W. Gibbs, "On the Fundamental Formula of Statistical Mechanics, with Applications to Astronomy and Thermodynamics." Proceedings of the American Association for the Advancement of Science, '''33''', 57–58 (1884). Reproduced in ''The Scientific Papers of J. Willard Gibbs, Vol II'' (1906), [https://archive.org/stream/scientificpapers02gibbuoft#page/16/mode/2up p.&nbsp;16].</ref><ref>{{cite book |last=Gibbs |first=Josiah Willard |author-link=Josiah Willard Gibbs |title=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत|title-link=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत|year=1902 |publisher=[[Charles Scribner's Sons]] |location=New York}}</ref> इसे लिउविले समीकरण के रूप में जाना जाता है क्योंकि अविहित प्रणालियों के लिए इसकी व्युत्पत्ति 1838 में लिउविले द्वारा सर्वप्रथम प्राप्त की गई पहचान का उपयोग करती है।<ref>{{Cite journal|last=Liouville|first=Joseph|year=1838|title=मनमाना स्थिरांकों की भिन्नता के सिद्धांत पर|url=http://sites.mathdoc.fr/JMPA/PDF/JMPA_1838_1_3_A26_0.pdf|journal=Journal de mathématiques pures et appliquées|volume=3|pages=342–349}}</ref><ref>{{Cite book|last=Ehrendorfer|first=Martin|url=https://www.ecmwf.net/sites/default/files/elibrary/2003/9271-liouville-equation-atmospheric-predictability.pdf|title=वायुमंडलीय पूर्वानुमान में लिउविले समीकरण|pages=48–49|chapter=The Liouville Equation: Background - Historical Background}}</ref>[[विहित निर्देशांक]] के साथ [[हैमिल्टनियन प्रणाली|हैमिल्टनियन गतिशील प्रणाली]] पर विचार करें <math>q_i</math> और [[संयुग्मित क्षण|संयुग्म संवेग]] <math>p_i</math>, जहाँ <math>i=1,\dots,n</math> फिर चरण स्थान वितरण <math>\rho(p,q)</math> संभाव्यता निर्धारित करता है यह प्रणाली <math>\rho(p,q)\; \mathrm{d}^nq\,\mathrm{d}^n p</math> अतिसूक्ष्म चरण स्थान आयतन में पाई जाएगी, लिउविल समीकरण <math>\mathrm{d} ^nq\,\mathrm{d}^n p</math> किसके विकास को नियंत्रित करता है? <math>\rho(p,q;t)</math> समय के भीतर <math>t</math> इस प्रकार है:
:<math>\frac{d\rho}{dt}=
:<math>\frac{d\rho}{dt}=
\frac{\partial\rho}{\partial t}
\frac{\partial\rho}{\partial t}
+\sum_{i=1}^n\left(\frac{\partial\rho}{\partial q_i}\dot{q}_i
+\sum_{i=1}^n\left(\frac{\partial\rho}{\partial q_i}\dot{q}_i
+\frac{\partial\rho}{\partial p_i}\dot{p}_i\right)=0.</math>
+\frac{\partial\rho}{\partial p_i}\dot{p}_i\right)=0.</math>
समय व्युत्पन्न को बिंदुओं द्वारा दर्शाया जाता है, और प्रणाली के लिए हैमिल्टन के समीकरणों के अनुसार मूल्यांकन किया जाता है। यह समीकरण चरण स्थान में घनत्व के संरक्षण को प्रदर्शित करता है (जो प्रमेय के लिए [[विलार्ड गिब्स]] का नाम था)। लिउविले का प्रमेय यह बताता है:
समय व्युत्पन्न को बिंदुओं द्वारा दर्शाया जाता है, और प्रणाली के लिए हैमिल्टन के समीकरणों के अनुसार मूल्यांकन किया जाता है। यह समीकरण चरण स्थान में घनत्व के संरक्षण को प्रदर्शित करता है (जो प्रमेय के लिए [[विलार्ड गिब्स]] का नाम था)। लिउविले का प्रमेय यह बताता है कि:


:चरण स्थान में किसी भी प्रक्षेपवक्र के साथ वितरण फलन स्थिर रहता है।
:चरण स्थान में किसी भी प्रक्षेपवक्र के साथ वितरण फलन स्थिर रहता है।


लिउविले के प्रमेय का प्रमाण n-आयामी विचलन प्रमेय का उपयोग करता है। यह प्रमाण इस तथ्य पर आधारित है कि का विकास <math>\rho</math> निरंतरता समीकरण के 2n-आयामी वर्जन का पालन करता है:
लिउविले के प्रमेय का प्रमाण n-आयामी विचलन प्रमेय का उपयोग करता है। यह प्रमाण इस तथ्य पर आधारित है कि विकास <math>\rho</math> निरंतरता समीकरण के 2n-आयामी वर्जन का पालन करता है:


:<math>\frac{\partial\rho}{\partial t}+\sum_{i=1}^n\left(\frac{\partial(\rho\dot{q}_i)}{\partial q_i}+\frac{\partial(\rho\dot{p}_i)}{\partial p_i}\right)=0.</math>
:<math>\frac{\partial\rho}{\partial t}+\sum_{i=1}^n\left(\frac{\partial(\rho\dot{q}_i)}{\partial q_i}+\frac{\partial(\rho\dot{p}_i)}{\partial p_i}\right)=0.</math>
Line 30: Line 30:
जहाँ <math>H</math> हैमिल्टनियन है, और हैमिल्टन के समीकरणों के साथ-साथ प्रवाह के साथ हैमिल्टनियन के संरक्षण का उपयोग किया गया है। अर्थात्, चरण स्थान के माध्यम से गति को प्रणाली बिंदुओं के 'द्रव प्रवाह' के रूप में देखना, प्रमेय कि घनत्व का संवहनी व्युत्पन्न, <math>d \rho/dt</math>, शून्य निरंतरता के समीकरण का अनुसरण करता है, यह ध्यान में रखते हुए कि 'वेग क्षेत्र' चरण स्थान में <math>(\dot p , \dot q)</math> में शून्य विचलन होता है (जो हैमिल्टन के संबंधों से अनुसरण करता है)।<ref>Harald J.W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed., World Scientific (Singapore, 2012).</ref>
जहाँ <math>H</math> हैमिल्टनियन है, और हैमिल्टन के समीकरणों के साथ-साथ प्रवाह के साथ हैमिल्टनियन के संरक्षण का उपयोग किया गया है। अर्थात्, चरण स्थान के माध्यम से गति को प्रणाली बिंदुओं के 'द्रव प्रवाह' के रूप में देखना, प्रमेय कि घनत्व का संवहनी व्युत्पन्न, <math>d \rho/dt</math>, शून्य निरंतरता के समीकरण का अनुसरण करता है, यह ध्यान में रखते हुए कि 'वेग क्षेत्र' चरण स्थान में <math>(\dot p , \dot q)</math> में शून्य विचलन होता है (जो हैमिल्टन के संबंधों से अनुसरण करता है)।<ref>Harald J.W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed., World Scientific (Singapore, 2012).</ref>


अन्य उदाहरण चरण स्थान के माध्यम से बिंदुओं के पश्चातल के प्रक्षेप पथ पर विचार करना है। यह दिखाना सरल है कि जैसे पश्चातल समन्वय में विस्तारित होता है, उदाहरण के लिए, <math>p_i</math> यह संगत में श्रिंक होता है <math>q^i </math> दिशा जिससे उत्पाद <math>\Delta p_i \, \Delta q^i </math> स्थिर रहता है।
अन्य उदाहरण चरण स्थान के माध्यम से बिंदुओं के पश्चातल के प्रक्षेप पथ पर विचार करना है। यह दिखाना सरल है कि जैसे पश्चातल समन्वय में विस्तारित होता है, उदाहरण के लिए, <math>p_i</math>यह संगत में श्रिंक होता है <math>q^i </math>दिशा जिससे उत्पाद <math>\Delta p_i \, \Delta q^i </math> स्थिर रहता है।


