विभेदक वक्र: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
[[वक्र]] की विभेदक [[ज्यामिति]], ज्यामिति की वह शाखा है जो [[अंतर कलन]] और [[अभिन्न|समाकलन]] के तरीकों से [[यूक्लिडियन विमान|यूक्लिडियन समतल]] और यूक्लिडियन '''स्पे''' स्मूदनेस(गणित) वक्रों से संबंधित है। | [[वक्र]] की विभेदक [[ज्यामिति]], ज्यामिति की वह शाखा है जो [[अंतर कलन]] और [[अभिन्न|समाकलन]] के तरीकों से [[यूक्लिडियन विमान|यूक्लिडियन समतल]] और यूक्लिडियन '''स्पे''' स्मूदनेस(गणित) वक्रों से संबंधित है। | ||
[[सिंथेटिक ज्यामिति|कृत्रिम ज्यामिति]] का उपयोग करके कई [[वक्रों की सूची]] की पूरी तरह से जांच की गई है। [[विभेदक ज्यामिति]] एक अन्य पद्धति अपनाती है, वक्र एक [[पैरामीट्रिक समीकरण]] में दर्शाया जाता है, और उनके ज्यामितीय गुण और उनसे जुड़ी विभिन्न मात्राएँ, जैसे कि [[वक्रता]] और चाप की लंबाई, [[वेक्टर पथरी|वेक्टर गणना]] का उपयोग करके [[यौगिक]] और [[यौगिक|समाकल]] के माध्यम से व्यक्त की जाती हैं। वक्र का विश्लेषण करने के लिए उपयोग किए जाने वाले सबसे महत्वपूर्ण उपकरणों में से एक [[फ्रेनेट फ्रेम]] है, एक गतिशील | [[सिंथेटिक ज्यामिति|कृत्रिम ज्यामिति]] का उपयोग करके कई [[वक्रों की सूची]] की पूरी तरह से जांच की गई है। [[विभेदक ज्यामिति]] एक अन्य पद्धति अपनाती है, वक्र एक [[पैरामीट्रिक समीकरण]] में दर्शाया जाता है, और उनके ज्यामितीय गुण और उनसे जुड़ी विभिन्न मात्राएँ, जैसे कि [[वक्रता]] और चाप की लंबाई, [[वेक्टर पथरी|वेक्टर गणना]] का उपयोग करके [[यौगिक]] और [[यौगिक|समाकल]] के माध्यम से व्यक्त की जाती हैं। वक्र का विश्लेषण करने के लिए उपयोग किए जाने वाले सबसे महत्वपूर्ण उपकरणों में से एक [[फ्रेनेट फ्रेम|फ्रेनेट प्रारूप]] है, एक गतिशील प्रारूप जो वक्र के प्रत्येक बिंदु पर एक समन्वय प्रणाली प्रदान करता है जो उस बिंदु के निकट वक्र के लिए सबसे अच्छा अनुकूलित होता है। | ||
[[सतहों की अंतर ज्यामिति]] और इसके उच्च-आयामी सामान्यीकरण की तुलना में घटता का सिद्धांत बहुत सरल और संकीर्ण है क्योंकि [[यूक्लिडियन अंतरिक्ष]] में एक नियमित वक्र में कोई आंतरिक ज्यामिति नहीं है। चाप की लंबाई("प्राकृतिक पैरामीट्रिजेशन") द्वारा किसी भी नियमित वक्र को परीक्षण किया जा सकता है। वक्र पर एक [[परीक्षण कण]] के दृष्टिकोण से जो परिवेश स्थान के बारे में कुछ भी नहीं जानता है, सभी वक्र समान दिखाई देंगे। अलग-अलग अंतरिक्ष वक्र केवल इस बात से अलग होते हैं कि वे कैसे झुकते और मुड़ते हैं। मात्रात्मक रूप से, यह एक अपरिवर्तनीय अवकल ज्यामिति द्वारा मापा जाता जिसे हम वक्र की वक्रता या [[वक्रों का मरोड़|पृष्ठ तनाव]] कहते हैं । वक्रों का मौलिक प्रमेय दावा करता है कि इन अपरिवर्तनीयों का ज्ञान वक्र को पूरी तरह से निर्धारित करता है। | [[सतहों की अंतर ज्यामिति]] और इसके उच्च-आयामी सामान्यीकरण की तुलना में घटता का सिद्धांत बहुत सरल और संकीर्ण है क्योंकि [[यूक्लिडियन अंतरिक्ष]] में एक नियमित वक्र में कोई आंतरिक ज्यामिति नहीं है। चाप की लंबाई("प्राकृतिक पैरामीट्रिजेशन") द्वारा किसी भी नियमित वक्र को परीक्षण किया जा सकता है। वक्र पर एक [[परीक्षण कण]] के दृष्टिकोण से जो परिवेश स्थान के बारे में कुछ भी नहीं जानता है, सभी वक्र समान दिखाई देंगे। अलग-अलग अंतरिक्ष वक्र केवल इस बात से अलग होते हैं कि वे कैसे झुकते और मुड़ते हैं। मात्रात्मक रूप से, यह एक अपरिवर्तनीय अवकल ज्यामिति द्वारा मापा जाता जिसे हम वक्र की वक्रता या [[वक्रों का मरोड़|पृष्ठ तनाव]] कहते हैं । वक्रों का मौलिक प्रमेय दावा करता है कि इन अपरिवर्तनीयों का ज्ञान वक्र को पूरी तरह से निर्धारित करता है। | ||
