विभेदक वक्र
वक्र की विभेदक ज्यामिति, ज्यामिति की वह शाखा है जो अंतर कलन और समाकलन के तरीकों से यूक्लिडियन समतल और यूक्लिडियन दूरी(गणित) तथा वक्रों से संबंधित है।
कृत्रिम ज्यामिति का उपयोग करके कई वक्रों की सूची की पूरी तरह से जांच की गई है। विभेदक ज्यामिति एक अन्य पद्धति अपनाती है, वक्र किसी प्राचल समीकरण में दर्शाया जाता है, और उनके ज्यामितीय गुण और उनसे जुड़ी विभिन्न मात्राएँ, जैसे कि वक्रता और चाप की लंबाई, सदिश गणना का उपयोग करके अभिकलन और समाकल के माध्यम से व्यक्त की जाती हैं। वक्र का विश्लेषण करने के लिए उपयोग किए जाने वाले सबसे महत्वपूर्ण उपकरणों में से एक फ्रेनेट प्रारूप है, एक गतिशील प्रारूप जो वक्र के प्रत्येक बिंदु पर एक समन्वय प्रणाली प्रदान करता है जो उस बिंदु के निकटतम वक्र के लिए अधिकतम अनुकूलित होता है।
सतहों की अंतर ज्यामिति और इसके उच्च-आयामी सामान्यीकरण की तुलना में वक्रता का सिद्धांत बहुत सरल और संकीर्ण है क्योंकि यूक्लिडियन ज्यामितीय नियमित वक्र के अंतर्गत कोई आंतरिक ज्यामिति नहीं है। चाप की लंबाई("प्राकृतिक प्राचलीकरण") द्वारा किसी भी नियमित वक्र को परीक्षण किया जा सकता है। वक्र पर परीक्षण कण के दृष्टिकोण से जो परिवेश स्थान के बारे में कुछ भी नहीं जानता है, उसे सभी वक्र समान दिखाई देंगे। अलग-अलग ज्यामितीय वक्र केवल इस बात से अलग होते हैं कि वे कैसे घूमते और मुड़ते हैं। मात्रात्मक रूप से, यह एक अपरिवर्तनीय अवकल ज्यामिति द्वारा मापा जाता जिसे हम वक्र की वक्रता या पृष्ठ तनाव कहते हैं । वक्रों का मौलिक प्रमेय दावा करता है कि इन अपरिवर्तनीयों का ज्ञान वक्र को पूरी तरह से निर्धारित करता है।
परिभाषाएँ
एक प्राचलिक(प्राचल) Cr-वक्र या ए Cr-प्राचलन एक सदिश-विशेष फलन है
वह r-समय पर निरंतर अलग-अलग है अर्थात(घटक फलन निरंतर अलग अलग हैं) जहां , , तथा I वास्तविक संख्याओं का एक अशून्य अंतराल(गणित) है। प्राचल वक्र का चित्र है । प्राचल वक्र γ और इसकी इमेज γ[I] अलग-अलग होना चाहिए क्योंकि दिया गया उपसमुच्चय कई अलग-अलग प्राचल वक्रों की इमेज हो सकती है। γ(t) में मापदण्ड t को एक निरुपित समय के रूप में माना जा सकता हैं और γ एक प्राचल क्षेत्र में घूमने वाले बिंदु का प्रक्षेप पथ हो सकता है । जब I एक बंद अंतराल है [a,b], y का , γ(a) प्रारंभिक बिंदु कहलाता है और γ(b) समापन बिंदु कहलाता है । यदि आरंभिक और अंतिम बिंदु संपाती हैं(अर्थात, γ(a) = γ(b)), फिर γ एक बंद वक्र या एक परिपथ है। Cr को एक परिपथ होने के लिए फलन γ को r-समय पर निरंतर अलग-अलग होना चाहिए और γ(k)(a) = γ(k)(b) 0 ≤ k ≤ r के लिए संतुष्ट करना चाहिए ।
प्राचल वक्र सरल है यदि
यदि y का प्रत्येक घटक फलन एक विश्लेषणात्मक फलन करता है तो γ एक विश्लेषणात्मक फलन है, अर्थात यह Cω.वर्ग का है। वक्र γ नियमानुकूल है m(जहाँ पर m ≤ r) अगर, हर के लिए t ∈ I,
का एक रैखिक रूप से स्वतंत्र उपसमुच्चय है । विशेष रूप से, एक प्राचल C1-वक्र γ नियमित है, यदि केवल और केवल γ′(t) ≠ 0 जिसके लिए t ∈ I.
