अस्पष्ट समीकरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 75: | Line 75: | ||
==== उदाहरण 2 ==== | ==== उदाहरण 2 ==== | ||
अस्पष्ट समीकरण का एक उदाहरण जिसके लिए स्पष्ट अवकलन का उपयोग करने की तुलना में अस्पष्ट अवकलन आसान है, वह समीकरण {{math|''y''(''x'')}} है और दिए गए समीकरण द्वारा परिभाषित है | |||
:<math> x^4 + 2y^2 = 8 \,.</math> | :<math> x^4 + 2y^2 = 8 \,.</math> | ||
इसके संबंध में स्पष्ट रूप से | इसके संबंध में स्पष्ट रूप से {{mvar|x}} के लिए अवकलन करने के लिए , पहले पाना होता है | ||
:<math>y(x) = \pm\sqrt{\frac{8 - x^4}{2}} \,,</math> | :<math>y(x) = \pm\sqrt{\frac{8 - x^4}{2}} \,,</math> | ||
और फिर इस समीकरण को अलग करें। यह दो | और फिर इस समीकरण को अलग करें। यह दो अवकलन बनाता है: एक के लिए {{math|''y'' ≥ 0}} और दूसरे के लिए {{math|''y'' < 0}}. | ||
मूल समीकरण को स्पष्ट रूप से अलग करना काफी आसान है: | मूल समीकरण को स्पष्ट रूप से अलग करना काफी आसान है: | ||
:<math>4x^3 + 4y\frac{dy}{dx} = 0 \,,</math> | :<math>4x^3 + 4y\frac{dy}{dx} = 0 \,,</math> | ||
जो देता है, | |||
:<math>\frac{dy}{dx} = \frac{-4x^3}{4y} = -\frac{x^3}{y} \,.</math> | :<math>\frac{dy}{dx} = \frac{-4x^3}{4y} = -\frac{x^3}{y} \,.</math> | ||
==== उदाहरण 3 ==== | ==== उदाहरण 3 ==== | ||
अक्सर, स्पष्ट रूप से हल करना मुश्किल या असंभव होता है | अक्सर, स्पष्ट रूप से {{mvar|y}} के लिए हल करना मुश्किल या असंभव होता है, और अस्पष्ट अवकलन ही अवकलन का एकमात्र व्यवहार्य तरीका है। एक उदाहरण समीकरण है | ||
:<math>y^5-y=x \,.</math> | :<math>y^5-y=x \,.</math> | ||
{{mvar|y}} को बीजीय व्यंजक में स्पष्ट रूप से {{mvar|x}} के रूप में व्यक्त करना असम्भव है, और इसलिए कोई {{math|{{sfrac|''dy''|''dx''}}}} को स्पष्ट अवकलन द्वारा हल नहीं कर सकता । अस्पष्ट विधि का उपयोग करके, {{math|{{sfrac|''dy''|''dx''}}}} प्राप्त करने के लिए समीकरण को अवकलित करके प्राप्त किया जा सकता है | |||
:<math>5y^4\frac{dy}{dx} - \frac{dy}{dx} = \frac{dx}{dx} \,,</math> | :<math>5y^4\frac{dy}{dx} - \frac{dy}{dx} = \frac{dx}{dx} \,,</math> | ||
जहां {{math|1={{sfrac|''dx''|''dx''}} = 1}}. फैक्टरिंग आउट {{math|{{sfrac|''dy''|''dx''}}}} देता है | |||
:<math>\left(5y^4 - 1\right)\frac{dy}{dx} = 1 \,,</math> | :<math>\left(5y^4 - 1\right)\frac{dy}{dx} = 1 \,,</math> | ||
Line 107: | Line 105: | ||