Line 21: | Line 21: | ||
== पुन: पैरामीट्रिजेशन और तुल्यता संबंध == | == पुन: पैरामीट्रिजेशन और तुल्यता संबंध == | ||
{{See also|Position vector|Vector-valued function}} | {{See also|Position vector|Vector-valued function}} | ||
पैरामीट्रिक वक्र की छवि को देखते हुए, प्राचलिक (पैरामीट्रिक) वक्र के कई अलग-अलग मूल्यांकन हैं। अवकलन रेखागणित का उद्देश्य पैरामीट्रिक वक्रों के गुणों का वर्णन करना है जो कुछ पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं। सभी पैरामीट्रिक वक्रों के समुच्चय पर एक उपयुक्त [[तुल्यता संबंध]] परिभाषित किया जाना चाहिए। एक पैरामीट्रिक वक्र के अंतर-ज्यामितीय गुण(जैसे इसकी लंबाई, इसकी #Frenet | पैरामीट्रिक वक्र की छवि को देखते हुए, प्राचलिक (पैरामीट्रिक) वक्र के कई अलग-अलग मूल्यांकन हैं। अवकलन रेखागणित का उद्देश्य पैरामीट्रिक वक्रों के गुणों का वर्णन करना है जो कुछ पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं। सभी पैरामीट्रिक वक्रों के समुच्चय पर एक उपयुक्त [[तुल्यता संबंध]] परिभाषित किया जाना चाहिए। एक पैरामीट्रिक वक्र के अंतर-ज्यामितीय गुण(जैसे इसकी लंबाई, इसकी #Frenet प्रारूप, और इसकी सामान्यीकृत वक्रता) पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं और इसलिए सम[[तुल्यता वर्ग]] के गुण स्वयं हैं। समतुल्य वर्ग {{math|''C''<sup>''r''</sup>}}- वक्र कहलाते हैं और वक्र के अंतर ज्यामिति में अध्ययन की जाने वाली केंद्रीय वस्तुएं हैं। | ||
दो पैरामीट्रिक {{math|''C''<sup>''r''</sup>}}-वक्र, <math>\gamma_1 : I_1 \to \mathbb{R}^n</math> तथा <math>\gamma_2 : I_2 \to \mathbb{R}^n</math>,समतुल्य कहा जाता है यदि और केवल यदि कोई विशेषण सम्मिलित है {{math|''C''<sup>''r''</sup>}}-नक्शा {{math|''φ'' : ''I''<sub>1</sub> → ''I''<sub>2</sub>}} ऐसा है कि | दो पैरामीट्रिक {{math|''C''<sup>''r''</sup>}}-वक्र, <math>\gamma_1 : I_1 \to \mathbb{R}^n</math> तथा <math>\gamma_2 : I_2 \to \mathbb{R}^n</math>,समतुल्य कहा जाता है यदि और केवल यदि कोई विशेषण सम्मिलित है {{math|''C''<sup>''r''</sup>}}-नक्शा {{math|''φ'' : ''I''<sub>1</sub> → ''I''<sub>2</sub>}} ऐसा है कि | ||
Line 30: | Line 30: | ||
{{math|y2}} तब ये कहा जाता है कि {{em|re-parametrization}} का {{math|''γ''<sub>1</sub>}} है| | {{math|y2}} तब ये कहा जाता है कि {{em|re-parametrization}} का {{math|''γ''<sub>1</sub>}} है| | ||
'''पुन: पैरामीट्रिजेशन सभी पैरामीट्रिक के | '''पुन: पैरामीट्रिजेशन सभी पैरामीट्रिक के समुच्चय पर एक समानता संबंध को परिभाषित करता है| {{math|''C''<sup>''r''</sup>}}वर्ग के वक्र {{math|''C''<sup>''r''</sup>}}. इस संबंध का तुल्यता वर्ग केवल a {{math|''C''<sup>''r''</sup>}}-वक्र।''' | ||