पुनर्मानकीकरण और तुल्यता संबंध
प्राचल वक्र की इमेज को देखते हुए, प्राचलिक(प्राचल) वक्र के कई अलग-अलग मूल्यांकन हैं। अवकलन रेखागणित का उद्देश्य प्राचल वक्रों के गुणों का वर्णन करना है जो कुछ पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं। सभी प्राचल वक्रों के समुच्चय पर एक उपयुक्त तुल्यता संबंध परिभाषित किया जाना चाहिए। एक प्राचल वक्र के अंतर-ज्यामितीय गुण(जैसे इसकी लंबाई, इसकी फ़्रेनेट प्रारूप, और इसकी सामान्यीकृत वक्रता) पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं, इसलिए समतुल्यता वर्ग के गुण स्वयं समतुल्य वर्ग Cr- वक्र कहलाते हैं और वक्र के अंतर ज्यामिति में अध्ययन की जाने वाली केंद्रीय वस्तुएं प्राचल हैं।
दो प्राचल Cr-वक्र, तथा ,समतुल्य कहा जाता है, यदि केवल कोई विशेषण सम्मिलित है तो Cr-छायाचित्र φ : I1 → I2 ऐसा है कि
तथा
तब ये कहा जाता है कि γ1, y2 का पुनर्मूल्यांकन है।
पुनर्मूल्यांकन सभी प्राचल के समुच्चय पर एक समानता संबंध को परिभाषित करता है। Cr वर्ग के वक्र इस संबंध का तुल्यता वक्र है।
अभिविन्यस्त प्राचल Cr वक्र का अन्य बेहतर तुल्यता संबंध φ आवश्यकता के द्वारा परिभाषित किया जा सकता है। संतुष्ट करने के लिए φ′(t) > 0.
समतुल्य प्राचल Cr-वक्र की समरूप इमेज है, और समतुल्य उन्मुख प्राचल Cr-वक्र इमेज को उसी दिशा में विच्छेद भी करते हैं।
लंबाई और प्राकृतिक मानकीकरण
लंबाई l एक प्राचल का C1-वक्र की तरह परिभाषित किया गया है
एक प्राचल वक्र की लंबाई पुनर्मूल्यांकन के तहत अपरिवर्तनीय है और इसलिए प्राचल वक्र की अंतर-ज्यामितीय एक विशेषता है।
प्रत्येक नियमित प्राचल के लिए Cr-वक्र जहाँ पर , r ≥ 1, फलन परिभाषित किया गया है
γ(s) = γ(t(s)), जहाँ पर t(s) का प्रतिलोम फलन s(t) है, y का पुनः मानकीकरण γ है जिसे एक चाप लंबाई मानकीकरण, प्राकृतिक मानकीकरण, यूनिट-स्पीड मानकीकरण कहा जाता है। मापदण्ड s(t) को γ का स्वाभाविक मापदण्ड कहा जाता है।
यह प्राचलीकरण इसीलिए चुना जाता है क्योंकि प्राकृतिक मापदण्ड s(t) की इमेज को y इकाई गति से विच्छेद करता है, इस प्रकार
व्यवहार में, प्राचल वक्र के प्राकृतिक मानकीकरण की गणना करना ज्यादातर बहुत कठिन होता है, लेकिन यह सैद्धांतिक तर्कों के लिए उपयोगी होता है।
दिए गए प्राचल वक्र y के लिए, प्राकृतिक मानकीकरण मापदण्ड का स्थानांतरण एक अद्वितीय फलन है।
परिमाण
इसे कभी-कभी कार्य शक्ति या वक्र की क्रिया(भौतिकी)कहा जाता है, यह नाम उचित है क्योंकि इस क्रिया के लिए अल्पांतरी समीकरण यूलर-लैग्रेंज गति के समीकरण हैं।
फ्रेनेट प्रारूप
