सीमा (गणित): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 31: Line 31:
व्यंजक 0.999... की व्याख्या अनुक्रम 0.9, 0.99, 0.999, ... और इसी तरह की सीमा के रूप में की जानी चाहिए। इस क्रम को सख्ती से 1 की सीमा के रूप में दिखाया जा सकता है, और इसलिए इस अभिव्यक्ति की सार्थक व्याख्या 1 के मान के रूप में की जाती है।<ref>{{citation |last=Stillwell |first=John |title=Elements of algebra: geometry, numbers, equations |pages=42 |year=1994 |publisher=Springer |isbn=978-1441928399 |author-link=John Stillwell}}</ref>
व्यंजक 0.999... की व्याख्या अनुक्रम 0.9, 0.99, 0.999, ... और इसी तरह की सीमा के रूप में की जानी चाहिए। इस क्रम को सख्ती से 1 की सीमा के रूप में दिखाया जा सकता है, और इसलिए इस अभिव्यक्ति की सार्थक व्याख्या 1 के मान के रूप में की जाती है।<ref>{{citation |last=Stillwell |first=John |title=Elements of algebra: geometry, numbers, equations |pages=42 |year=1994 |publisher=Springer |isbn=978-1441928399 |author-link=John Stillwell}}</ref>


औपचारिक रूप से, मान लीजिए {{math|''a''<sub>1</sub>, ''a''<sub>2</sub>, …}} [[वास्तविक संख्या]]ओं का एक क्रम है। जब अनुक्रम की सीमा मौजूद होती है, वास्तविक संख्या {{math|''L''}} इस क्रम की सीमा है यदि और केवल यदि प्रत्येक वास्तविक संख्या के लिए {{math|''ε'' > 0}}, एक [[प्राकृतिक संख्या]]  {{math|''N''}}  मौजूद है ऐसा कि सभी के लिए {{math|''n'' > ''N''}} के लिये , {{math|{{abs|''a''<sub>''n''</sub> − ''L''}} < ''ε''}} हमारे पास.<ref>{{Cite web|last=Weisstein|first=Eric W.|title=सीमा|url=https://mathworld.wolfram.com/सीमा.html|access-date=2020-08-18|website=mathworld.wolfram.com|language=en|archive-date=2020-06-20|archive-url=https://web.archive.org/web/20200620203909/https://mathworld.wolfram.com/सीमा.html|url-status=live}}</ref>
औपचारिक रूप से, मान लीजिए {{math|''a''<sub>1</sub>, ''a''<sub>2</sub>, …}} [[वास्तविक संख्या]]ओं का एक क्रम है। जब अनुक्रम की सीमा मौजूद होती है, वास्तविक संख्या {{math|''L''}} इस क्रम की सीमा है यदि और केवल यदि प्रत्येक वास्तविक संख्या के लिए {{math|''ε'' > 0}}, एक [[प्राकृतिक संख्या]]  {{math|''N''}}  मौजूद है ऐसा कि सभी के लिए {{math|''n'' > ''N''}} के लिये , {{math|{{abs|''a''<sub>''n''</sub> − ''L''}} < ''ε''}} हमारे पास.<ref>{{Cite web|last=Weisstein|first=Eric W.|title=सीमा|url=https://mathworld.wolfram.com/सीमा.html|access-date=2020-08-18|website=mathworld.wolfram.com|language=en|archive-date=2020-06-20|archive-url=https://web.archive.org/web/20200620203909/https://mathworld.wolfram.com/सीमा.html|url-status=live}}</ref>


अंकन
अंकन
<math display="block"> \lim_{n \to \infty} a_n = L </math>
<math display="block"> \lim_{n \to \infty} a_n = L </math>
अधिकांश उपयोग किया जाता है, और जिसे पढ़ा जाता है
अधिकांश उपयोग किया जाता है, और जिसे पढ़ा जाता है
: a<sub>n</sub> की सीमा जैसे-जैसे n अनंत की ओर बढ़ता है, L के बराबर होती है
: a<sub>n</sub> की सीमा जैसे-जैसे n अनंत की ओर बढ़ता है, L के बराबर होती जाती है