ओरिएंटेड पैरामीट्रिक ''C<sup>r -वक्र</sup>'' का अन्य बेहतर तुल्यता संबंध φ आवश्यकता के द्वारा परिभाषित किया जा सकता है| संतुष्ट करने के लिए {{math|''φ''{{prime}}(''t'') > 0}}. | ओरिएंटेड पैरामीट्रिक ''C<sup>r -वक्र</sup>'' का अन्य बेहतर तुल्यता संबंध φ आवश्यकता के द्वारा परिभाषित किया जा सकता है| संतुष्ट करने के लिए {{math|''φ''{{prime}}(''t'') > 0}}. | ||
Line 53: | Line 53: | ||
व्यवहार में, पैरामीट्रिक वक्र के प्राकृतिक पैरामीट्रिजेशन की गणना करना ज्यादातर बहुत कठिन होता है, लेकिन यह सैद्धांतिक तर्कों के लिए उपयोगी होता है। | व्यवहार में, पैरामीट्रिक वक्र के प्राकृतिक पैरामीट्रिजेशन की गणना करना ज्यादातर बहुत कठिन होता है, लेकिन यह सैद्धांतिक तर्कों के लिए उपयोगी होता है। | ||
'''दिए गए पैरामीट्रिक वक्रy के लिए, प्राकृतिक पैरामीट्रिजेशन पैरामीटर की शिफ्ट तक अद्वितीय है।''' | '''दिए गए पैरामीट्रिक वक्रy के लिए, प्राकृतिक पैरामीट्रिजेशन पैरामीटर की शिफ्ट तक अद्वितीय फलन है।''' | ||
मात्रा | मात्रा | ||
Line 59: | Line 59: | ||
इसे कभी-कभी {{em|energy}} या वक्र की [[क्रिया (भौतिकी)|क्रिया(भौतिकी)]]कहा जाता है , यह नाम उचित है क्योंकि इस क्रिया के लिए [[geodesic]] समीकरण यूलर-लैग्रेंज गति के समीकरण हैं। | इसे कभी-कभी {{em|energy}} या वक्र की [[क्रिया (भौतिकी)|क्रिया(भौतिकी)]]कहा जाता है , यह नाम उचित है क्योंकि इस क्रिया के लिए [[geodesic]] समीकरण यूलर-लैग्रेंज गति के समीकरण हैं। | ||
== फ्रेनेट | == फ्रेनेट प्रारूप == | ||
{{main|Frenet–Serret formulas}} | {{main|Frenet–Serret formulas}} | ||
[[File:Frenet frame.png|thumb|right|अंतरिक्ष वक्र पर एक बिंदु के लिए फ्रेनेट | [[File:Frenet frame.png|thumb|right|अंतरिक्ष वक्र पर एक बिंदु के लिए फ्रेनेट प्रारूप का एक उदाहरण। {{math|''T''}} इकाई स्पर्शरेखा है, {{math|''P''}} इकाई सामान्य, और {{math|''B''}} इकाई असामान्य।]]फ्रेनेट प्रारूप किसका [[मूविंग फ्रेम|मूविंग प्रारूप]] है {{math|''n''}} [[ऑर्थोनॉर्मल]] वैक्टर {{math|''e''<sub>''i''</sub>(''t'')}} जिनका उपयोग प्रत्येक बिंदु '''γ(t)''' पर स्थानीय रूप से वक्र का वर्णन करने के लिए किया जाता है| यह वक्र के विभेदक ज्यामितीय उपचार में मुख्य उपकरण है क्योंकि यूक्लिडियन निर्देशांक जैसे वैश्विक एक का उपयोग करने की तुलना में स्थानीय संदर्भ प्रणाली के संदर्भ में स्थानीय गुणों(जैसे वक्रता, मरोड़) का वर्णन करना कहीं अधिक आसान और अधिक स्वाभाविक है। | ||
'''ए दिया {{math|''C''<sup>''n'' + 1</sup>}}-वक्र {{math|'''''γ'''''}} में <math>\mathbb{R}^n</math>में जो नियमानुसार है {{math|''n''}} वक्र के लिए फ्रेनेट फ्रेम ऑर्थोनॉर्मल वैक्टर का सेट है''' | '''ए दिया {{math|''C''<sup>''n'' + 1</sup>}}-वक्र {{math|'''''γ'''''}} में <math>\mathbb{R}^n</math>में जो नियमानुसार है {{math|''n''}} वक्र के लिए फ्रेनेट फ्रेम ऑर्थोनॉर्मल वैक्टर का सेट है''' | ||
Line 75: | Line 75: | ||
:<math>\chi_i(t) = \frac{\bigl\langle \mathbf{e}_i'(t), \mathbf{e}_{i+1}(t) \bigr\rangle}{\left\| \boldsymbol{\gamma}^'(t) \right\|} </math> | :<math>\chi_i(t) = \frac{\bigl\langle \mathbf{e}_i'(t), \mathbf{e}_{i+1}(t) \bigr\rangle}{\left\| \boldsymbol{\gamma}^'(t) \right\|} </math> | ||
फ्रेनेट | फ्रेनेट प्रारूप और सामान्यीकृत वक्रता पुनर्परमेट्रिजेशन के तहत अपरिवर्तनीय हैं और इसलिए वक्र के विभेदक ज्यामितीय गुण हैं। में घटता के लिए <math>\mathbb R^3</math> <math>\chi_1(t)</math> वक्रता है और <math>\chi_2(t)</math> मरोड़ है। | ||