फ्रेनेट प्रारूप n का मूविंग प्रारूप है, ऑर्थोनॉर्मल सदिश ei(t) जिनका उपयोग प्रत्येक बिंदु γ(t) पर स्थानीय रूप से वक्र का वर्णन करने के लिए किया जाता है। यह वक्र के विभेदक ज्यामितीय निस्तारण में मुख्य उपकरण है क्योंकि यूक्लिडियन निर्देशांक जैसे वैश्विक उपयोग करने की तुलना में स्थानीय संदर्भ प्रणाली के संदर्भ में स्थानीय गुणों(जैसे वक्रता) का वर्णन करना कहीं अधिक आसान और अधिक स्वाभाविक है।
दिया गया Cn + 1-वक्र γ में में जो नियमानुसार है n वक्र के लिए फ्रेनेट फ्रेम ऑर्थोनॉर्मल वैक्टर का सेट है
ये फ्रेनेट-सेरेट सूत्र कहलाते हैं। वे γ(t) के व्युत्त्पन से प्रक्रिया का उपयोग करके निर्मित होते हैं।
वास्तविक विशेष फलन χi(t) सामान्यीकृत वक्रताएँ कहलाती हैं और इन्हें इस रूप में परिभाषित किया जाता है
फ्रेनेट प्रारूप और सामान्यीकृत वक्रता पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं और इसलिए वक्र के विभेदक ज्यामितीय गुण हैं। में वक्रता के लिए वक्रता है और प्रवणता है।
बर्ट्रेंड वक्र
बर्ट्रेंड वक्र में एक नियमित वक्र है जो अतिरिक्त विशेषता के साथ में एक अन्य वक्र है, जैसे कि सामान्य सदिश सिद्धांत इन दो वक्रों के लिए प्रत्येक संबंधित बिंदु पर समान हैं। दूसरे शब्दों में, अगर γ1(t) तथा γ2(t) में दो वक्र हैं इस प्रकार किसी t के लिए, दो प्रमुख सामान्य N1(t), N2(t) बराबर हैं, तो γ1 तथा γ2 बर्ट्रेंड वक्र हैं, और γ1 को γ2 का बर्ट्रेंड मेट कहा जाता है। एक रैखिक संबंध के अस्तित्व की विशेषता है a κ(t) + b τ(t) = 1, जहाँ पर κ(t) तथा τ(t) की वक्रता और प्रवणता हैं, γ1(t) तथा a तथा b के साथ वास्तविक स्थिरांक हैं a ≠ 0.[1] इसके अलावा, बर्ट्रेंड युग्म वक्रों के आघूर्ण बल का उत्पाद स्थिर है।[2] यदि γ1में एक से अधिक बर्ट्रेंड मेट हैं तो उसके पास अपरिमित रूप से अनेक हैं। यह तभी होता है जब γ1 एक गोलाकार कुंडलित वक्रता हो।[3]
विशेष फ्रेनेट सदिश और सामान्यीकृत वक्रता
पहले तीन फ़्रेनेट सदिश और सामान्यीकृत वक्रताओं को त्रि-आयामी ज्यामितीय में देखा जा सकता है। उनके पास अतिरिक्त नाम और उनसे जुड़ी अधिक अर्थपूर्ण जानकारी है।
स्पर्शरेखीय सदिश
अगर वक्र γ किसी कण के पथ का प्रतिनिधित्व करता है, फिर किसी दिए गए बिंदु P पर कण का तात्क्षणिक वेग एक सदिश(ज्यामितीय) द्वारा व्यक्त किया जाता है, जिसे वक्र पर स्पर्शरेखीय सदिश कहा जाता है। गणितीय रूप से, मापदंड C1 वक्र γ = γ(t) दिया गया है, मापदण्ड के प्रत्येक सदिश मूल्य के लिए t = t0,
बिंदु पर स्पर्शरेखीय सदिश P = γ(t0) है, सामान्यतया, स्पर्शरेखीय सदिश शून्य सदिश हो सकता है। स्पर्शरेखीय सदिश का परिमाण
t0 समय पर है। पहला फ्रेनेट सदिश e1(t), γ के प्रत्येक नियमित बिंदु पर एक ही दिशा में इकाई स्पर्श सदिश के रूप में परिभाषित किया जाता है।
यदि t = s प्राकृतिक मापदण्ड है, तो स्पर्शरेखीय सदिश की इकाई लंबाई होती है। सूत्र सरल करता है:
- .