औपचारिक परिभाषा का सहज अर्थ है कि अंततः, अनुक्रम के सभी तत्व अव्यवस्थित रूप से सीमा के करीब हो जाते हैं, क्योंकि निरपेक्ष मान {{math|{{abs|''a''<sub>''n''</sub> − ''L''}}}} {{math|''a''<sub>''n''</sub>}} तथा {{math|''L''}} के बीच की दूरी है.
औपचारिक परिभाषा का सहज अर्थ है कि अंततः, अनुक्रम के सभी तत्व अव्यवस्थित रूप से सीमा के करीब हो जाते हैं, क्योंकि निरपेक्ष मान {{math|{{abs|''a''<sub>''n''</sub> − ''L''}}}} {{math|''a''<sub>''n''</sub>}} तथा {{math|''L''}} के बीच की दूरी है.
Line 42: Line 42:
सभी क्रम की एक सीमा नहीं होती। यदि होता है तो अभिसारी कहलाता है और यदि नहीं होता है तो अपसारी कहलाता है। कोई दिखा सकता है कि एक अभिसरण अनुक्रम की केवल एक सीमा होती है।
सभी क्रम की एक सीमा नहीं होती। यदि होता है तो अभिसारी कहलाता है और यदि नहीं होता है तो अपसारी कहलाता है। कोई दिखा सकता है कि एक अभिसरण अनुक्रम की केवल एक सीमा होती है।


किसी अनुक्रम की सीमा और किसी फलन की सीमा का आपस में गहरा संबंध है। एक ओर, {{mvar|n}} के रूप में सीमा एक अनुक्रम {{math|{{mset|''a''<sub>''n''</sub>}}}} की अनंतता तक पहुँचती है  केवल एक फलन {{math|''a''(''n'')}} की अनंतता की सीमा है - प्राकृतिक {{math|{{mset|''n''}}}} संख्या पर परिभाषित. वहीं दूसरी ओर अगर {{math|''X''}} एक फलन का डोमेन है {{math|''f''(''x'')}} और यदि सीमा के रूप में {{mvar|n}} की अनंतता तक पहुँचता है {{math|''f''(''x''<sub>''n''</sub>)}} है {{math|''L''}} अंकों के प्रत्येक मनमाने क्रम के लिए {{math|{{mset|''x''<sub>''n''</sub>}}}} में {{math|{{mset|''X'' – {{mset|''x''<sub>0</sub>}}}}}} जो अभिसरण करता है {{math|''x''<sub>0</sub>}}, फिर फलन की सीमा {{math|''f''(''x'')}} जैसा {{math|''x''}} दृष्टिकोण {{math|''x''<sub>0</sub>}} है {{math|''L''}}.<ref name=":0">{{harvtxt|Apostol|1974|pp=75–76}}</ref> ऐसा ही एक क्रम होगा {{math|{{mset|''x''<sub>0</sub> + 1/''n''}}}}.        केवल एक फलन {{math|''a''(''n'')}} की अनंतता की सीमा है - प्राकृतिक {{math|{{mset|''n''}}}} संख्या पर परिभाषित. वहीं दूसरी ओर अगर {{math|''X''}} एक फलन का डोमेन है {{math|''f''(''x'')}} और यदि सीमा के रूप में {{mvar|n}} की अनंतता तक पहुँचता है {{math|''f''(''x''<sub>''n''</sub>)}} है {{math|''L''}} अंकों के प्रत्येक मनमाने क्रम के लिए {{math|{{mset|''x''<sub>''n''</sub>}}}} में {{math|{{mset|''X'' – {{mset|''x''<sub>0</sub>}}}}}} जो अभिसरण करता है {{math|''x''<sub>0</sub>}}, फिर फलन की सीमा {{math|''f''(''x'')}} जैसा {{math|''x''}} दृष्टिकोण {{math|''x''<sub>0</sub>}} है {{math|''L''}}.<ref name=":0" /> ऐसा ही एक क्रम होगा {{math|{{mset|''x''<sub>0</sub> + 1/''n''}}}}.
किसी अनुक्रम की सीमा और किसी फलन की सीमा का आपस में गहरा संबंध है। एक ओर, {{mvar|n}} के रूप में सीमा एक अनुक्रम {{math|{{mset|''a''<sub>''n''</sub>}}}} की अनंतता तक पहुँचती है  केवल एक फलन {{math|''a''(''n'')}} की अनंतता की सीमा है - प्राकृतिक {{math|{{mset|''n''}}}} संख्या पर परिभाषित. वहीं दूसरी ओर यदि {{math|''X''}} एक फलन {{math|''f''(''x'')}} का डोमेन है और यदि {{math|''f''(''x''<sub>''n''</sub>)}} की सीमा  {{mvar|n}} के अनंतता तक पहुँचती है तो {{math|{{mset|''X'' – {{mset|''x''<sub>0</sub>}}}}}} में बिंदुओं {{math|{{mset|''x''<sub>''n''</sub>}}}} के प्रत्येक स्वेच्छ अनुक्रम के लिए {{math|''L''}} है | जो {{math|''x''<sub>0</sub>}} पर अभिसरित होता है, तो फलन {{math|''f''(''x'')}} की सीमा जैसा {{math|''x''}} {{math|''x''<sub>0</sub>}} की ओर अग्रसर होता है, वह {{math|''L''}} है.<ref name=":0">{{harvtxt|Apostol|1974|pp=75–76}}</ref> ऐसा ही एक क्रम होगा {{math|{{mset|''x''<sub>0</sub> + 1/''n''}}}}होगा.