=== बर्ट्रेंड वक्र === | === बर्ट्रेंड वक्र === | ||
Line 160: | Line 160: | ||
== वक्र सिद्धांत | == वक्र सिद्धांत की मुख्य प्रमेय == | ||
{{main| | {{main|वक्र की मौलिक प्रमेय}} | ||
दिया गया {{math|''n'' − 1}} फलन: | दिया गया {{math|''n'' − 1}} फलन: | ||
:<math>\chi_i \in C^{n-i}([a,b],\mathbb{R}^n) , \quad \chi_i(t) > 0 ,\quad 1 \leq i \leq n-1</math> | :<math>\chi_i \in C^{n-i}([a,b],\mathbb{R}^n) , \quad \chi_i(t) > 0 ,\quad 1 \leq i \leq n-1</math> | ||
वहाँ एक अद्वितीय फलन सम्मिलित है([[यूक्लिडियन समूह]] का उपयोग करके परिवर्तनों तक) {{math|''C''<sup>''n'' + 1</sup>}}-वक्र {{math|''γ''}} जो क्रम n का सममित है और इसमें निम्नलिखित गुण हैं: | |||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 170: | Line 170: | ||
\chi_i(t) &= \frac{ \langle \mathbf{e}_i'(t), \mathbf{e}_{i+1}(t) \rangle}{\| \boldsymbol{\gamma}'(t) \|} | \chi_i(t) &= \frac{ \langle \mathbf{e}_i'(t), \mathbf{e}_{i+1}(t) \rangle}{\| \boldsymbol{\gamma}'(t) \|} | ||
\end{align}</math> | \end{align}</math> | ||
जहां | जहां समुच्चय | ||
:<math>\mathbf{e}_1(t), \ldots, \mathbf{e}_n(t)</math> | :<math>\mathbf{e}_1(t), \ldots, \mathbf{e}_n(t)</math> | ||
वक्र के लिए फ्रेनेट | वक्र के लिए फ्रेनेट प्रारूप है। | ||
अतिरिक्त रूप से एक | अतिरिक्त रूप से एक आरम्भ प्रदान करके {{math|''I''}} में ''t''<sub>0</sub> एक प्रारंभिक बिंदु <math>\mathbb{R}^n</math>में ''p''<sub>0</sub> और एक प्रारंभिक सकारात्मक ऑर्थोनॉर्मल फ्रेनेट प्रारूप {{math|{{mset|''e''<sub>1</sub>, ..., ''e''<sub>''n'' − 1</sub>}}}} के साथ | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 180: | Line 180: | ||
\mathbf{e}_i(t_0) &= \mathbf{e}_i ,\quad 1 \leq i \leq n-1 | \mathbf{e}_i(t_0) &= \mathbf{e}_i ,\quad 1 \leq i \leq n-1 | ||
\end{align}</math> | \end{align}</math> | ||
एक अद्वितीय वक्र ''γ'' प्राप्त करने के लिए यूक्लिडियन परिवर्तनों को समाप्त कर दिया जाता है| | एक अद्वितीय फलन वक्र ''γ'' प्राप्त करने के लिए यूक्लिडियन परिवर्तनों को समाप्त कर दिया जाता है| | ||
== फ्रेनेट-सीरेट सूत्र == | == फ्रेनेट-सीरेट सूत्र == | ||
{{main| | {{main|फ्रेनेट-सीरेट सूत्र}} | ||
फ़्रेनेट-सेरेट सूत्र पहले क्रम के साधारण अंतर समीकरणों का एक | |||
फ़्रेनेट-सेरेट सूत्र पहले क्रम के साधारण अंतर समीकरणों का एक सम्मिलित रूप हैं। समाधान सामान्यीकृत वक्रता फलनों ''χ<sub>i</sub>'' द्वारा निर्दिष्ट वक्र का वर्णन करने वाले फ़्रेनेट वैक्टर का सम्मिलित रूप है| | |||
=== 2 आयाम === | === 2 आयाम === | ||
Line 276: | Line 277: | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
* | |||
* | |||
==अग्रिम पठन== | ==अग्रिम पठन== | ||
*{{cite book |first=Erwin |last=Kreyszig |title=Differential Geometry |publisher=Dover Publications |location=New York |year=1991 |isbn=0-486-66721-9 }} Chapter II is a classical treatment of ''Theory of Curves'' in 3-dimensions. | *{{cite book |first=Erwin |last=Kreyszig |title=Differential Geometry |publisher=Dover Publications |location=New York |year=1991 |isbn=0-486-66721-9 }} Chapter II is a classical treatment of ''Theory of Curves'' in 3-dimensions. |