इकाई स्पर्शरेखीय सदिश मापदण्ड के बढ़ते मूल्यों के अनुरूप, वक्र के उन्मुखीकरण या आगे की दिशा को निर्धारित करता है। वक्र के रूप में ली गई इकाई स्पर्शरेखीय सदिश मूल वक्र की गोलाकार इमेज का पता लगाती है।
सामान्य सदिश या वक्रता सदिश
किसी वक्र सामान्य सदिश, जिसे कभी-कभी 'वक्रता सदिश' कहा जाता है, एक वक्र के विचलन को सीधी रेखा में दर्शाता है। इसे इस रूप में परिभाषित किया गया है
इसका सामान्यीकृत रूप, इकाई सामान्य सदिश, दूसरा फ़्रेनेट सदिश e2(t) है और इसे इस प्रकार परिभाषित किया गया है
बिंदु t पर स्पर्शरेखा और सामान्य सदिश t स्पष्ट रूप से स्थानांतरित होने को परिभाषित करते हैं।
यह दिखाया जा सकता है ē2(t) ∝ e′1(t). इसलिए,
वक्रता
पहला सामान्यीकृत χ1(t) वक्रता कहलाती है और विचलन को मापती है, γ आश्लेषी समतल के सापेक्ष एक सीधी रेखा होने से। इसे K रूप में परिभाषित किया गया है
और K की वक्रता कहलाती है γ बिंदु पर t. यह दिखाया जा सकता है
वक्रता का गुणक प्रतिलोम
वक्रता की त्रिज्या(गणित) कहलाती है।
r त्रिज्या वाला वृत्त निरंतर वक्रता है
जबकि एक रेखा की वक्रता 0 होती है।
द्विसामान्य सदिश
यूनिट द्विसामान्य सदिश तीसरा फ्रेनेट सदिश है e3(t). यह इकाई स्पर्शरेखा और सामान्य सदिश के लिए सदैव लंबकोणीय होता है, इसे t के रूप में परिभाषित किया गया है
3-आयामी ज्यामितीय में, समीकरण सरल हो जाता है
या सरल करने के लिए
दोनों में से कोई भी संकेत हो सकता है, यह एक दाएं हाथ के वक्र और एक बाएं हाथ के वक्र के उदाहरणों से स्पष्ट होता है।
आघूर्ण बल
दूसरा सामान्यीकृत वक्रता χ2(t) कहा जाता है, γ समतल वक्र होने सेआघूर्ण बल और K के विचलन को मापता है। दूसरे शब्दों में, यदि प्रवणता शून्य है, तो वक्र पूरी तरह से एक ही दोलन तल में स्थित होता है(प्रत्येक बिंदु के लिए केवल एक दोलन तल होता है। t). इसे K के रूप में परिभाषित किया गया है
और K का प्रवणता(अंतर ज्यामिति) कहा जाता है γ बिंदु पर t।
विचलन
तीसरा व्युत्पन्न का उपयोग असामान्यता को परिभाषित करने के लिए किया जा सकता है, जो वक्र क्षेत्र की एक प्रकीर्णन है।[4][5][6]
वक्र सिद्धांत की मुख्य प्रमेय
दिया गया n − 1 फलन:
वहाँ एक अद्वितीय फलन सम्मिलित है(यूक्लिडियन समूह का उपयोग करके परिवर्तनों तक) Cn + 1-वक्र γ जो क्रम n का सममित है और इसमें निम्नलिखित गुण हैं:
जहां समुच्चय
वक्र के लिए फ्रेनेट प्रारूप है।
अतिरिक्त रूप से एक आरम्भ प्रदान करके I में t0 एक प्रारंभिक बिंदु में p0 और एक प्रारंभिक सकारात्मक ऑर्थोनॉर्मल फ्रेनेट प्रारूप {e1, ..., en − 1} के साथ
एक अद्वितीय फलन वक्र γ प्राप्त करने के लिए यूक्लिडियन परिवर्तनों को समाप्त कर दिया जाता है।
फ्रेनेट-सीरेट सूत्र
फ़्रेनेट-सेरेट सूत्र पहले क्रम के साधारण अंतर समीकरणों का एक सम्मिलित रूप हैं। समाधान सामान्यीकृत वक्रता फलनों χi द्वारा निर्दिष्ट वक्र का वर्णन करने वाले फ़्रेनेट सदिश का सम्मिलित रूप है।
द्वि-आयाम
त्रि-आयाम
n-आयाम(सामान्य सूत्र)
यह भी देखें
संदर्भ
- ↑ Kühnel, Wolfgang (2005). डिफरेंशियल ज्योमेट्री: कर्व्स, सरफेस, मैनिफोल्ड्स. Providence: AMS. p. 53. ISBN 0-8218-3988-8.
- ↑ Weisstein, Eric W. "बर्ट्रेंड वक्र". mathworld.wolfram.com.
- ↑ do Carmo, Manfredo P. (2016). वक्रों और सतहों की विभेदक ज्यामिति (revised & updated 2nd ed.). Mineola, NY: Dover Publications, Inc. pp. 27–28. ISBN 978-0-486-80699-0.
- ↑ Schot, Stephen (November 1978). "एबरेंसी: थर्ड डेरिवेटिव की ज्यामिति". Mathematics Magazine. 5. 51 (5): 259–275. doi:10.2307/2690245. JSTOR 2690245.
- ↑ Cameron Byerley; Russell a. Gordon (2007). "ऐबरेंसी के उपाय". Real Analysis Exchange. Michigan State University Press. 32 (1): 233. doi:10.14321/realanalexch.32.1.0233. ISSN 0147-1937.
- ↑ Gordon, Russell A. (2004). "समतल वक्रों की विषमता". The Mathematical Gazette. Cambridge University Press (CUP). 89 (516): 424–436. doi:10.1017/s0025557200178271. ISSN 0025-5572. S2CID 118533002.
अग्रिम पठन
- Kreyszig, Erwin (1991). Differential Geometry. New York: Dover Publications. ISBN 0-486-66721-9. Chapter II is a classical treatment of Theory of Curves in 3-dimensions.