==अन्य सूत्रीकरण==
==अन्य सूत्रीकरण==
Line 44: Line 44:
'''एर्गोडिक सिद्धांत'''
'''एर्गोडिक सिद्धांत'''


एर्गोडिक सिद्धांत और गतिशील प्रणालियों में, अब तक दिए गए भौतिक विचारों से प्रेरित, संगत परिणाम होता है जिसे लिउविले के प्रमेय के रूप में भी जाना जाता है। हैमिल्टनियन यांत्रिकी में, चरण स्थान स्मूथ मैनिफोल्ड है जो स्वाभाविक रूप से स्मूथ [[माप (गणित)]] से सुसज्जित होता है (स्थानीय रूप से, यह माप 6 n-आयामी [[लेब्सेग माप]] है)। प्रमेय कहता है कि [[हैमिल्टनियन प्रवाह]] के अंतर्गत यह सहज माप अपरिवर्तनीय है। अधिक सामान्यतः, कोई आवश्यक और पर्याप्त स्थिति का वर्णन कर सकता है जिसके अंतर्गत प्रवाह के अंतर्गत सुचारू माप अपरिवर्तनीय होता है। हैमिल्टनियन स्तिथि तब परिणाम बन जाता है।
एर्गोडिक सिद्धांत और गतिशील प्रणालियों में, अब तक दिए गए भौतिक विचारों से प्रेरित, संगत परिणाम होता है जिसे लिउविले के प्रमेय के रूप में भी जाना जाता है। हैमिल्टनियन यांत्रिकी में, चरण स्थान स्मूथ मैनिफोल्ड है जो स्वाभाविक रूप से स्मूथ [[माप (गणित)]] से सुसज्जित होता है (स्थानीय रूप से, यह माप 6 n-आयामी [[लेब्सेग माप]] है)। प्रमेय कहता है कि [[हैमिल्टनियन प्रवाह]] के अंतर्गत यह सहज माप अपरिवर्तनीय है। अधिक सामान्यतः, कोई आवश्यक और पर्याप्त स्थिति का वर्णन कर सकता है जिससे प्रवाह के अंतर्गत सुचारू माप अपरिवर्तनीय होता है। हैमिल्टनियन स्तिथि तब परिणाम बन जाता है।


=== [[सिंपलेक्टिक ज्यामिति]] ===
=== [[सिंपलेक्टिक ज्यामिति]] ===
Line 51: Line 51:


:<math>\omega = dp_\mu\wedge dq^\mu.</math>
:<math>\omega = dp_\mu\wedge dq^\mu.</math>
हमारे मैनिफोल्ड का आयतन रूप सिंपलेक्टिक 2-फॉर्म की शीर्ष [[बाहरी शक्ति]] है, और ऊपर वर्णित चरण स्थान पर माप का प्रतिनिधित्व है।
हमारे मैनिफोल्ड का आयतन रूप सिंपलेक्टिक 2-फॉर्म के शीर्ष [[बाहरी शक्ति]] है, और ऊपर वर्णित चरण स्थान पर माप का प्रतिनिधित्व करते है।


हमारे चरण अंतरिक्ष [[सिंपलेक्टिक मैनिफ़ोल्ड]] पर फलन द्वारा उत्पन्न [[हैमिल्टनियन वेक्टर फ़ील्ड|हैमिल्टनियन वेक्टर क्षेत्र]] <math>f(q,p)</math> को परिभाषित कर सकते हैं जैसा कि,
हमारे चरण स्थान [[सिंपलेक्टिक मैनिफ़ोल्ड]] पर फलन द्वारा उत्पन्न [[हैमिल्टनियन वेक्टर फ़ील्ड|हैमिल्टनियन वेक्टर क्षेत्र]] <math>f(q,p)</math> को परिभाषित कर सकते हैं जैसा कि,


:<math>X_f = \frac{\partial f}{\partial p_\mu}\frac{\partial}{\partial q^\mu} - \frac{\partial f}{\partial q^\mu}\frac{\partial}{\partial p_\mu}.</math>
:<math>X_f = \frac{\partial f}{\partial p_\mu}\frac{\partial}{\partial q^\mu} - \frac{\partial f}{\partial q^\mu}\frac{\partial}{\partial p_\mu}.</math>
विशेष रूप से, जब जनरेटिंग फलन हैमिल्टनियन <math>f(q,p) = H</math> ही है, तब हम पाते हैं कि,
विशेष रूप से, जब जनरेटिंग फलन हैमिल्टनियन <math>f(q,p) = H</math> ही है, तब हम प्राप्त करते हैं कि,


:<math>X_H = \frac{\partial H}{\partial p_\mu}\frac{\partial}{\partial q^\mu} - \frac{\partial H}{\partial q^\mu}\frac{\partial}{\partial p_\mu} = \frac{d q^\mu}{d t}\frac{\partial}{\partial q^\mu} + \frac{d p^\mu}{dt}\frac{\partial}{\partial p_\mu} = \frac{d}{dt}</math>
:<math>X_H = \frac{\partial H}{\partial p_\mu}\frac{\partial}{\partial q^\mu} - \frac{\partial H}{\partial q^\mu}\frac{\partial}{\partial p_\mu} = \frac{d q^\mu}{d t}\frac{\partial}{\partial q^\mu} + \frac{d p^\mu}{dt}\frac{\partial}{\partial p_\mu} = \frac{d}{dt}</math>
Line 84: Line 84:
'''क्वांटम लिउविल समीकरण'''
'''क्वांटम लिउविल समीकरण'''


[[क्वांटम यांत्रिकी]] में लिउविले समीकरण का एनालॉग [[घनत्व मैट्रिक्स|मिश्रित अवस्था]] के समय विकास का वर्णन करता है। कैनोनिकल परिमाणीकरण से इस प्रमेय का एक क्वांटम-मैकेनिकल वर्जन, [[वॉन न्यूमैन समीकरण]] प्राप्त होता है। यह प्रक्रिया, जिसका उपयोग प्रायः शास्त्रीय प्रणालियों के क्वांटम एनालॉग्स को तैयार करने के लिए किया जाता है, हैमिल्टनियन यांत्रिकी का उपयोग करके शास्त्रीय प्रणाली का वर्णन करना सम्मिलित है। शास्त्रीय चर को फिर से क्वांटम ऑपरेटरों के रूप में व्याख्या किया जाता है, जबकि पॉइसन ब्रैकेट को [[कम्यूटेटर]] द्वारा प्रतिस्थापित किया जाता है। इस स्तिथि में, परिणामी समीकरण है<ref>''The theory of open quantum systems'', by Breuer and Petruccione, [https://books.google.com/books?id=0Yx5VzaMYm8C&pg=PA110 p. 110].</ref><ref>''Statistical mechanics'', by Schwabl, [https://books.google.com/books?id=o-HyHvRZ4VcC&pg=PA16 p. 16].</ref>
[[क्वांटम यांत्रिकी]] में लिउविले समीकरण का एनालॉग [[घनत्व मैट्रिक्स|मिश्रित अवस्था]] के समय विकास का वर्णन करता है। कैनोनिकल परिमाणीकरण से इस प्रमेय का एक क्वांटम-मैकेनिकल वर्जन, [[वॉन न्यूमैन समीकरण]] प्राप्त होता है। यह प्रक्रिया, जिसका उपयोग प्रायः शास्त्रीय प्रणालियों के क्वांटम एनालॉग्स को तैयार करने के लिए किया जाता है, हैमिल्टनियन यांत्रिकी का उपयोग करके शास्त्रीय प्रणाली का वर्णन करना सम्मिलित है। शास्त्रीय चर को फिर से क्वांटम ऑपरेटरों के रूप में व्याख्या की जाती है, जबकि पॉइसन ब्रैकेट को [[कम्यूटेटर]] द्वारा प्रतिस्थापित किया जाता है। इस स्तिथि में, परिणामी समीकरण है:<ref>''The theory of open quantum systems'', by Breuer and Petruccione, [https://books.google.com/books?id=0Yx5VzaMYm8C&pg=PA110 p. 110].</ref><ref>''Statistical mechanics'', by Schwabl, [https://books.google.com/books?id=o-HyHvRZ4VcC&pg=PA16 p. 16].</ref>
:<math>\frac{\partial \rho}{\partial t} = \frac{1}{i \hbar}[H, \rho],</math>
:<math>\frac{\partial \rho}{\partial t} = \frac{1}{i \hbar}[H, \rho],</math>
जहां ρ घनत्व आव्यूह है।
जहां ρ घनत्व आव्यूह है।