Revision as of 12:09, 3 December 2022
वक्र की विभेदक ज्यामिति, ज्यामिति की वह शाखा है जो अंतर कलन और समाकलन के तरीकों से यूक्लिडियन समतल और यूक्लिडियन स्पे स्मूदनेस(गणित) वक्रों से संबंधित है।
कृत्रिम ज्यामिति का उपयोग करके कई वक्रों की सूची की पूरी तरह से जांच की गई है। विभेदक ज्यामिति एक अन्य पद्धति अपनाती है, वक्र एक पैरामीट्रिक समीकरण में दर्शाया जाता है, और उनके ज्यामितीय गुण और उनसे जुड़ी विभिन्न मात्राएँ, जैसे कि वक्रता और चाप की लंबाई, वेक्टर गणना का उपयोग करके यौगिक और समाकल के माध्यम से व्यक्त की जाती हैं। वक्र का विश्लेषण करने के लिए उपयोग किए जाने वाले सबसे महत्वपूर्ण उपकरणों में से एक फ्रेनेट प्रारूप है, एक गतिशील प्रारूप जो वक्र के प्रत्येक बिंदु पर एक समन्वय प्रणाली प्रदान करता है जो उस बिंदु के निकट वक्र के लिए सबसे अच्छा अनुकूलित होता है।
सतहों की अंतर ज्यामिति और इसके उच्च-आयामी सामान्यीकरण की तुलना में घटता का सिद्धांत बहुत सरल और संकीर्ण है क्योंकि यूक्लिडियन अंतरिक्ष में एक नियमित वक्र में कोई आंतरिक ज्यामिति नहीं है। चाप की लंबाई("प्राकृतिक पैरामीट्रिजेशन") द्वारा किसी भी नियमित वक्र को परीक्षण किया जा सकता है। वक्र पर एक परीक्षण कण के दृष्टिकोण से जो परिवेश स्थान के बारे में कुछ भी नहीं जानता है, सभी वक्र समान दिखाई देंगे। अलग-अलग अंतरिक्ष वक्र केवल इस बात से अलग होते हैं कि वे कैसे झुकते और मुड़ते हैं। मात्रात्मक रूप से, यह एक अपरिवर्तनीय अवकल ज्यामिति द्वारा मापा जाता जिसे हम वक्र की वक्रता या पृष्ठ तनाव कहते हैं । वक्रों का मौलिक प्रमेय दावा करता है कि इन अपरिवर्तनीयों का ज्ञान वक्र को पूरी तरह से निर्धारित करता है।
परिभाषाएँ
एक प्राचलिक ( पैरामीट्रिक) Cr-वक्र या ए Cr-पैरामेट्रिजेशन एक वेक्टर-मूल्यवान फ़ंक्शन है
वह r-समय पर लगातार अलग-अलग है(अर्थात, का घटक कार्य लगातार अलग अलग हैं ), जहां , , तथा I वास्तविक संख्याओं का एक अशून्य अंतराल(गणित) है। पैरामीट्रिक वक्र का चित्र है | पैरामीट्रिक वक्र γ और इसकी छवि γ[I] अलग अलग होना चाहिए क्योंकि एक दिया गया उपसमुच्चय कई अलग-अलग पैरामीट्रिक वक्रों की छवि हो सकती है। γ(t) में पैरामीटर t को एक निरुपित समय के रूप में माना जा सकता हैं और γ एक पैरामीट्रिक क्षेत्र में घूमने वाले बिंदु का प्रक्षेप पथ हो सकता है । जब I एक बंद अंतराल है [a,b], y का , γ(a) प्रारंभिक बिंदु कहलाता है और γ(b) समापन बिंदु कहलाता है | यदि आरंभिक और अंतिम बिंदु संपाती हैं(अर्थात, γ(a) = γ(b)), फिर γ एक बंद वक्र या एक परिपथ है। Cr को एक परिपथ होने क लिए फलन γ को r-समय लगातार अलग अलग होना चाहिए और γ(k)(a) = γ(k)(b) 0 ≤ k ≤ r के लिए संतुष्ट करना चाहिए |
पैरामीट्रिक वक्र सरल है यदि
यदि y का प्रत्येक घटक कार्य एक विश्लेषणात्मक कार्य करता है तो γ एक विश्लेषणात्मक कार्य है, अर्थात यह Cω.वर्ग का है |वक्र γ नियमानुकूल है m(कहाँ पे m ≤ r) अगर, हर के लिए t ∈ I,
का एक रैखिक रूप से स्वतंत्र उपसमुच्चय है | विशेष रूप से, एक पैरामीट्रिक C1-वक्र γ नियमित (regular) है यदि केवल और केवल γ′(t) ≠ 0 किसी के लिए t ∈ I.