==== एक सीमा के रूप में अनंत ====
==== एक सीमा के रूप में अनंत ====
कुछ परिमित के विपरीत अनंत पर एक सीमा होने की भी धारणा है <math>L</math>. एक क्रम <math>\{a_n\}</math> कहा जाता है कि यदि प्रत्येक वास्तविक संख्या के लिए अनंत की ओर प्रवृत्त होता है <math>M > 0</math>, जिसे बाउंड के रूप में जाना जाता है, एक पूर्णांक मौजूद होता है <math>N</math> ऐसा कि प्रत्येक के लिए <math>n > N</math>,
कुछ परिमित <math>L</math> के विपरीत "अनंत पर" एक सीमा होने की भी धारणा है. एक अनुक्रम  <math>\{a_n\}</math> को "अनंत की ओर प्रवृत्त" कहा जाता हैयदि प्रत्येक वास्तविक संख्या के लिए <math>M > 0</math> जिसे बाउंड के रूप में जाना जाता है, एक पूर्णांक <math>N</math> मौजूद होता है जैसे कि प्रत्येक के लिए <math>n > N</math>होता है ,
<math display="block">|a_n| > M.</math>
<math display="block">|a_n| > M.</math>
अर्थात्, हर संभव सीमा के लिए, अनुक्रम का परिमाण अंततः सीमा से अधिक हो जाता है। यह अक्सर लिखा जाता है <math>\lim_{n\rightarrow \infty} a_n = \infty</math> या केवल <math>a_n \rightarrow \infty</math>. ऐसे अनुक्रमों को असीमित भी कहा जाता है।
अर्थात्, हर संभव सीमा के लिए, अनुक्रम का परिमाण अंततः सीमा से अधिक हो जाता है। यह अधिकांश <math>\lim_{n\rightarrow \infty} a_n = \infty</math> या केवल <math>a_n \rightarrow \infty</math> लिखा जाता है. ऐसे अनुक्रमों को असीमित भी कहा जाता है।


किसी अनुक्रम का विचलन होना संभव है, लेकिन अनंत की ओर नहीं। ऐसे अनुक्रमों को दोलन कहा जाता है। दोलन अनुक्रम का एक उदाहरण है <math>a_n = (-1)^n</math>.
किसी अनुक्रम का विचलन होना संभव है, लेकिन अनंत की ओर विचलन नहीं होगा। ऐसे अनुक्रमों को दोलन कहा जाता है। दोलन अनुक्रम <math>a_n = (-1)^n</math>का एक उदाहरण है.


वास्तविक संख्याओं के लिए, उपरोक्त परिभाषा से मॉड्यूलस चिह्न को हटाकर, सकारात्मक अनंत और नकारात्मक अनंतता की प्रवृत्ति के समान विचार हैं:
वास्तविक संख्याओं के लिए, उपरोक्त परिभाषा से गुणांक चिह्न को हटाकर, धनात्मक अनंत और ऋणात्मक अनंतता की प्रवृत्ति के समान विचार हैं:
<math display = block>a_n > M.</math>
<math display = block>a_n > M.</math>
सकारात्मक अनंत की ओर प्रवृत्त परिभाषित करता है, जबकि
धनात्मक अनंत की ओर प्रवृत्त परिभाषित करता है, जबकि
<math display = block>-a_n > M.</math>
<math display = block>-a_n > M.</math>
नकारात्मक अनंतता की प्रवृत्ति को परिभाषित करता है।
ऋणात्मक अनंतता की प्रवृत्ति को परिभाषित करता है।