जब किसी अवलोकन योग्य के अपेक्षित मूल्य पर प्रारम्भ किया जाता है, तो संबंधित समीकरण एरेनफेस्ट के प्रमेय द्वारा दिया जाता है, और रूप लेता है:
जब किसी अवलोकन योग्य के अपेक्षित मान पर प्रारम्भ किया जाता है, तो संबंधित समीकरण एरेनफेस्ट के प्रमेय द्वारा दिया जाता है, और रूप लेता है:


:<math>\frac{d}{dt}\langle A\rangle = -\frac{1}{i \hbar}\langle [H, A]\rangle,</math>
:<math>\frac{d}{dt}\langle A\rangle = -\frac{1}{i \hbar}\langle [H, A]\rangle,</math>
जहाँ <math>A</math> अवलोकनीय है, चिह्न अंतर पर ध्यान दें, जो इस धारणा से चलता है कि ऑपरेटर स्थिर है और स्थिति समय पर निर्भर है।
जहाँ <math>A</math> अवलोकनीय है, चिह्न अंतर पर ध्यान दें, जो इस धारणा से चलता है कि ऑपरेटर स्थिर है और स्थिति समय पर निर्भर है।


क्वांटम यांत्रिकी के [[चरण-अंतरिक्ष सूत्रीकरण]] में, वॉन न्यूमैन समीकरण के चरण-अंतरिक्ष एनालॉग में पॉइसन कोष्ठक के लिए [[मोयल ब्रैकेट]] को प्रतिस्थापित करने से संभाव्यता तरल पदार्थ की संपीड़न क्षमता होती है, और इस प्रकार लिउविले के प्रमेय असंपीड्यता का उल्लंघन होता है। इसके पश्चात, सार्थक क्वांटम प्रक्षेप पथ को परिभाषित करने में सहवर्ती कठिनाइयाँ उत्पन्न होती हैं।<ref>{{cite journal | arxiv=1611.03303 | doi=10.1016/j.physa.2017.10.047 | title=अनहार्मोनिक क्वांटम मैकेनिकल सिस्टम में चरण अंतरिक्ष प्रक्षेपवक्र की सुविधा नहीं होती है| year=2018 | last1=Oliva | first1=Maxime | last2=Kakofengitis | first2=Dimitris | last3=Steuernagel | first3=Ole | journal=Physica A: Statistical Mechanics and Its Applications | volume=502 | pages=201–210 | bibcode=2018PhyA..502..201O | s2cid=53691877 }}</ref>
क्वांटम यांत्रिकी के [[चरण-अंतरिक्ष सूत्रीकरण|चरण-स्थान सूत्रीकरण]] में, वॉन न्यूमैन समीकरण के चरण-स्थान एनालॉग में पॉइसन कोष्ठक के लिए [[मोयल ब्रैकेट]] को प्रतिस्थापित करने से संभाव्यता तरल पदार्थ की संपीड़न क्षमता होती है, और इस प्रकार लिउविले के प्रमेय असंपीड्यता का उल्लंघन होता है। इसके पश्चात, सार्थक क्वांटम प्रक्षेप पथ को परिभाषित करने में सहवर्ती कठिनाइयाँ उत्पन्न होती हैं।<ref>{{cite journal | arxiv=1611.03303 | doi=10.1016/j.physa.2017.10.047 | title=अनहार्मोनिक क्वांटम मैकेनिकल सिस्टम में चरण अंतरिक्ष प्रक्षेपवक्र की सुविधा नहीं होती है| year=2018 | last1=Oliva | first1=Maxime | last2=Kakofengitis | first2=Dimitris | last3=Steuernagel | first3=Ole | journal=Physica A: Statistical Mechanics and Its Applications | volume=502 | pages=201–210 | bibcode=2018PhyA..502..201O | s2cid=53691877 }}</ref>


== उदाहरण ==
== उदाहरण ==


=== SHO चरण-अंतरिक्ष आयतन ===
=== एसएचओ चरण-स्थान आयतन ===


[[File:SHOPhaseSpaceUpdate.gif|300px|thumb|सरल हार्मोनिक ऑसिलेटर (एसएचओ) के लिए चरण स्थान का समय विकास। यहां हमने लिया है <math>m = \omega = 1</math> और क्षेत्र पर विचार कर रहे हैं <math>p, q \in [-1, 1]</math>.]]तीन आयामों में <math>N</math>-कण प्रणाली तीन आयामों में, और केवल <math>\mathrm{d}\mathcal{N}</math> कण के विकास पर ध्यान केंद्रित किया जाता है, चरण स्थान के भीतर, ये <math>\mathrm{d}\mathcal{N}</math> कण दिए गए अनंत लघु आयतन पर प्रभुत्व कर लेते हैं:
[[File:SHOPhaseSpaceUpdate.gif|300px|thumb|सरल हार्मोनिक ऑसिलेटर (एसएचओ) के लिए चरण स्थान का समय विकास। यहां हमने लिया है कि <math>m = \omega = 1</math> और <math>p, q \in [-1, 1]</math> क्षेत्र पर विचार कर रहे हैं।]]तीन आयामों में <math>N</math>-कण प्रणाली तीन आयामों में, और केवल <math>\mathrm{d}\mathcal{N}</math> कण के विकास पर ध्यान केंद्रित किया जाता है, चरण स्थान के भीतर, ये <math>\mathrm{d}\mathcal{N}</math> कण दिए गए अनंत लघु आयतन पर प्रभुत्व कर लेते हैं:


: <math>\mathrm{d}\Gamma = \displaystyle\prod_{i=1}^N d^3p_i d^3q_i.</math>
: <math>\mathrm{d}\Gamma = \displaystyle\prod_{i=1}^N d^3p_i d^3q_i.</math>
Line 116: Line 116:
dp_i' = dp_i + \frac{\partial\dot{p_i}}{\partial p_i}dp_i\delta t.
dp_i' = dp_i + \frac{\partial\dot{p_i}}{\partial p_i}dp_i\delta t.
\end{cases}</math>
\end{cases}</math>
नए अनंत-सूक्ष्म चरण-अंतरिक्ष आयतन का परिक्षण करने के लिए <math>\mathrm{d}\Gamma'</math>, हमें उपरोक्त मात्रा के उत्पाद की आवश्यकता है। पहले क्रम करने के लिए <math>\delta t</math>, निम्नलिखित है:
नए अनंत-सूक्ष्म चरण-स्थान आयतन का परिक्षण करने के लिए <math>\mathrm{d}\Gamma'</math>, हमें उपरोक्त मात्रा के उत्पाद की आवश्यकता है। पहले क्रम करने के लिए <math>\delta t</math>, निम्नलिखित है:


: <math>dq_i'dp_i' = dq_idp_i\left[1 + \left( \frac{\partial\dot{q_i}}{\partial q_i} +  \frac{\partial\dot{p_i}}{\partial p_i}\right) \delta t\right].</math>
: <math>dq_i'dp_i' = dq_idp_i\left[1 + \left( \frac{\partial\dot{q_i}}{\partial q_i} +  \frac{\partial\dot{p_i}}{\partial p_i}\right) \delta t\right].</math>
Line 143: Line 143:
</ref>
</ref>


प्रश्न यह है कि चरण-स्थान की मात्रा वास्तव में समय के साथ कैसे विकसित होती है। ऊपर हमने दिखाया है कि कुल आयतन संरक्षित है, किंतु यह कैसा दिखता है इसके बारे में कुछ नहीं कहा। ]एकल कण के लिए हम देख सकते हैं कि चरण स्थान में इसका प्रक्षेपवक्र स्थिरांक के दीर्घवृत्त द्वारा दिया गया है <math>H</math> स्पष्ट रूप से, कोई प्रणाली के लिए हैमिल्टन के समीकरणों को हल कर सकता है:
प्रश्न यह है कि चरण-स्थान की मात्रा वास्तव में समय के साथ कैसे विकसित होती है। ऊपर हमने दिखाया है कि कुल आयतन संरक्षित है, किंतु यह कैसा दिखता है इसके बारे में कुछ नहीं कहा। एकल कण के लिए हम देख सकते हैं कि चरण स्थान में इसका प्रक्षेपवक्र स्थिरांक के दीर्घवृत्त द्वारा दिया गया है <math>H</math> स्पष्ट रूप से, कोई प्रणाली के लिए हैमिल्टन के समीकरणों को हल कर सकता है:


:<math>\begin{align}
:<math>\begin{align}
Line 159: Line 159:
=== डैम्पड हार्मोनिक ऑसिलेटर ===
=== डैम्पड हार्मोनिक ऑसिलेटर ===


[[File:DampedPhaseSpaceUpdate.gif|300px|thumb|नम हार्मोनिक थरथरानवाला के लिए चरण-स्थान मात्रा का विकास। मापदंडों के समान मानों का उपयोग SHO मामले में किया जाता है <math>\gamma = 0.5\ (\alpha = 0.25)</math>.]]लिउविले के प्रमेय की मूलभूत धारणाओं में से यह है कि प्रणाली ऊर्जा के संरक्षण का पालन करती है। चरण स्थान के संदर्भ में, यह कहना है <math>\rho</math> स्थिर ऊर्जा के चरण-अंतरिक्ष सतहों पर स्थिर है यदि हम ऐसी प्रणाली <math>E</math> पर विचार करके इस आवश्यकता को विभक्त कर देते हैं जिसमें ऊर्जा संरक्षित नहीं है, तो हम प्राप्त करते हैं <math>\rho</math> स्थिर रहने में भी विफल रहता है।
[[File:DampedPhaseSpaceUpdate.gif|300px|thumb|डैम्पड हार्मोनिक ऑसिलेटर के लिए चरण-स्थान मात्रा का विकास है। पैरामीटर्स के समान मानों का उपयोग एसएचओ स्तिथि <math>\gamma = 0.5\ (\alpha = 0.25)</math> में किया जाता है।]]लिउविले के प्रमेय की मूलभूत धारणाओं में से यह है कि प्रणाली ऊर्जा के संरक्षण का पालन करती है। चरण स्थान के संदर्भ में, यह कहना है <math>\rho</math> स्थिर ऊर्जा के चरण-स्थान सतहों पर स्थिर है यदि हम ऐसी प्रणाली <math>E</math> पर विचार करके इस आवश्यकता को विभक्त कर देते हैं जिसमें ऊर्जा संरक्षित नहीं है, तो हम प्राप्त करते हैं <math>\rho</math> स्थिर रहने में भी विफल रहता है।


इसके उदाहरण के रूप में, प्रणाली पर फिर से विचार करें, प्रत्येक में <math>N</math> कण <math>3</math>-आयामी आइसोट्रोपिक हार्मोनिक क्षमता, हैमिल्टनियन जिसके लिए पिछले उदाहरण में दिया गया है। इस बार, हम यह नियम जोड़ते हैं कि प्रत्येक कण घर्षण बल का अनुभव करता है। चूँकि यह [[गैर-रूढ़िवादी बल|नॉन-कन्सेर्वटिवे बल]] है, हमें हैमिल्टन के समीकरणों को इस प्रकार विस्तारित करने की आवश्यकता है
इसके उदाहरण के रूप में, प्रणाली पर फिर से विचार करें, प्रत्येक में <math>N</math> कण <math>3</math>-आयामी आइसोट्रोपिक हार्मोनिक क्षमता, हैमिल्टनियन जिसके लिए पिछले उदाहरण में दिया गया है। इस बार, हम यह नियम जोड़ते हैं कि प्रत्येक कण घर्षण बल का अनुभव करता है। चूँकि यह [[गैर-रूढ़िवादी बल|नॉन-कन्सेर्वटिवे बल]] है, हमें हैमिल्टन के समीकरणों को इस प्रकार विस्तारित करने की आवश्यकता है:


:<math>\begin{align}
:<math>\begin{align}
Line 176: Line 176:
&= dq_idp_i\left[1 -\gamma \delta t\right].
&= dq_idp_i\left[1 -\gamma \delta t\right].
\end{align}</math>
\end{align}</math>
हमारे नए अतिसूक्ष्म चरण अंतरिक्ष आयतन की गणना करना, और केवल प्रथम क्रम को अंदर रखना <math>\delta t</math> हमें निम्नलिखित परिणाम मिलता है:
हमारे नए अतिसूक्ष्म चरण स्थान आयतन की गणना करते है, और केवल प्रथम क्रम को अंदर रखना <math>\delta t</math> हमें निम्नलिखित परिणाम मिलता है:


:<math>\mathrm{d}\Gamma' = \displaystyle\prod_{i=1}^N d^3q_i'd^3p_i' = \left[1-\gamma\delta t\right]^{3N}\prod_{i=1}^N d^3q_id^3p_i = \mathrm{d}\Gamma\left[1-3N\gamma\delta t\right].</math>
:<math>\mathrm{d}\Gamma' = \displaystyle\prod_{i=1}^N d^3q_i'd^3p_i' = \left[1-\gamma\delta t\right]^{3N}\prod_{i=1}^N d^3q_id^3p_i = \mathrm{d}\Gamma\left[1-3N\gamma\delta t\right].</math>
हमने प्राप्त किया है कि अनंतिम चरण-स्थान की मात्रा अब स्थिर नहीं है, और इस प्रकार चरण-स्थान घनत्व संरक्षित नहीं है। जैसा कि समय बढ़ने के साथ समीकरण से देखा जा सकता है, हम आशा करते हैं कि हमारे चरण-स्थान की मात्रा शून्य हो जाएगी क्योंकि घर्षण प्रणाली को प्रभावित करता है।
हमने प्राप्त किया है कि अनंतिम चरण-स्थान की मात्रा अब स्थिर नहीं है, और इस प्रकार चरण-स्थान घनत्व संरक्षित नहीं है। जैसा कि समय बढ़ने के साथ समीकरण से देखा जा सकता है, हम आशा करते हैं कि हमारे चरण-स्थान की मात्रा शून्य हो जाएगी क्योंकि घर्षण प्रणाली को प्रभावित करता है।