पुन: पैरामीट्रिजेशन और तुल्यता संबंध
पैरामीट्रिक वक्र की छवि को देखते हुए, प्राचलिक (पैरामीट्रिक) वक्र के कई अलग-अलग मूल्यांकन हैं। अवकलन रेखागणित का उद्देश्य पैरामीट्रिक वक्रों के गुणों का वर्णन करना है जो कुछ पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं। सभी पैरामीट्रिक वक्रों के समुच्चय पर एक उपयुक्त तुल्यता संबंध परिभाषित किया जाना चाहिए। एक पैरामीट्रिक वक्र के अंतर-ज्यामितीय गुण(जैसे इसकी लंबाई, इसकी #Frenet प्रारूप, और इसकी सामान्यीकृत वक्रता) पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं और इसलिए समतुल्यता वर्ग के गुण स्वयं हैं। समतुल्य वर्ग Cr- वक्र कहलाते हैं और वक्र के अंतर ज्यामिति में अध्ययन की जाने वाली केंद्रीय वस्तुएं हैं।
दो पैरामीट्रिक Cr-वक्र, तथा ,समतुल्य कहा जाता है यदि और केवल यदि कोई विशेषण सम्मिलित है Cr-नक्शा φ : I1 → I2 ऐसा है कि
तथा
y2 तब ये कहा जाता है कि re-parametrization का γ1 है|
पुन: पैरामीट्रिजेशन सभी पैरामीट्रिक के समुच्चय पर एक समानता संबंध को परिभाषित करता है| Crवर्ग के वक्र Cr. इस संबंध का तुल्यता वर्ग केवल a Cr-वक्र।
ओरिएंटेड पैरामीट्रिक Cr -वक्र का अन्य बेहतर तुल्यता संबंध φ आवश्यकता के द्वारा परिभाषित किया जा सकता है| संतुष्ट करने के लिए φ′(t) > 0.
समतुल्य पैरामीट्रिक Cr-curves की समरूप छवि है, और समतुल्य उन्मुख पैरामीट्रिक Cr-वक्र छवि को उसी दिशा में पार भी करते हैं।
लंबाई और प्राकृतिक पैरामीट्रिजेशन
लंबाई l एक पैरामीट्रिक का C1-वक्र की तरह परिभाषित किया गया है
एक पैरामीट्रिक वक्र की लंबाई पुनर्मूल्यांकन के तहत अपरिवर्तनीय है और इसलिए पैरामीट्रिक वक्र की अंतर-ज्यामितीय एक विशेषता है।
प्रत्येक नियमित पैरामीट्रिक के लिए Cr-वक्र जहाँ पर , r ≥ 1, फ़ंक्शन परिभाषित किया गया है
लिखते हैं γ(s) = γ(t(s)), जहाँ पर t(s) का प्रतिलोम कार्य है s(t). यह एक y का पुनः पैरामीट्रिजेशन γ है जिसे एक चाप लंबाई पैरामीट्रिजेशन, प्राकृतिक पैरामीट्रिजेशन, यूनिट-स्पीड पैरामीट्रिजेशन कहा जाता है। पैरामीटर s(t) को γ का स्वाभाविक मापदण्ड कहा जाता है|
यह parametrization इसीलिए चुना जाता है क्योंकि प्राकृतिक पैरामीटर s(t) की छवि को y इकाई गति से पार करता है, इस प्रकार
व्यवहार में, पैरामीट्रिक वक्र के प्राकृतिक पैरामीट्रिजेशन की गणना करना ज्यादातर बहुत कठिन होता है, लेकिन यह सैद्धांतिक तर्कों के लिए उपयोगी होता है।
दिए गए पैरामीट्रिक वक्रy के लिए, प्राकृतिक पैरामीट्रिजेशन पैरामीटर की शिफ्ट तक अद्वितीय फलन है।
मात्रा
इसे कभी-कभी energy या वक्र की क्रिया(भौतिकी)कहा जाता है , यह नाम उचित है क्योंकि इस क्रिया के लिए geodesic समीकरण यूलर-लैग्रेंज गति के समीकरण हैं।
फ्रेनेट प्रारूप
फ्रेनेट प्रारूप किसका मूविंग प्रारूप है n ऑर्थोनॉर्मल वैक्टर ei(t) जिनका उपयोग प्रत्येक बिंदु γ(t) पर स्थानीय रूप से वक्र का वर्णन करने के लिए किया जाता है| यह वक्र के विभेदक ज्यामितीय उपचार में मुख्य उपकरण है क्योंकि यूक्लिडियन निर्देशांक जैसे वैश्विक एक का उपयोग करने की तुलना में स्थानीय संदर्भ प्रणाली के संदर्भ में स्थानीय गुणों(जैसे वक्रता, मरोड़) का वर्णन करना कहीं अधिक आसान और अधिक स्वाभाविक है।
ए दिया Cn + 1-वक्र γ में में जो नियमानुसार है n वक्र के लिए फ्रेनेट फ्रेम ऑर्थोनॉर्मल वैक्टर का सेट है