वे क्रम जो अनंत की ओर नहीं जाते हैं, परिबद्ध कहलाते हैं। अनुक्रम जो धनात्मक अनन्तता की ओर प्रवृत्त नहीं होते हैं उन्हें ऊपर परिबद्ध कहा जाता है, जबकि जो ऋणात्मक अनन्तता की ओर प्रवृत्त नहीं होते हैं उन्हें नीचे परिबद्ध किया जाता है।
वे क्रम जो अनंत की ओर नहीं जाते हैं, परिबद्ध कहलाते हैं। अनुक्रम जो धनात्मक अनन्तता की ओर प्रवृत्त नहीं होते हैं उन्हें ऊपर परिबद्ध कहा जाता है, जबकि जो ऋणात्मक अनन्तता की ओर प्रवृत्त नहीं होते हैं उन्हें नीचे परिबद्ध किया जाता है।


==== [[मीट्रिक स्थान]] ====
==== [[मीट्रिक स्थान]] ====
उपरोक्त अनुक्रमों की चर्चा वास्तविक संख्याओं के अनुक्रमों के लिए है। सीमाओं की धारणा को अधिक अमूर्त स्थानों में मूल्यवान अनुक्रमों के लिए परिभाषित किया जा सकता है। अधिक अमूर्त स्थान का एक उदाहरण मीट्रिक रिक्त स्थान है। यदि <math>M</math> दूरी फलन के साथ एक मीट्रिक स्थान है <math>d</math>, तथा <math>\{a_n\}_{n \geq 0}</math> में क्रम है <math>M</math>, तो अनुक्रम की सीमा (जब यह मौजूद है) एक तत्व है <math>a\in M</math> ऐसा दिया, दिया <math>\epsilon > 0</math>, वहाँ एक मौजूद है <math>N</math> ऐसा कि प्रत्येक के लिए <math>n > N</math>, समीकरण
उपरोक्त अनुक्रमों की चर्चा वास्तविक संख्याओं के अनुक्रमों के लिए है। सीमाओं की धारणा को अधिक अमूर्त स्थानों में मूल्यवान अनुक्रमों के लिए परिभाषित किया जा सकता है। अधिक अमूर्त स्थान का एक उदाहरण मीट्रिक रिक्त स्थान है। यदि <math>M</math> दूरी फलन <math>d</math> के साथ एक मीट्रिक स्थान है, <math>\{a_n\}_{n \geq 0}</math> <math>M</math> में क्रम है, तो अनुक्रम की सीमा (जब यह मौजूद है) एक तत्व <math>a\in M</math> ऐसा दिया, दिया <math>\epsilon > 0</math>, वहाँ एक <math>N</math> मौजूद है जैसे कि प्रत्येक <math>n > N</math> के लिए, समीकरण
<math display = block> d(a, a_n) < \epsilon</math>
<math display = block> d(a, a_n) < \epsilon</math>
संतुष्ट है।
संतुष्ट है।


समतुल्य कथन है <math>a_n \rightarrow a</math> यदि वास्तविक संख्याओं का क्रम <math>d(a, a_n) \rightarrow 0</math>.
समतुल्य कथन यह है कि <math>a_n \rightarrow a</math> यदि वास्तविक संख्याओं का अनुक्रम <math>d(a, a_n) \rightarrow 0</math> हो तो.  


===== उदाहरण: ℝ<sup>एन </सुप> =====
===== उदाहरण: ℝ<sup>n</sup> =====
एक महत्वपूर्ण उदाहरण का स्थान है <math>n</math>-आयामी वास्तविक वैक्टर, तत्वों के साथ <math>\mathbf{x} = (x_1, \cdots, x_n)</math> जहां प्रत्येक <math>x_i</math> वास्तविक हैं, उपयुक्त दूरी फलन का एक उदाहरण [[यूक्लिडियन दूरी]] है, जिसे परिभाषित किया गया है
एक महत्वपूर्ण उदाहरण <math>n</math>-आयामी वास्तविक वैक्टर का स्थान है, तत्वों के साथ <math>\mathbf{x} = (x_1, \cdots, x_n)</math> जहां प्रत्येक <math>x_i</math> वास्तविक हैं, उपयुक्त दूरी फलन का एक उदाहरण [[यूक्लिडियन दूरी]] है, जिसे परिभाषित किया गया है
<math display = block>d(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}| = \sqrt{\sum_i(x_i - y_i)^2}.</math>
<math display = block>d(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}| = \sqrt{\sum_i(x_i - y_i)^2}.</math>
अंकों का क्रम <math>\{\mathbf{x}_n\}_{n \geq 0}</math> में विलीन हो जाता है <math>\mathbf{x}</math> यदि सीमा मौजूद है और <math>|\mathbf{x}_n - \mathbf{x}| \rightarrow 0</math>.
बिंदुओं का क्रम <math>\{\mathbf{x}_n\}_{n \geq 0}</math> <math>\mathbf{x}</math> में परिवर्तित होता है यदि सीमा <math>|\mathbf{x}_n - \mathbf{x}| \rightarrow 0</math> मौजूद है.