जहां तक ​​यह विषय है कि चरण-अंतरिक्ष का आयतन समय के साथ कैसे विकसित होता है, हमारे पास अभी भी निरंतर घूर्णन होगा जैसा कि अविभाजित स्तिथि में होता है। चूँकि, अवमंदन प्रत्येक दीर्घवृत्त की त्रिज्या में निरन्तर कमी आएँगी। फिर से हम स्पष्ट रूप से हैमिल्टन के समीकरणों का उपयोग करके प्रक्षेप पथों को हल कर सकते हैं, ऊपर दिए गए संशोधित समीकरणों का उपयोग करने का ध्यान रखते हुए।  <math>\alpha \equiv \frac{\gamma}{2}</math> सुविधा के लिए, हम प्राप्त करते हैं,
जहां तक ​​यह विषय है कि चरण-स्थान का आयतन समय के साथ कैसे विकसित होता है, हमारे पास अभी भी निरंतर घूर्णन होगा जैसा कि अविभाजित स्तिथि में होता है। चूँकि, अवमंदन प्रत्येक दीर्घवृत्त की त्रिज्या में निरन्तर कमी आएँगी। फिर से हम स्पष्ट रूप से हैमिल्टन के समीकरणों का उपयोग करके प्रक्षेप पथों को हल कर सकते हैं, ऊपर दिए गए संशोधित समीकरणों का उपयोग करने का ध्यान रखते हुए <math>\alpha \equiv \frac{\gamma}{2}</math> सुविधा के लिए, हम प्राप्त करते हैं,


:<math>\begin{align}
:<math>\begin{align}
Line 187: Line 187:
p_i(t) &= e^{-\alpha t}\left[P_i\cos{\omega_1 t} - m(\omega_1 Q_i + 2\alpha B_i)\sin{\omega_1 t}\right] & &B_i \equiv \frac{1}{\omega_1}\left(\frac{P_i}{m} + 2\alpha Q_i\right),
p_i(t) &= e^{-\alpha t}\left[P_i\cos{\omega_1 t} - m(\omega_1 Q_i + 2\alpha B_i)\sin{\omega_1 t}\right] & &B_i \equiv \frac{1}{\omega_1}\left(\frac{P_i}{m} + 2\alpha Q_i\right),
\end{align}</math>
\end{align}</math>
जहां मान <math>Q_i</math> और <math>P_i</math> की प्रारंभिक स्थिति और संवेग को दर्शाता है, <math>i</math>-वाँ कण जैसे-जैसे प्रणाली विकसित होता है, कुल चरण-स्थान की मात्रा मूल की ओर बढ़ती जाएगी। इसे ऊपर चित्र में देखा जा सकता है।
जहां मान <math>Q_i</math> और <math>P_i</math> की प्रारंभिक स्थिति और संवेग को दर्शाता है, <math>i</math>-वाँ कण जैसे-जैसे प्रणाली विकसित होती है, कुल चरण-स्थान की मात्रा मूल की ओर बढ़ती जाएगी। इसे ऊपर चित्र में देखा जा सकता है।


==टिप्पणियाँ==
==टिप्पणियाँ==
* लिउविल समीकरण संतुलन औरअसंतुलन दोनों प्रणालियों के लिए मान्य है। यह [[गैर-संतुलन सांख्यिकीय यांत्रिकी|असंतुलन सांख्यिकीय यांत्रिकी]] का मौलिक समीकरण है।
* लिउविल समीकरण संतुलन और असंतुलन दोनों प्रणालियों के लिए मान्य है। यह [[गैर-संतुलन सांख्यिकीय यांत्रिकी|असंतुलन सांख्यिकीय यांत्रिकी]] का मौलिक समीकरण है।
* लिउविले समीकरण [[उतार-चढ़ाव प्रमेय|फ्लक्चुएशन प्रमेय]] के प्रमाण का अभिन्न अंग है जिससे थर्मोडायनामिक्स का दूसरा नियम प्राप्त किया जा सकता है। यह शियर विस्कोसिटी, थर्मल चालकता या विद्युत चालकता जैसे रैखिक [[परिवहन गुणांक]] के लिए ग्रीन-कुबो संबंधों की व्युत्पत्ति का प्रमुख घटक भी है।
* लिउविले समीकरण [[उतार-चढ़ाव प्रमेय|फ्लक्चुएशन प्रमेय]] के प्रमाण का अभिन्न अंग है जिससे थर्मोडायनामिक्स का दूसरा नियम प्राप्त किया जा सकता है। यह शियर विस्कोसिटी, थर्मल चालकता या विद्युत चालकता जैसे रैखिक [[परिवहन गुणांक]] के लिए ग्रीन-कुबो संबंधों की व्युत्पत्ति का प्रमुख घटक भी है।
* वस्तुतः हैमिल्टनियन यांत्रिकी, उन्नत सांख्यिकीय यांत्रिकी, या सिंपलेक्टिक ज्यामिति पर कोई भी पाठ्यपुस्तक लिउविले प्रमेय प्राप्त करेगी।<ref name="Nash2015"/><ref>For a particularly clear derivation see {{cite book |title=The Principles of Statistical Mechanics |first=R. C. |last=Tolman |author-link=Richard C. Tolman |publisher=Dover |year=1979 |pages=48–51 |isbn=9780486638966 |url=https://books.google.com/books?id=4TqQZo962s0C&pg=PA48 }}</ref><ref>{{cite web |url=https://hepweb.ucsd.edu/ph110b/110b_notes/node93.html |title=चरण स्थान और लिउविले का प्रमेय|access-date=January 6, 2014 }} Nearly identical to proof in this Wikipedia article. Assumes (without proof) the ''n''-dimensional continuity equation.</ref><ref>{{cite web |title=चरण स्थान आयतन का संरक्षण और लिउविले का प्रमेय|url=https://www.nyu.edu/classes/tuckerman/stat.mech/lectures/lecture_2/node2.html |access-date=January 6, 2014 }} A rigorous proof based on how the Jacobian volume element transforms under Hamiltonian mechanics.</ref><ref>{{cite web |url=http://www.pmaweb.caltech.edu/~mcc/Ph127/a/Lecture_3.pdf |title=Physics 127a: Class Notes |access-date=January 6, 2014 }} Uses the ''n''-dimensional divergence theorem (without proof).</ref>
* वस्तुतः हैमिल्टनियन यांत्रिकी, उन्नत सांख्यिकीय यांत्रिकी, या सिंपलेक्टिक ज्यामिति पर कोई भी पाठ्यपुस्तक लिउविले प्रमेय प्राप्त करेगी।<ref name="Nash2015"/><ref>For a particularly clear derivation see {{cite book |title=The Principles of Statistical Mechanics |first=R. C. |last=Tolman |author-link=Richard C. Tolman |publisher=Dover |year=1979 |pages=48–51 |isbn=9780486638966 |url=https://books.google.com/books?id=4TqQZo962s0C&pg=PA48 }}</ref><ref>{{cite web |url=https://hepweb.ucsd.edu/ph110b/110b_notes/node93.html |title=चरण स्थान और लिउविले का प्रमेय|access-date=January 6, 2014 }} Nearly identical to proof in this Wikipedia article. Assumes (without proof) the ''n''-dimensional continuity equation.</ref><ref>{{cite web |title=चरण स्थान आयतन का संरक्षण और लिउविले का प्रमेय|url=https://www.nyu.edu/classes/tuckerman/stat.mech/lectures/lecture_2/node2.html |access-date=January 6, 2014 }} A rigorous proof based on how the Jacobian volume element transforms under Hamiltonian mechanics.</ref><ref>{{cite web |url=http://www.pmaweb.caltech.edu/~mcc/Ph127/a/Lecture_3.pdf |title=Physics 127a: Class Notes |access-date=January 6, 2014 }} Uses the ''n''-dimensional divergence theorem (without proof).</ref>