फ्रेनेट-सेरेट सूत्र कहलाते हैं। वे के डेरिवेटिव से निर्मित होते हैं γ(t) ग्राम-श्मिट प्रक्रिया का उपयोग करना | ग्राम-श्मिट ऑर्थोगोनलाइज़ेशन एल्गोरिथम के साथ
वास्तविक मूल्यवान कार्य χi(t) सामान्यीकृत वक्रताएँ कहलाती हैं और इन्हें इस रूप में परिभाषित किया जाता है
फ्रेनेट प्रारूप और सामान्यीकृत वक्रता पुनर्परमेट्रिजेशन के तहत अपरिवर्तनीय हैं और इसलिए वक्र के विभेदक ज्यामितीय गुण हैं। में घटता के लिए वक्रता है और मरोड़ है।
बर्ट्रेंड वक्र
एक बर्ट्रेंड वक्र एक नियमित वक्र है अतिरिक्त संपत्ति के साथ जिसमें एक दूसरा वक्र है जैसे कि #सामान्य या वक्रता सदिश इन दो वक्रों के लिए प्रत्येक संबंधित बिंदु पर समान हैं। दूसरे शब्दों में, अगर γ1(t) तथा γ2(t) में दो वक्र हैं ऐसा कि किसी के लिए t, दो प्रमुख सामान्य N1(t), N2(t) बराबर हैं, तो γ1 तथा γ2 बर्ट्रेंड वक्र हैं, और γ2 का बर्ट्रेंड मेट कहा जाता है γ1. हम लिख सकते हैं γ2(t) = γ1(t) + r N1(t) कुछ स्थिर के लिए r.[1] कुनेल की डिफरेंशियल ज्योमेट्री कर्व्स - सरफेस - मैनिफोल्ड्स में समस्या 25 के अनुसार, यह भी सच है कि दो बर्ट्रेंड वक्र जो एक ही द्वि-आयामी विमान में नहीं होते हैं, एक रैखिक संबंध के अस्तित्व की विशेषता है a κ(t) + b τ(t) = 1 कहाँ पे κ(t) तथा τ(t) की वक्रता और मरोड़ हैं γ1(t) तथा a तथा b के साथ वास्तविक स्थिरांक हैं a ≠ 0.[2] इसके अलावा, बर्ट्रेंड जोड़ी वक्रों के #Torsion का उत्पाद स्थिर है।[3] यदि γ1 एक से अधिक बर्ट्रेंड मेट हैं तो उसके पास अपरिमित रूप से अनेक हैं। यह तभी होता है जब γ1 एक गोलाकार हेलिक्स है।[1]
विशेष फ्रेनेट वैक्टर और सामान्यीकृत वक्रता
पहले तीन फ़्रेनेट वैक्टर और सामान्यीकृत वक्रताओं को त्रि-आयामी अंतरिक्ष में देखा जा सकता है। उनके पास अतिरिक्त नाम और उनसे जुड़ी अधिक अर्थपूर्ण जानकारी है।
स्पर्शरेखा वेक्टर
अगर एक वक्र γ एक कण के पथ का प्रतिनिधित्व करता है, फिर किसी दिए गए बिंदु पर कण का तात्क्षणिक वेग P एक वेक्टर(ज्यामितीय) द्वारा व्यक्त किया जाता है, जिसे वक्र पर स्पर्शरेखा वेक्टर कहा जाता है P. गणितीय रूप से, एक पैरामीट्रिज्ड दिया गया C1 वक्र γ = γ(t), प्रत्येक मूल्य के लिए t = t0 पैरामीटर का, वेक्टर
बिंदु पर स्पर्शरेखा सदिश है P = γ(t0). सामान्यतया, स्पर्शरेखा वेक्टर शून्य वेक्टर हो सकता है। स्पर्शरेखा सदिश का परिमाण
गति उस समय है t0.
पहला फ्रेनेट वेक्टर e1(t) के प्रत्येक नियमित बिंदु पर परिभाषित एक ही दिशा में इकाई स्पर्शरेखा सदिश है γ:
यदि t = s प्राकृतिक पैरामीटर है, तो स्पर्शरेखा वेक्टर की इकाई लंबाई होती है। सूत्र सरल करता है:
- .
इकाई स्पर्शरेखा वेक्टर पैरामीटर के बढ़ते मूल्यों के अनुरूप, वक्र के उन्मुखीकरण या आगे की दिशा को निर्धारित करता है। वक्र के रूप में ली गई इकाई स्पर्शरेखा सदिश मूल वक्र की गोलाकार छवि का पता लगाती है।
सामान्य वेक्टर या वक्रता वेक्टर
एक वक्र सामान्य वेक्टर, जिसे कभी-कभी 'वक्रता वेक्टर' कहा जाता है, एक सीधी रेखा होने से वक्र के विचलन को इंगित करता है। इसे के रूप में परिभाषित किया गया है
इसका सामान्यीकृत रूप, इकाई सामान्य वेक्टर, दूसरा फ़्रेनेट वेक्टर है e2(t) और के रूप में परिभाषित किया गया है
बिंदु पर स्पर्शरेखा और सामान्य वेक्टर t बिंदु पर स्पष्ट रूप से हिलना को परिभाषित करें t.