:<math>y \ne \pm\frac{1}{\sqrt[4]{5}} \quad \text{and} \quad y \ne \pm \frac{i}{\sqrt[4]{5}} \,.</math> | :<math>y \ne \pm\frac{1}{\sqrt[4]{5}} \quad \text{and} \quad y \ne \pm \frac{i}{\sqrt[4]{5}} \,.</math> | ||
===अंतर्अन्तर्निहित समीकरण के व्युत्पन्न के लिए सामान्य सूत्र === | ===अंतर्अन्तर्निहित समीकरण के व्युत्पन्न के लिए सामान्य सूत्र === | ||
यदि {{math|1=''R''(''x'', ''y'') = 0}}, अंतर्अन्तर्निहित समीकरण का व्युत्पन्न {{math|''y''(''x'')}} द्वारा दिया गया है<ref name="Stewart1998">{{cite book | last = Stewart | first = James | title = कैलकुलस कॉन्सेप्ट्स एंड कॉन्टेक्स्ट्स| publisher = Brooks/Cole Publishing Company | year = 1998 | isbn = 0-534-34330-9 | url-access = registration | url = https://archive.org/details/calculusconcepts00stew }}</ref>{{rp|§11.5}} | यदि {{math|1=''R''(''x'', ''y'') = 0}}, अंतर्अन्तर्निहित समीकरण का व्युत्पन्न {{math|''y''(''x'')}} द्वारा दिया गया है<ref name="Stewart1998">{{cite book | last = Stewart | first = James | title = कैलकुलस कॉन्सेप्ट्स एंड कॉन्टेक्स्ट्स| publisher = Brooks/Cole Publishing Company | year = 1998 | isbn = 0-534-34330-9 | url-access = registration | url = https://archive.org/details/calculusconcepts00stew }}</ref>{{rp|§11.5}} |
Revision as of 11:26, 27 November 2022
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
गणित में, अन्तर्निहित समीकरण रूप का एक संबंध है जहाँ R कई चरों (अक्सर बहुपद) का एक फलन है। उदाहरण के लिए, एक वृत्त का अस्पष्ट समीकरण है|
अस्पष्ट समीकरण एक फलन है जिसे एक अस्पष्ट समीकरण द्वारा परिभाषित किया गया है, जो फलन के मान के रूप में माने जाने वाले चरों में से एक से संबंधित है, अन्य को फलन के तर्क के रूप में माना जाता है।[1]: 204–206 उदाहरण के लिए, समीकरण एक वृत्त को परिभाषित करता है, y को एक अन्तर्निहित समीकरण के रूप में परिभाषित करता है, यदि −1 ≤ x ≤ 1, तथा y गैर-नकारात्मक मूल्यों तक सीमित है।
अन्तर्निहित समीकरण प्रमेय ऐसी स्थितियाँ प्रदान करता है जिसके तहत कुछ प्रकार के अन्तर्निहित समीकरण अन्तर्निहित फलन को परिभाषित करते हैं, अर्थात् वे जो शून्य बहुविकल्पीय कार्यों के बराबर प्राप्त होते हैं जो लगातार डिफ्रेंटिएबल होते हैं।
उदाहरण
व्युत्क्रम समीकरण
अस्पष्ट समीकरण का एक सामान्य प्रकार व्युत्क्रम समीकरण है। सभी समीकरणों में अद्वितीय व्युत्क्रम समीकरण नहीं होता है। यदि g, x का एक फलन है जिसका एक अनूठा व्युत्क्रम है, फिर का व्युत्क्रम समीकरण g को g−1 कहा जाता है, समीकरण का हल देने वाला अनूठा फलन है
x के लिये के y अनुसार | यह समाधान तब इस रूप में लिखा जा सकता है