==== [[टोपोलॉजिकल स्पेस]] ====
==== [[टोपोलॉजिकल स्पेस]] ====
कुछ अर्थों में सबसे अमूर्त स्थान जिसमें सीमाओं को परिभाषित किया जा सकता है, वे सामयिक स्थान हैं। यदि <math>X</math> टोपोलॉजी के साथ एक टोपोलॉजिकल स्पेस है <math>\tau</math>, तथा <math>\{a_n\}_{n \geq 0}</math> में क्रम है <math>X</math>, तो अनुक्रम की सीमा (जब यह मौजूद है) एक बिंदु है <math>a\in X</math> ऐसा कि, एक (खुला) पड़ोस (टोपोलॉजी) दिया गया <math>U\in \tau</math> का <math>a</math>, वहाँ एक मौजूद है <math>N</math> ऐसा कि प्रत्येक के लिए <math>n > N</math>,
कुछ अर्थों में सबसे अमूर्त स्थान जिसमें सीमाओं को परिभाषित किया जा सकता है, वे सामयिक स्थान हैं। यदि <math>X</math> टोपोलॉजी के साथ <math>\tau</math> एक टोपोलॉजिकल स्पेस है, तथा <math>\{a_n\}_{n \geq 0}</math> में <math>X</math> क्रम है, तो अनुक्रम की सीमा (जब यह मौजूद है) <math>a\in X</math> एक बिंदु है जैसे कि, एक (खुला) निकट (टोपोलॉजी) <math>U\in \tau</math> का <math>a</math> दिया गया, वहाँ एक <math>N</math> मौजूद है जैसे कि प्रत्येक के लिए <math>n > N</math>,
<math display = block>a_n \in U</math>
<math display = block>a_n \in U</math>
संतुष्ट है।
संतुष्ट है।


==== फंक्शन स्पेस ====
==== फलन स्पेस ====
यह खंड कार्यों के अनुक्रमों की सीमाओं के विचार से संबंधित है, नीचे चर्चा की गई कार्यों की सीमाओं के विचार से भ्रमित नहीं होना चाहिए।
यह खंड फलन के अनुक्रमों की सीमाओं के विचार से संबंधित है, नीचे चर्चा की गई फलनो की सीमाओं के विचार से भ्रमित नहीं होना चाहिए।


[[कार्यात्मक विश्लेषण]] का क्षेत्र आंशिक रूप से कार्य स्थान पर अभिसरण की उपयोगी धारणाओं की पहचान करना चाहता है। उदाहरण के लिए, सामान्य सेट से कार्यों की जगह पर विचार करें <math>E</math> प्रति <math>\mathbb{R}</math>. कार्यों के अनुक्रम को देखते हुए <math>\{f_n\}_{n > 0}</math> ऐसा है कि प्रत्येक एक कार्य है <math>f_n: E \rightarrow \mathbb{R}</math>, मान लीजिए कि एक ऐसा कार्य मौजूद है जो प्रत्येक के लिए है <math>x \in E</math>,
[[कार्यात्मक विश्लेषण]] का क्षेत्र आंशिक रूप से कार्य स्थान पर अभिसरण की उपयोगी धारणाओं की पहचान करना चाहता है। उदाहरण के लिए, सामान्य समुच्चेय <math>E</math> प्रति <math>\mathbb{R}</math> तक फलनो की स्थान पर विचार करें. फलनो के अनुक्रम को देखते हुए <math>\{f_n\}_{n > 0}</math> कि ऐसा है कि प्रत्येक एक फलन है <math>f_n: E \rightarrow \mathbb{R}</math>, मान लीजिए कि एक ऐसा फलन उपस्थित है जैसे कि प्रत्येक के लिए <math>x \in E</math> में,
<math display = block> f_n(x) \rightarrow f(x) \text{ or equivalently } \lim_{n \rightarrow \infty}f_n(x) = f(x).</math>
<math display = block> f_n(x) \rightarrow f(x) \text{ or equivalently } \lim_{n \rightarrow \infty}f_n(x) = f(x).</math>
फिर क्रम <math>f_n</math> बिंदुवार अभिसरण कहा जाता है <math>f</math>. हालाँकि, ऐसे क्रम अनपेक्षित व्यवहार प्रदर्शित कर सकते हैं। उदाहरण के लिए, निरंतर कार्यों के एक अनुक्रम का निर्माण करना संभव है जिसकी एक बिंदुवार सीमा होती है।
फिर क्रम <math>f_n</math> को बिंदुवार <math>f</math> अभिसरण कहा जाता है. चूँकि, ऐसे क्रम अनपेक्षित व्यवहार प्रदर्शित कर सकते हैं। उदाहरण के लिए, निरंतर कार्यों के एक अनुक्रम का निर्माण करना संभव है जिसकी एक बिंदुवार सीमा होती है।