यह दिखाया जा सकता है ē2(t) ∝ e′1(t). इसलिए,
वक्रता
पहला सामान्यीकृत वक्रता χ1(t) वक्रता कहलाती है और विचलन को मापती है γ ऑस्कुलेटिंग प्लेन के सापेक्ष एक सीधी रेखा होने से। इसे के रूप में परिभाषित किया गया है
और की वक्रता कहलाती है γ बिंदु पर t. यह दिखाया जा सकता है
वक्रता का गुणक प्रतिलोम
वक्रता की त्रिज्या(गणित) कहलाती है।
त्रिज्या वाला एक वृत्त r की निरंतर वक्रता है
जबकि एक रेखा की वक्रता 0 होती है।
द्विसामान्य वेक्टर
यूनिट बिनॉर्मल वेक्टर तीसरा फ्रेनेट वेक्टर है e3(t). यह इकाई स्पर्शरेखा और सामान्य वैक्टर के लिए हमेशा ऑर्थोगोनल होता है t. इसे के रूप में परिभाषित किया गया है
3-आयामी अंतरिक्ष में, समीकरण सरल हो जाता है
या करने के लिए
दोनों में से कोई भी संकेत हो सकता है, यह एक दाएं हाथ के हेलिक्स और एक बाएं हाथ के हेलिक्स के उदाहरणों से स्पष्ट होता है।
मरोड़
दूसरा सामान्यीकृत वक्रता χ2(t) कहा जाता है torsion और के विचलन को मापता है γ समतल वक्र होने से। दूसरे शब्दों में, यदि मरोड़ शून्य है, तो वक्र पूरी तरह से एक ही दोलन तल में स्थित होता है(प्रत्येक बिंदु के लिए केवल एक दोलन तल होता है। t). इसे के रूप में परिभाषित किया गया है
और का मरोड़(अंतर ज्यामिति) कहा जाता है γ बिंदु पर t|
ऐबरेंसी
तीसरा व्युत्पन्न का उपयोग असामान्यता को परिभाषित करने के लिए किया जा सकता है, जो घेरा की एक मीट्रिक है | वक्र की गैर-परिपत्रता।[4][5][6]
वक्र सिद्धांत की मुख्य प्रमेय
दिया गया n − 1 फलन:
वहाँ एक अद्वितीय फलन सम्मिलित है(यूक्लिडियन समूह का उपयोग करके परिवर्तनों तक) Cn + 1-वक्र γ जो क्रम n का सममित है और इसमें निम्नलिखित गुण हैं:
जहां समुच्चय
वक्र के लिए फ्रेनेट प्रारूप है।
अतिरिक्त रूप से एक आरम्भ प्रदान करके I में t0 एक प्रारंभिक बिंदु में p0 और एक प्रारंभिक सकारात्मक ऑर्थोनॉर्मल फ्रेनेट प्रारूप {e1, ..., en − 1} के साथ
एक अद्वितीय फलन वक्र γ प्राप्त करने के लिए यूक्लिडियन परिवर्तनों को समाप्त कर दिया जाता है|
फ्रेनेट-सीरेट सूत्र
फ़्रेनेट-सेरेट सूत्र पहले क्रम के साधारण अंतर समीकरणों का एक सम्मिलित रूप हैं। समाधान सामान्यीकृत वक्रता फलनों χi द्वारा निर्दिष्ट वक्र का वर्णन करने वाले फ़्रेनेट वैक्टर का सम्मिलित रूप है|
2 आयाम
3 आयाम
n आयाम(सामान्य सूत्र)
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 do Carmo, Manfredo P. (2016). वक्रों और सतहों की विभेदक ज्यामिति (revised & updated 2nd ed.). Mineola, NY: Dover Publications, Inc. pp. 27–28. ISBN 978-0-486-80699-0.
- ↑ Kühnel, Wolfgang (2005). डिफरेंशियल ज्योमेट्री: कर्व्स, सरफेस, मैनिफोल्ड्स. Providence: AMS. p. 53. ISBN 0-8218-3988-8.
- ↑ Weisstein, Eric W. "बर्ट्रेंड वक्र". mathworld.wolfram.com.
- ↑ Schot, Stephen (November 1978). "एबरेंसी: थर्ड डेरिवेटिव की ज्यामिति". Mathematics Magazine. 5. 51 (5): 259–275. doi:10.2307/2690245. JSTOR 2690245.
- ↑ Cameron Byerley; Russell a. Gordon (2007). "ऐबरेंसी के उपाय". Real Analysis Exchange. Michigan State University Press. 32 (1): 233. doi:10.14321/realanalexch.32.1.0233. ISSN 0147-1937.
- ↑ Gordon, Russell A. (2004). "समतल वक्रों की विषमता". The Mathematical Gazette. Cambridge University Press (CUP). 89 (516): 424–436. doi:10.1017/s0025557200178271. ISSN 0025-5572. S2CID 118533002.
अग्रिम पठन
- Kreyszig, Erwin (1991). Differential Geometry. New York: Dover Publications. ISBN 0-486-66721-9. Chapter II is a classical treatment of Theory of Curves in 3-dimensions.