g−1 को g के व्युत्क्रम रूप में परिभाषित करना अस्पष्ट परिभाषा है। g के कुछ समीकरणों के लिए , g−1(y) एक बंद रूप फलन के रूप में स्पष्ट लिखा जा सकता है - उदाहरण के लिए, यदि g(x) = 2x − 1, फिर g−1(y) = 1/2(y + 1). हालांकि, यह अक्सर संभव नहीं होता है, या केवल एक नया अंकन शुरू करने से होता है (जैसा कि नीचे प्रोडक्ट लॉग उदाहरण में है)।
सहज रूप से, g आश्रित और स्वतंत्र चरों की भूमिकाओं को आपस में बदलकर एक व्युत्क्रम समीकरण प्राप्त किया जाता है।
उदाहरण: गुणनफल लॉग अंतर्अन्तर्निहित समीकरण है, x के लिए समीकरण y − xex = 0 का समाधान देता है |
बीजगणितीय समीकरण
बीजगणितीय समीकरण एक ऐसा फलन है जो बहुपद समीकरण को संतुष्ट करता है जिसके गुणांक स्वयं बहुपद होते हैं। उदाहरण के लिए, एक चर x में बीजगणितीय फलन y का इस समीकरण का समाधान देता है
जहां गुणांक ai(x), x का बहुपद फलन हैं| इस बीजगणितीय फलन को दाहिने पक्ष के रूप में हल समीकरण y = f(x) रूप में लिखा जा सकता है | f एक मल्टी-वैल्यूड अस्पष्ट समीकरण है |
बीजगणितीय समीकरण गणितीय विश्लेषण और बीजगणितीय ज्यामिति में महत्वपूर्ण भूमिका निभाते हैं। बीजगणितीय समीकरण का सरल उदाहरण इकाई वृत्त समीकरण के बाईं ओर दिया गया है:
y के लिए हल करने पर स्पष्ट समाधान देता है:
लेकिन इस अस्पष्ट समीकरण को निर्दिष्ट किए बिना भी, यूनिट सर्कल समीकरण के अस्पष्ट समाधान को संदर्भित करना संभव है y = f(x), जहाँ f मल्टी-वैल्यूड अस्पष्ट समीकरण है।
यदपि y, द्विघात समीकरण, घन समीकरण और चतुर्थक समीकरणों के लिए स्पष्ट समाधान पाया जा सकता है, समान रूप से क्विंटिक समीकरण और उच्च घात समीकरणों के लिए सही नहीं है, जैसे
फिर भी, कोई अभी भी अस्पष्ट समीकरण y = f(x) का उल्लेख कर सकता है, मल्टी-वैल्यूड अस्पष्ट समीकरण f शामिल है .
प्रतिवाद
हर समीकरण R(x, y) = 0 एकल-मूल्यवान समीकरण का ग्राफ़ नहीं दर्शाता है, वृत्त समीकरण एक प्रमुख उदाहरण है। एक अन्य उदाहरण x − C(y) = 0 द्वारा दिया गया एक अस्पष्ट समीकरण है जहां C एक घन बहुपद है जिसके ग्राफ में एक उभार है। इस प्रकार, एक अस्पष्ट समीकरण के लिए एक वास्तविक (एकल-मूल्यवान) समीकरण होने के लिए ग्राफ़ के केवल एक हिस्से का उपयोग करना आवश्यक हो सकता है। एक अस्पष्ट समीकरण को कभी-कभी x-अक्ष के किसी भाग पर ज़ूम इन करने के बाद और कुछ अवांछित कार्यात्मक शाखाओं को काट कर ही एक वास्तविक समीकरण के रूप में सफलतापूर्वक परिभाषित किया जा सकता है। फिर y को व्यक्त करने वाला समीकरण, अन्य चरों के अस्पष्ट समीकरण के रूप में लिखा जा सकता है।