अभिसरण की एक अन्य धारणा [[एकसमान अभिसरण]] है। दो कार्यों के बीच समान दूरी <math>f,g: E \rightarrow \mathbb{R}</math> तर्क के रूप में दो कार्यों के बीच अधिकतम अंतर है <math>x \in E</math> विविध है। वह है,
अभिसरण की एक अन्य धारणा [[एकसमान अभिसरण]] है। दो कार्यों के बीच समान दूरी <math>f,g: E \rightarrow \mathbb{R}</math> तर्क के रूप में दो कार्यों के बीच अधिकतम अंतर है <math>x \in E</math> विविध है। वह है,
  <math display = block>d(f,g) = \max_{x \in E}|f(x) - g(x)|.</math>
  <math display = block>d(f,g) = \max_{x \in E}|f(x) - g(x)|.</math>
फिर क्रम <math>f_n</math> कहा जाता है कि समान रूप से अभिसरण या एक समान सीमा होती है <math>f</math> यदि <math>f_n \rightarrow f</math> इस दूरी के संबंध में। एकसमान सीमा में बिंदुवार सीमा की तुलना में अच्छे गुण होते हैं। उदाहरण के लिए, निरंतर कार्यों के अनुक्रम की एकसमान सीमा निरंतर है।
फिर क्रम <math>f_n</math> को समान रूप से अभिसरण या <math>f</math> एक समान सीमा होती है  यदि <math>f_n \rightarrow f</math> इस दूरी के संबंध में। एकसमान सीमा में बिंदुवार सीमा की तुलना में अच्छे गुण होते हैं। उदाहरण के लिए, निरंतर कार्यों के अनुक्रम की एकसमान सीमा निरंतर है।


फलन रिक्त स्थान पर अभिसरण की कई अलग-अलग धारणाओं को परिभाषित किया जा सकता है। यह कभी-कभी अंतरिक्ष की चिकनीता पर निर्भर होता है। अभिसरण की कुछ धारणा के साथ फलन रिक्त स्थान के प्रमुख उदाहरण एलपी रिक्त स्थान और [[सोबोलेव स्पेस]] हैं।
फलन रिक्त स्थान पर अभिसरण की कई अलग-अलग धारणाओं को परिभाषित किया जा सकता है। यह कभी-कभी अंतरिक्ष की चिकनीता पर निर्भर होता है। अभिसरण की कुछ धारणा के साथ फलन रिक्त स्थान के प्रमुख उदाहरण एलपी रिक्त स्थान और [[सोबोलेव स्पेस]] हैं।


=== कार्यों में ===
=== कार्यों में ===
{{main|Limit of a function}}
{{main|एक फलन की सीमा}}
[[File:Limit-at-infinity-graph.png|thumb|एक समारोह {{math|''f''(''x'')}} जिसके लिए [[अनंत पर सीमा]] है {{math|''L''}}. किसी भी मनमानी दूरी के लिए {{mvar|ε}}, कोई मान होना चाहिए {{math|''S''}} ऐसा है कि समारोह भीतर रहता है {{math|''L'' ± ''ε''}} सभी के लिए {{math|''x'' > ''S''}}.|300x300पीएक्स]]मान लीजिए {{math|''f''}} एक वास्तविक मूल्यवान कार्य है और {{mvar|c}} एक वास्तविक संख्या है। सहज रूप से बोलना, अभिव्यक्ति
[[File:Limit-at-infinity-graph.png|thumb|एक समारोह {{math|''f''(''x'')}} जिसके लिए [[अनंत पर सीमा]] है {{math|''L''}}. किसी भी मनमानी दूरी के लिए {{mvar|ε}}, कोई मान होना चाहिए {{math|''S''}} ऐसा है कि समारोह भीतर रहता है {{math|''L'' ± ''ε''}} सभी के लिए {{math|''x'' > ''S''}}.|300x300पीएक्स]]मान लीजिए {{math|''f''}} एक वास्तविक मूल्यवान फलन है और {{mvar|c}} एक वास्तविक संख्या है। सहज रूप से बोलना, एस प्रकार