Revision as of 21:43, 2 December 2023

भौतिकी में, लिउविले का प्रमेय, जिसका नाम फ्रांसीसी गणितज्ञ जोसेफ लिउविले के नाम पर रखा गया है, शास्त्रीय सांख्यिकीय यांत्रिकी और हैमिल्टनियन यांत्रिकी में प्रमुख प्रमेय है। यह आशय करता है कि चरण स्थान वितरण फलन प्रणाली के प्रक्षेप पथ के साथ स्थिर है - अर्थात चरण-स्थान के माध्यम से यात्रा करने वाले किसी दिए गए प्रणाली बिंदु के निकट के प्रणाली बिंदुओं का घनत्व समय के साथ स्थिर है यह समय-स्वतंत्र घनत्व सांख्यिकीय यांत्रिकी में शास्त्रीय प्राथमिक संभाव्यता के रूप में जाना जाता है।[1]

सिंपलेक्टिक टोपोलॉजी और एर्गोडिक सिद्धांत में संबंधित गणितीय परिणाम हैं; लिउविले के प्रमेय का पालन करने वाली प्रणालियाँ असम्पीडित गतिशील प्रणालियों के उदाहरण हैं।

लिउविले के प्रमेय का स्टोकेस्टिक प्रणालियों तक विस्तार है।[2]

लिउविल समीकरण

चरण स्थान (शीर्ष) में हैमिल्टनियन यांत्रिकी प्रणालियों के समूह का विकास है। प्रत्येक प्रणाली में आयामी संभावित वेल (लाल वक्र, निचला आंकड़ा) में विशाल कण होता है। जबकि समूह के व्यक्तिगत सदस्य की गति हैमिल्टन के समीकरणों द्वारा दी गई है, लिउविले का समीकरण सम्पूर्ण वितरण के प्रवाह का वर्णन करता है। यह गति असम्पीडित तरल पदार्थ में डाई के समान है।

लिउविल समीकरण चरण स्थान वितरण फलन (भौतिकी) के समय विकास का वर्णन करता है। चूँकि इस समीकरण को सामान्यतः लिउविले समीकरण के रूप में जाना जाता है, जोशिया विलार्ड गिब्स सांख्यिकीय यांत्रिकी के मौलिक समीकरण के रूप में इस समीकरण के महत्व को पहचानने वाले प्रथम व्यक्ति थे।[3][4] इसे लिउविले समीकरण के रूप में जाना जाता है क्योंकि अविहित प्रणालियों के लिए इसकी व्युत्पत्ति 1838 में लिउविले द्वारा सर्वप्रथम प्राप्त की गई पहचान का उपयोग करती है।[5][6]विहित निर्देशांक के साथ हैमिल्टनियन गतिशील प्रणाली पर विचार करें और संयुग्म संवेग , जहाँ फिर चरण स्थान वितरण संभाव्यता निर्धारित करता है यह प्रणाली अतिसूक्ष्म चरण स्थान आयतन में पाई जाएगी, लिउविल समीकरण किसके विकास को नियंत्रित करता है? समय के भीतर इस प्रकार है:

समय व्युत्पन्न को बिंदुओं द्वारा दर्शाया जाता है, और प्रणाली के लिए हैमिल्टन के समीकरणों के अनुसार मूल्यांकन किया जाता है। यह समीकरण चरण स्थान में घनत्व के संरक्षण को प्रदर्शित करता है (जो प्रमेय के लिए विलार्ड गिब्स का नाम था)। लिउविले का प्रमेय यह बताता है कि:

चरण स्थान में किसी भी प्रक्षेपवक्र के साथ वितरण फलन स्थिर रहता है।

लिउविले के प्रमेय का प्रमाण n-आयामी विचलन प्रमेय का उपयोग करता है। यह प्रमाण इस तथ्य पर आधारित है कि विकास निरंतरता समीकरण के 2n-आयामी वर्जन का पालन करता है:

अर्थात 3-ट्यूपल संरक्षित धारा है। ध्यान दें कि इसके और लिउविल के समीकरण के मध्य अंतर पद हैं:

जहाँ हैमिल्टनियन है, और हैमिल्टन के समीकरणों के साथ-साथ प्रवाह के साथ हैमिल्टनियन के संरक्षण का उपयोग किया गया है। अर्थात्, चरण स्थान के माध्यम से गति को प्रणाली बिंदुओं के 'द्रव प्रवाह' के रूप में देखना, प्रमेय कि घनत्व का संवहनी व्युत्पन्न, , शून्य निरंतरता के समीकरण का अनुसरण करता है, यह ध्यान में रखते हुए कि 'वेग क्षेत्र' चरण स्थान में में शून्य विचलन होता है (जो हैमिल्टन के संबंधों से अनुसरण करता है)।[7]

अन्य उदाहरण चरण स्थान के माध्यम से बिंदुओं के पश्चातल के प्रक्षेप पथ पर विचार करना है। यह दिखाना सरल है कि जैसे पश्चातल समन्वय में विस्तारित होता है, उदाहरण के लिए, यह संगत में श्रिंक होता है दिशा जिससे उत्पाद स्थिर रहता है।

अन्य सूत्रीकरण

पॉइसन ब्रैकेट

उपरोक्त प्रमेय को प्रायः पॉइसन ब्रैकेट के संदर्भ में दोहराया जाता है:

या, रैखिक लिउविल ऑपरेटर या लिउविलियन के संदर्भ में,

जैसा

एर्गोडिक सिद्धांत

एर्गोडिक सिद्धांत और गतिशील प्रणालियों में, अब तक दिए गए भौतिक विचारों से प्रेरित, संगत परिणाम होता है जिसे लिउविले के प्रमेय के रूप में भी जाना जाता है। हैमिल्टनियन यांत्रिकी में, चरण स्थान स्मूथ मैनिफोल्ड है जो स्वाभाविक रूप से स्मूथ माप (गणित) से सुसज्जित होता है (स्थानीय रूप से, यह माप 6 n-आयामी लेब्सेग माप है)। प्रमेय कहता है कि हैमिल्टनियन प्रवाह के अंतर्गत यह सहज माप अपरिवर्तनीय है। अधिक सामान्यतः, कोई आवश्यक और पर्याप्त स्थिति का वर्णन कर सकता है जिससे प्रवाह के अंतर्गत सुचारू माप अपरिवर्तनीय होता है। हैमिल्टनियन स्तिथि तब परिणाम बन जाता है।

सिंपलेक्टिक ज्यामिति

सिम्प्लेक्टिक ज्यामिति के संदर्भ में लिउविले के प्रमेय को भी तैयार कर सकते हैं। किसी दिए गए प्रणाली के लिए, चरण स्थान पर विचार कर सकते हैं विशेष हैमिल्टनियन का अनेक गुना के रूप में सिम्प्लेक्टिक 2-प्रपत्र से संपन्न है:

हमारे मैनिफोल्ड का आयतन रूप सिंपलेक्टिक 2-फॉर्म के शीर्ष बाहरी शक्ति है, और ऊपर वर्णित चरण स्थान पर माप का प्रतिनिधित्व करते है।

हमारे चरण स्थान सिंपलेक्टिक मैनिफ़ोल्ड पर फलन द्वारा उत्पन्न हैमिल्टनियन वेक्टर क्षेत्र को परिभाषित कर सकते हैं जैसा कि,

विशेष रूप से, जब जनरेटिंग फलन हैमिल्टनियन ही है, तब हम प्राप्त करते हैं कि,

जहां हमने हैमिल्टन के गति के समीकरणों और श्रृंखला नियम की परिभाषा का उपयोग किया।[8]

इस औपचारिकता में, लिउविले के प्रमेय में कहा गया है कि वॉल्यूम फॉर्म का ली व्युत्पन्न प्रवाह द्वारा उत्पन्न प्रवाह के साथ शून्य है अर्थात, के लिए 2n-आयामी सिंपलेक्टिक मैनिफोल्ड है,

वास्तव में, सिंपलेक्टिक संरचना स्वयं संरक्षित है, न कि केवल इसकी शीर्ष बाहरी शक्ति अर्थात् लिउविले का प्रमेय भी देता है: [9]

क्वांटम लिउविल समीकरण

क्वांटम यांत्रिकी में लिउविले समीकरण का एनालॉग मिश्रित अवस्था के समय विकास का वर्णन करता है। कैनोनिकल परिमाणीकरण से इस प्रमेय का एक क्वांटम-मैकेनिकल वर्जन, वॉन न्यूमैन समीकरण प्राप्त होता है। यह प्रक्रिया, जिसका उपयोग प्रायः शास्त्रीय प्रणालियों के क्वांटम एनालॉग्स को तैयार करने के लिए किया जाता है, हैमिल्टनियन यांत्रिकी का उपयोग करके शास्त्रीय प्रणाली का वर्णन करना सम्मिलित है। शास्त्रीय चर को फिर से क्वांटम ऑपरेटरों के रूप में व्याख्या की जाती है, जबकि पॉइसन ब्रैकेट को कम्यूटेटर द्वारा प्रतिस्थापित किया जाता है। इस स्तिथि में, परिणामी समीकरण है:[10][11]

जहां ρ घनत्व आव्यूह है।

जब किसी अवलोकन योग्य के अपेक्षित मान पर प्रारम्भ किया जाता है, तो संबंधित समीकरण एरेनफेस्ट के प्रमेय द्वारा दिया जाता है, और रूप लेता है:

जहाँ अवलोकनीय है, चिह्न अंतर पर ध्यान दें, जो इस धारणा से चलता है कि ऑपरेटर स्थिर है और स्थिति समय पर निर्भर है।

क्वांटम यांत्रिकी के चरण-स्थान सूत्रीकरण में, वॉन न्यूमैन समीकरण के चरण-स्थान एनालॉग में पॉइसन कोष्ठक के लिए मोयल ब्रैकेट को प्रतिस्थापित करने से संभाव्यता तरल पदार्थ की संपीड़न क्षमता होती है, और इस प्रकार लिउविले के प्रमेय असंपीड्यता का उल्लंघन होता है। इसके पश्चात, सार्थक क्वांटम प्रक्षेप पथ को परिभाषित करने में सहवर्ती कठिनाइयाँ उत्पन्न होती हैं।[12]

उदाहरण

एसएचओ चरण-स्थान आयतन

सरल हार्मोनिक ऑसिलेटर (एसएचओ) के लिए चरण स्थान का समय विकास। यहां हमने लिया है कि और क्षेत्र पर विचार कर रहे हैं।

तीन आयामों में -कण प्रणाली तीन आयामों में, और केवल कण के विकास पर ध्यान केंद्रित किया जाता है, चरण स्थान के भीतर, ये कण दिए गए अनंत लघु आयतन पर प्रभुत्व कर लेते हैं:

हम चाहते हैं कि सम्पूर्ण समय समान बना रहे, जिससे प्रणाली के प्रक्षेप पथ पर स्थिर है। यदि हम अपने कणों को अतिसूक्ष्म समय चरण द्वारा विकसित होने की अनुमति देते हैं, हम देखते हैं कि प्रत्येक कण चरण स्थान परिवर्तित कर सकते है

जहाँ और को और से निरूपित करते है और हमने केवल पदों को रैखिक रखा है।

इसे हमारे अतिसूक्ष्म हाइपरक्यूब तक विस्तारित करना, भुजा की लंबाई इस प्रकार परिवर्तित होती है:

नए अनंत-सूक्ष्म चरण-स्थान आयतन का परिक्षण करने के लिए , हमें उपरोक्त मात्रा के उत्पाद की आवश्यकता है। पहले क्रम करने के लिए , निम्नलिखित है:

अभी तक, हमें अपने प्रणाली के बारे में कोई विशिष्टताएँ नहीं बनानी हैं। आइए अब हम इस स्तिथि में विशेषज्ञ बनें। -आयामी आइसोट्रोपिक हार्मोनिक ऑसिलेटर अर्थात्, हमारे समूह के प्रत्येक कण को ​​साधारण हार्मोनिक ऑसिलेटर के रूप में माना जा सकता है। इस प्रणाली के लिए हैमिल्टनियन द्वारा दिया गया है:

उपरोक्त हैमिल्टनियन के साथ हैमिल्टन के समीकरणों का उपयोग करके हम प्राप्त करते हैं कि उपरोक्त कोष्ठक में शब्द समान रूप से शून्य है, इस प्रकार परिणाम मिलता है:

इससे चरण स्थान का अनंत आयतन ज्ञात कर सकते हैं:

इस प्रकार हमने अंततः पाया है कि अनंत चरण-स्थान की मात्रा अपरिवर्तित उपज दे रही है:

यह दर्शाता है कि लिउविले का प्रमेय इस प्रणाली के लिए मान्य है।[13]

प्रश्न यह है कि चरण-स्थान की मात्रा वास्तव में समय के साथ कैसे विकसित होती है। ऊपर हमने दिखाया है कि कुल आयतन संरक्षित है, किंतु यह कैसा दिखता है इसके बारे में कुछ नहीं कहा। एकल कण के लिए हम देख सकते हैं कि चरण स्थान में इसका प्रक्षेपवक्र स्थिरांक के दीर्घवृत्त द्वारा दिया गया है स्पष्ट रूप से, कोई प्रणाली के लिए हैमिल्टन के समीकरणों को हल कर सकता है:

जहाँ और की प्रारंभिक स्थिति और संवेग को दर्शाता है -वाँ कण एकाधिक कणों की प्रणाली के लिए, प्रत्येक के पास चरण-स्थान प्रक्षेपवक्र होगा जो कण की ऊर्जा के अनुरूप दीर्घवृत्त को ज्ञात करता है। वह आवृत्ति जिस पर दीर्घवृत्त को ज्ञात किया जाता है, द्वारा दिया गया है हैमिल्टनियन में, ऊर्जा किसी भी अंतर से स्वतंत्र है। परिणामस्वरूप, चरण स्थान का क्षेत्र बस बिंदु के चारों ओर घूमेगा। आवृत्ति पर निर्भर के साथ [14] इसे उपरोक्त एनीमेशन में देखा जा सकता है।

डैम्पड हार्मोनिक ऑसिलेटर

डैम्पड हार्मोनिक ऑसिलेटर के लिए चरण-स्थान मात्रा का विकास है। पैरामीटर्स के समान मानों का उपयोग एसएचओ स्तिथि में किया जाता है।