परिभाषित समीकरण R(x, y) = 0 में अन्य विकृति भी हो सकती है। उदाहरण के लिए, समीकरण x = 0 का मतलब बिल्कुल नहीं है कि f(x), y के लिए समाधान दे रहा है; यह एक खड़ी रेखा है। इस तरह की समस्या से बचने के लिए, स्वीकार्य समीकरणों या डोमेन पर अक्सर विभिन्न प्रतिबंध लगाई जाती हैं। अस्पष्ट समीकरण प्रमेय इस प्रकार के विकृतियों से निपटने का एक समान तरीका प्रदान करता है।
अस्पष्ट अवकलन
कलन में, अस्पष्ट अवकलन नामक एक विधि अस्पष्ट परिभाषित समीकरणों को अवकलन करने के लिए श्रृंखला नियम का उपयोग करती है।
समीकरण R(x, y) = 0 द्वारा परिभाषित अस्पष्ट समीकरण y(x) को अवकलन करने के लिए, इसे y के लिए स्पष्ट रूप से हल करना और फिर अवकलन करना आम तौर पर संभव नहीं है। इसके बजाय, कोई भी R(x, y) = 0 का पूरी तरह x तथा y के संबंध में अवकलन कर सकता है और इसके बाद परिणामी रैखिक समीकरण को dy/dx के लिए हल करें ताकि x तथा y के संदर्भ में स्पष्ट रूप से व्युत्पन्न प्राप्त कर सकें | यहां तक कि जब मूल समीकरण को स्पष्ट रूप से हल करना संभव हो, तो कुल अवकलन से उत्पन्न सूत्र सामान्य रूप से बहुत सरल और उपयोग में आसान होता है।
उदाहरण
उदाहरण 1
विचार करना
इस समीकरण को y के लिए हल करना आसान है , जो देता है
जहां दाहिनी ओर समीकरण y(x) का स्पष्ट रूप है . तब अवकलन dy/dx = −1 देता है .
वैकल्पिक रूप से, मूल समीकरण को पूरी तरह से अलग किया जा सकता है:
dy/dx के लिए हल करने पर
वही उत्तर जो पहले प्राप्त हुआ था।
उदाहरण 2
अस्पष्ट समीकरण का एक उदाहरण जिसके लिए स्पष्ट अवकलन का उपयोग करने की तुलना में अस्पष्ट अवकलन आसान है, वह समीकरण y(x) है और दिए गए समीकरण द्वारा परिभाषित है
इसके संबंध में स्पष्ट रूप से x के लिए अवकलन करने के लिए , पहले पाना होता है
और फिर इस समीकरण को अलग करें। यह दो अवकलन बनाता है: एक के लिए y ≥ 0 और दूसरे के लिए y < 0.
मूल समीकरण को स्पष्ट रूप से अलग करना काफी आसान है:
जो देता है,
उदाहरण 3
अक्सर, स्पष्ट रूप से y के लिए हल करना मुश्किल या असंभव होता है, और अस्पष्ट अवकलन ही अवकलन का एकमात्र व्यवहार्य तरीका है। एक उदाहरण समीकरण है
y को बीजीय व्यंजक में स्पष्ट रूप से x के रूप में व्यक्त करना असम्भव है, और इसलिए कोई dy/dx को स्पष्ट अवकलन द्वारा हल नहीं कर सकता । अस्पष्ट विधि का उपयोग करके, dy/dx प्राप्त करने के लिए समीकरण को अवकलित करके प्राप्त किया जा सकता है
जहां dx/dx = 1. फैक्टरिंग आउट dy/dx देता है
जो परिणाम देता है
जिसके लिए परिभाषित किया गया है
अंतर्अन्तर्निहित समीकरण के व्युत्पन्न के लिए सामान्य सूत्र
यदि R(x, y) = 0, अंतर्अन्तर्निहित समीकरण का व्युत्पन्न y(x) द्वारा दिया गया है[2]: §11.5
कहाँ पे Rx तथा Ry के आंशिक डेरिवेटिव का संकेत दें R इसके संबंध में x तथा y.