:<math> \lim_{x \to c}f(x) = L </math>
:<math> \lim_{x \to c}f(x) = L </math>
मतलब कि {{math|''f''(''x'')}} के निकट बनाया जा सकता है {{math|''L''}} इच्छानुसार, बनाकर {{mvar|x}} काफी करीब {{mvar|c}}.<ref>{{Cite web |last=Weisstein |first=Eric W. |title=एप्सिलॉन-डेल्टा परिभाषा|url=https://mathworld.wolfram.com/Epsilon-DeltaDefinition.html |access-date=2020-08-18 |website=mathworld.wolfram.com |language=en |archive-date=2020-06-25 |archive-url=https://web.archive.org/web/20200625125230/https://mathworld.wolfram.com/Epsilon-DeltaDefinition.html |url-status=live }}</ref> उस स्थिति में, उपरोक्त समीकरण को की सीमा के रूप में पढ़ा जा सकता है {{math|''f''}} का {{mvar|x}}, जैसा {{mvar|x}} दृष्टिकोण {{mvar|c}}, है {{math|''L''}}.
अर्थ है कि {{math|''f''(''x'')}} के निकट बनाया जा सकता है {{math|''L''}} इच्छानुसार, बनाकर {{mvar|x}} काफी करीब {{mvar|c}}.<ref>{{Cite web |last=Weisstein |first=Eric W. |title=एप्सिलॉन-डेल्टा परिभाषा|url=https://mathworld.wolfram.com/Epsilon-DeltaDefinition.html |access-date=2020-08-18 |website=mathworld.wolfram.com |language=en |archive-date=2020-06-25 |archive-url=https://web.archive.org/web/20200625125230/https://mathworld.wolfram.com/Epsilon-DeltaDefinition.html |url-status=live }}</ref> उस स्थिति में, उपरोक्त समीकरण को की सीमा के रूप में पढ़ा जा सकता है {{math|''f''}} का {{mvar|x}}, जैसा {{mvar|x}} दृष्टिकोण {{mvar|c}}, है {{math|''L''}}.


औपचारिक रूप से, की सीमा की परिभाषा <math>f(x)</math> जैसा <math>x</math> दृष्टिकोण <math>c</math>निम्नानुसार दिया गया है। सीमा एक वास्तविक संख्या है <math>L</math> ताकि, एक मनमाना वास्तविक संख्या दी जाए <math>\epsilon > 0</math> (त्रुटि के रूप में माना जाता है), एक है <math>\delta > 0</math> ऐसा कि, किसी के लिए <math>x</math> संतुष्टि देने वाला <math>0 < |x - c| < \delta</math>, यह मानता है <math>| f(x) - L | < \epsilon</math>. इसे (ε, δ)-सीमा की परिभाषा के रूप में जाना जाता है।
औपचारिक रूप से, की सीमा की परिभाषा <math>f(x)</math> जैसा <math>x</math> दृष्टिकोण <math>c</math>निम्नानुसार दिया गया है। सीमा एक वास्तविक संख्या है <math>L</math> ताकि, एक मनमाना वास्तविक संख्या दी जाए <math>\epsilon > 0</math> (त्रुटि के रूप में माना जाता है), एक है <math>\delta > 0</math> ऐसा कि, किसी के लिए <math>x</math> संतुष्टि देने वाला <math>0 < |x - c| < \delta</math>, यह मानता है <math>| f(x) - L | < \epsilon</math>. इसे (ε, δ)-सीमा की परिभाषा के रूप में जाना जाता है।
Line 109: Line 109:
==== एकतरफा सीमा ====
==== एकतरफा सीमा ====
{{Main article | one-sided limit}}
{{Main article | one-sided limit}}
ऊपर या बाईं सीमा से सीमा होने की धारणा और नीचे या दाईं सीमा से सीमा की धारणा को परिभाषित करना संभव है। इन पर सहमत होने की आवश्यकता नहीं है। सकारात्मक संकेतक फलन द्वारा एक उदाहरण दिया गया है, <math>f: \mathbb{R} \rightarrow \mathbb{R}</math>, इस प्रकार परिभाषित किया गया है <math>f(x) = 0</math> यदि <math>x \leq 0</math>, तथा <math>f(x) = 1</math> यदि <math>x > 0</math>. पर <math>x = 0</math>फलन की बाईं सीमा 0 है, दाईं सीमा 1 है, और इसकी सीमा मौजूद नहीं है।
ऊपर या बाईं सीमा से सीमा होने की धारणा और नीचे या दाईं सीमा से सीमा की धारणा को परिभाषित करना संभव है। इन पर सहमत होने की आवश्यकता नहीं है। धनात्मक संकेतक फलन द्वारा एक उदाहरण दिया गया है, <math>f: \mathbb{R} \rightarrow \mathbb{R}</math>, इस प्रकार परिभाषित किया गया है <math>f(x) = 0</math> यदि <math>x \leq 0</math>, तथा <math>f(x) = 1</math> यदि <math>x > 0</math>. पर <math>x = 0</math>फलन की बाईं सीमा 0 है, दाईं सीमा 1 है, और इसकी सीमा मौजूद नहीं है।