लिउविले के प्रमेय की मूलभूत धारणाओं में से यह है कि प्रणाली ऊर्जा के संरक्षण का पालन करती है। चरण स्थान के संदर्भ में, यह कहना है स्थिर ऊर्जा के चरण-स्थान सतहों पर स्थिर है यदि हम ऐसी प्रणाली पर विचार करके इस आवश्यकता को विभक्त कर देते हैं जिसमें ऊर्जा संरक्षित नहीं है, तो हम प्राप्त करते हैं स्थिर रहने में भी विफल रहता है।

इसके उदाहरण के रूप में, प्रणाली पर फिर से विचार करें, प्रत्येक में कण -आयामी आइसोट्रोपिक हार्मोनिक क्षमता, हैमिल्टनियन जिसके लिए पिछले उदाहरण में दिया गया है। इस बार, हम यह नियम जोड़ते हैं कि प्रत्येक कण घर्षण बल का अनुभव करता है। चूँकि यह नॉन-कन्सेर्वटिवे बल है, हमें हैमिल्टन के समीकरणों को इस प्रकार विस्तारित करने की आवश्यकता है:

जहाँ घर्षण सकारात्मक स्थिरांक है जो घर्षण की मात्रा निर्धारित करता है। अनडैम्प्ड हार्मोनिक ऑसिलेटर केस के समान प्रक्रिया का पालन करते हुए, हम फिर से पहुँचते हैं:

हमारे संशोधित हैमिल्टन के समीकरणों को जोड़ने पर, हम प्राप्त करते हैं:

हमारे नए अतिसूक्ष्म चरण स्थान आयतन की गणना करते है, और केवल प्रथम क्रम को अंदर रखना हमें निम्नलिखित परिणाम मिलता है:

हमने प्राप्त किया है कि अनंतिम चरण-स्थान की मात्रा अब स्थिर नहीं है, और इस प्रकार चरण-स्थान घनत्व संरक्षित नहीं है। जैसा कि समय बढ़ने के साथ समीकरण से देखा जा सकता है, हम आशा करते हैं कि हमारे चरण-स्थान की मात्रा शून्य हो जाएगी क्योंकि घर्षण प्रणाली को प्रभावित करता है।

जहां तक ​​यह विषय है कि चरण-स्थान का आयतन समय के साथ कैसे विकसित होता है, हमारे पास अभी भी निरंतर घूर्णन होगा जैसा कि अविभाजित स्तिथि में होता है। चूँकि, अवमंदन प्रत्येक दीर्घवृत्त की त्रिज्या में निरन्तर कमी आएँगी। फिर से हम स्पष्ट रूप से हैमिल्टन के समीकरणों का उपयोग करके प्रक्षेप पथों को हल कर सकते हैं, ऊपर दिए गए संशोधित समीकरणों का उपयोग करने का ध्यान रखते हुए सुविधा के लिए, हम प्राप्त करते हैं,

जहां मान और की प्रारंभिक स्थिति और संवेग को दर्शाता है, -वाँ कण जैसे-जैसे प्रणाली विकसित होती है, कुल चरण-स्थान की मात्रा मूल की ओर बढ़ती जाएगी। इसे ऊपर चित्र में देखा जा सकता है।

टिप्पणियाँ

  • लिउविल समीकरण संतुलन और असंतुलन दोनों प्रणालियों के लिए मान्य है। यह असंतुलन सांख्यिकीय यांत्रिकी का मौलिक समीकरण है।
  • लिउविले समीकरण फ्लक्चुएशन प्रमेय के प्रमाण का अभिन्न अंग है जिससे थर्मोडायनामिक्स का दूसरा नियम प्राप्त किया जा सकता है। यह शियर विस्कोसिटी, थर्मल चालकता या विद्युत चालकता जैसे रैखिक परिवहन गुणांक के लिए ग्रीन-कुबो संबंधों की व्युत्पत्ति का प्रमुख घटक भी है।
  • वस्तुतः हैमिल्टनियन यांत्रिकी, उन्नत सांख्यिकीय यांत्रिकी, या सिंपलेक्टिक ज्यामिति पर कोई भी पाठ्यपुस्तक लिउविले प्रमेय प्राप्त करेगी।[9][15][16][17][18]

यह भी देखें

संदर्भ

  1. Harald J. W. Müller-Kirsten, Basics of Statistical Physics, 2nd ed., World Scientific (Singapore, 2013)
  2. Kubo, Ryogo (1963-02-01). "स्टोकेस्टिक लिउविले समीकरण". Journal of Mathematical Physics. 4 (2): 174–183. Bibcode:1963JMP.....4..174K. doi:10.1063/1.1703941. ISSN 0022-2488.
  3. J. W. Gibbs, "On the Fundamental Formula of Statistical Mechanics, with Applications to Astronomy and Thermodynamics." Proceedings of the American Association for the Advancement of Science, 33, 57–58 (1884). Reproduced in The Scientific Papers of J. Willard Gibbs, Vol II (1906), p. 16.
  4. Gibbs, Josiah Willard (1902). सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत. New York: Charles Scribner's Sons.
  5. Liouville, Joseph (1838). "मनमाना स्थिरांकों की भिन्नता के सिद्धांत पर" (PDF). Journal de mathématiques pures et appliquées. 3: 342–349.
  6. Ehrendorfer, Martin. "The Liouville Equation: Background - Historical Background". वायुमंडलीय पूर्वानुमान में लिउविले समीकरण (PDF). pp. 48–49.
  7. Harald J.W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed., World Scientific (Singapore, 2012).
  8. Nakahara, Mikio (2003). Geometry, Topology, and Physics (2 ed.). Taylor & Francis Group. pp. 201–204. ISBN 978-0-7503-0606-5.
  9. 9.0 9.1 Nash, Oliver (8 January 2015). "Liouville's theorem for pedants" (PDF). Proves Liouville's theorem using the language of modern differential geometry.
  10. The theory of open quantum systems, by Breuer and Petruccione, p. 110.
  11. Statistical mechanics, by Schwabl, p. 16.
  12. Oliva, Maxime; Kakofengitis, Dimitris; Steuernagel, Ole (2018). "अनहार्मोनिक क्वांटम मैकेनिकल सिस्टम में चरण अंतरिक्ष प्रक्षेपवक्र की सुविधा नहीं होती है". Physica A: Statistical Mechanics and Its Applications. 502: 201–210. arXiv:1611.03303. Bibcode:2018PhyA..502..201O. doi:10.1016/j.physa.2017.10.047. S2CID 53691877.
  13. Kardar, Mehran (2007). Statistical Physics of Particles. University of Cambridge Press. pp. 59–60. ISBN 978-0-521-87342-0.
  14. Eastman, Peter (2014–2015). "Evolution of Phase Space Probabilities".
  15. For a particularly clear derivation see Tolman, R. C. (1979). The Principles of Statistical Mechanics. Dover. pp. 48–51. ISBN 9780486638966.
  16. "चरण स्थान और लिउविले का प्रमेय". Retrieved January 6, 2014. Nearly identical to proof in this Wikipedia article. Assumes (without proof) the n-dimensional continuity equation.
  17. "चरण स्थान आयतन का संरक्षण और लिउविले का प्रमेय". Retrieved January 6, 2014. A rigorous proof based on how the Jacobian volume element transforms under Hamiltonian mechanics.
  18. "Physics 127a: Class Notes" (PDF). Retrieved January 6, 2014. Uses the n-dimensional divergence theorem (without proof).

अग्रिम पठन

Murugeshan, R. Modern Physics. S. Chand.