उपरोक्त सूत्र कुल व्युत्पन्न प्राप्त करने के लिए चेन नियम#Multivariable_case का उपयोग करने से आता है - के संबंध में x - दोनों पक्षों का R(x, y) = 0:
इसलिये
जिसे हल करने पर dy/dx, उपरोक्त अभिव्यक्ति देता है।
अंतर्अन्तर्निहित समीकरण प्रमेय
होने देना R(x, y) दो चरों का एक अवकलनीय फलन हो, और (a, b) वास्तविक संख्याओं का एक ऐसा युग्म बनिए R(a, b) = 0. यदि ∂R/∂y ≠ 0, फिर R(x, y) = 0 एक अंतर्अन्तर्निहित समीकरण को परिभाषित करता है जो कुछ छोटे पर्याप्त पड़ोस (गणित) में भिन्न होता है (a, b); दूसरे शब्दों में, एक भिन्न कार्य है f के कुछ पड़ोस में परिभाषित और अलग-अलग है a, ऐसा है कि R(x, f(x)) = 0 के लिये x इस पड़ोस में।
स्थिति ∂R/∂y ≠ 0 मतलब कि (a, b) निहित समीकरण के निहित वक्र के वक्र का एक विलक्षण बिंदु है R(x, y) = 0 जहां स्पर्शरेखा लंबवत नहीं है।
कम तकनीकी भाषा में, अंतर्अन्तर्निहित समीकरण मौजूद हैं और इन्हें अलग किया जा सकता है, यदि वक्र में एक गैर-ऊर्ध्वाधर स्पर्शरेखा है।[2]: §11.5
बीजगणितीय ज्यामिति में
प्रपत्र के संबंध (गणित) पर विचार करें R(x1, …, xn) = 0, कहाँ पे R एक बहुभिन्नरूपी बहुपद है। इस संबंध को संतुष्ट करने वाले चरों के मूल्यों के समुच्चय को एक अस्पष्ट वक्र कहा जाता है यदि n = 2 और एक निहित सतह अगर n = 3. निहित समीकरण बीजगणितीय ज्यामिति का आधार हैं, जिनके अध्ययन के मूल विषय कई अस्पष्ट समीकरणों के एक साथ समाधान हैं जिनके बाएँ हाथ बहुपद हैं। समकालिक समाधानों के इन समुच्चयों को affine बीजगणितीय समुच्चय कहा जाता है।
अंतर समीकरणों में
अंतर समीकरणों के समाधान आम तौर पर एक अंतर्अन्तर्निहित समीकरण द्वारा व्यक्त किए जाते हैं।[3]
अर्थशास्त्र में अनुप्रयोग
प्रतिस्थापन की सीमांत दर
अर्थशास्त्र में, जब स्तर निर्धारित होता है R(x, y) = 0 मात्राओं के लिए एक उदासीनता वक्र है x तथा y दो वस्तुओं का उपभोग, अस्पष्ट व्युत्पन्न का पूर्ण मूल्य dy/dx की व्याख्या दो वस्तुओं के प्रतिस्थापन की सीमांत दर के रूप में की जाती है: कितना अधिक y एक इकाई के नुकसान के प्रति उदासीन होने के लिए किसी को प्राप्त करना चाहिएx.
तकनीकी प्रतिस्थापन की सीमांत दर
इसी तरह, कभी-कभी स्तर सेट होता है R(L, K) उपयोग की गई मात्राओं के विभिन्न संयोजनों को दर्शाने वाला एक समोत्पाद है L श्रम और K भौतिक पूंजी का प्रत्येक जिसके परिणामस्वरूप कुछ अच्छे के उत्पादन की समान मात्रा का उत्पादन होगा। इस मामले में अस्पष्ट व्युत्पन्न का पूर्ण मूल्य dK/dL की व्याख्या उत्पादन के दो कारकों के बीच तकनीकी प्रतिस्थापन की सीमांत दर के रूप में की जाती है: श्रम की एक कम इकाई के साथ उत्पादन की समान मात्रा का उत्पादन करने के लिए फर्म को कितनी अधिक पूंजी का उपयोग करना चाहिए।
अनुकूलन
अक्सर आर्थिक सिद्धांत में, कुछ समीकरण जैसे उपयोगिता समीकरण या लाभ (अर्थशास्त्र) समीकरण को पसंद वेक्टर के संबंध में अधिकतम किया जाना है x भले ही उद्देश्य कार्य किसी विशिष्ट कार्यात्मक रूप तक सीमित न हो। अंतर्अन्तर्निहित समीकरण प्रमेय गारंटी देता है कि अनुकूलन के पहले क्रम की शर्तें इष्टतम वेक्टर के प्रत्येक तत्व के लिए एक अंतर्अन्तर्निहित समीकरण परिभाषित करती हैं x* पसंद वेक्टर का x. जब लाभ को अधिकतम किया जा रहा है, आम तौर पर परिणामी अंतर्अन्तर्निहित समीकरण श्रम मांग समारोह और विभिन्न वस्तुओं की आपूर्ति कार्य होते हैं। जब उपयोगिता को अधिकतम किया जा रहा है, तो आम तौर पर परिणामी अंतर्अन्तर्निहित समीकरण श्रम आपूर्ति कार्य और विभिन्न वस्तुओं के लिए मांग कार्य होते हैं।
इसके अलावा, समस्या के पैरामीटर # गणितीय कार्यों का प्रभाव x* - निहित समीकरण के आंशिक डेरिवेटिव - को पहले-क्रम की स्थितियों की प्रणाली के कुल डेरिवेटिव के रूप में व्यक्त किया जा सकता है, जो समीकरण के डिफरेंशियल का उपयोग करके पाया जाता है #कई चर में अंतर।
यह भी देखें
- अंतर्निहित वक्र
- कार्यात्मक समीकरण
- लेवल सेट
- प्रतिस्थापन के सीमांत दर
- अंतर्निहित कार्य प्रमेय
- लघुगणकीय विभेदन
- बहुभुज
- संबंधित दरें
संदर्भ
- ↑ Chiang, Alpha C. (1984). गणितीय अर्थशास्त्र के मौलिक तरीके (Third ed.). New York: McGraw-Hill. ISBN 0-07-010813-7.
- ↑ 2.0 2.1 Stewart, James (1998). कैलकुलस कॉन्सेप्ट्स एंड कॉन्टेक्स्ट्स. Brooks/Cole Publishing Company. ISBN 0-534-34330-9.
- ↑ Kaplan, Wilfred (2003). उन्नत कैलकुलस. Boston: Addison-Wesley. ISBN 0-201-79937-5.
अग्रिम पठन
- Binmore, K. G. (1983). "Implicit Functions". Calculus. New York: Cambridge University Press. pp. 198–211. ISBN 0-521-28952-1.
- Rudin, Walter (1976). Principles of Mathematical Analysis. Boston: McGraw-Hill. pp. 223–228. ISBN 0-07-054235-X.
- Simon, Carl P.; Blume, Lawrence (1994). "Implicit Functions and Their Derivatives". Mathematics for Economists. New York: W. W. Norton. pp. 334–371. ISBN 0-393-95733-0.
इस पेज में लापता आंतरिक लिंक की सूची
- अंक शास्त्र
- समारोह (गणित)
- एक समारोह का तर्क
- मूल्य (गणित)
- लगातार अलग करने योग्य
- अंतर्अन्तर्निहित समीकरण प्रमेय
- बहुभिन्नरूपी समारोह
- उलटा काम करना
- समाधान (गणित)
- बहु-मूल्यवान समारोह
- द्विघातीय समीकरण
- पंचांग समीकरण
- बीजगणतीय अभिव्यक्ति
- आंशिक व्युत्पन्न
- अलग करने योग्य समारोह
- एक वक्र का एकवचन बिंदु
- affine बीजगणितीय सेट
- इनडीफरन्स कर्व
- प्रतिस्थापन के सीमांत दर
- उपयोगिता समारोह
- पहले क्रम की स्थिति
- आपूर्ति समारोह
- श्रम की मांग
- श्रमिक आपूर्ति
- लघुगणक विभेदन
बाहरी संबंध
- Archived at Ghostarchive and the Wayback Machine: "Implicit Differentiation, What's Going on Here?". 3Blue1Brown. Essence of Calculus. May 3, 2017 – via YouTube.