==== कार्यों की सीमा में अनंत ====
==== कार्यों की सीमा में अनंत ====
Line 257: Line 257:
* सीमा का व्युत्क्रम व्युत्क्रम की सीमा के बराबर है (जब तक <math>a \neq 0</math>)
* सीमा का व्युत्क्रम व्युत्क्रम की सीमा के बराबर है (जब तक <math>a \neq 0</math>)
<math display = block>\frac{1}{a_n} \rightarrow \frac{1}{a}.</math>
<math display = block>\frac{1}{a_n} \rightarrow \frac{1}{a}.</math>
समतुल्य, फलन <math>f(x) = 1/x</math> सकारात्मक के बारे में निरंतर है <math>x</math>.
समतुल्य, फलन <math>f(x) = 1/x</math> धनात्मक के बारे में निरंतर है <math>x</math>.


==== कॉची सीक्वेंस ====
==== कॉची सीक्वेंस ====
Line 281: Line 281:
अनुक्रम से परे है या नहीं <math>\{a_n\}</math> एक सीमा में समा जाता है <math>a</math>, यह वर्णन करना संभव है कि अनुक्रम कितनी तेजी से एक सीमा तक अभिसरण करता है। इसे परिमाणित करने का एक तरीका अनुक्रम के अभिसरण के क्रम का उपयोग कर रहा है।
अनुक्रम से परे है या नहीं <math>\{a_n\}</math> एक सीमा में समा जाता है <math>a</math>, यह वर्णन करना संभव है कि अनुक्रम कितनी तेजी से एक सीमा तक अभिसरण करता है। इसे परिमाणित करने का एक तरीका अनुक्रम के अभिसरण के क्रम का उपयोग कर रहा है।


अभिसरण के क्रम की एक औपचारिक परिभाषा निम्नानुसार बताई जा सकती है। मान लीजिए <math>\{a_n\}_{n > 0}</math> वास्तविक संख्याओं का एक क्रम है जो सीमा के साथ अभिसारी है <math>a</math>. आगे, <math>a_n \neq a</math> सभी के लिए <math>n</math>. यदि सकारात्मक स्थिरांक <math> \lambda </math> तथा <math> \alpha </math> ऐसे मौजूद हैं
अभिसरण के क्रम की एक औपचारिक परिभाषा निम्नानुसार बताई जा सकती है। मान लीजिए <math>\{a_n\}_{n > 0}</math> वास्तविक संख्याओं का एक क्रम है जो सीमा के साथ अभिसारी है <math>a</math>. आगे, <math>a_n \neq a</math> सभी के लिए <math>n</math>. यदि धनात्मक स्थिरांक <math> \lambda </math> तथा <math> \alpha </math> ऐसे मौजूद हैं
<math display = block>\lim_{n \to \infty } \frac{ \left| a_{n+1} - a \right| }{ \left| a_n - a \right| ^\alpha } = \lambda </math>
<math display = block>\lim_{n \to \infty } \frac{ \left| a_{n+1} - a \right| }{ \left| a_n - a \right| ^\alpha } = \lambda </math>
फिर <math> a_n </math> में मिलना कहा जाता है <math> a </math> अभिसरण के क्रम के साथ <math> \alpha </math>. अटल <math> \lambda </math> स्पर्शोन्मुख त्रुटि स्थिरांक के रूप में जाना जाता है।
फिर <math> a_n </math> में मिलना कहा जाता है <math> a </math> अभिसरण के क्रम के साथ <math> \alpha </math>. अटल <math> \lambda </math> स्पर्शोन्मुख त्रुटि स्थिरांक के रूप में जाना जाता है।

Revision as of 19:58, 10 December 2022

गणित में, एक सीमा वह मान है जो एक फलन (गणित) (या अनुक्रम) तक पहुंचता है क्योंकि इनपुट (या क्रम-सूची) कुछ मान (गणित) तक पहुंचता है।[1] गणना और गणितीय विश्लेषण के लिए सीमाएं आवश्यक हैं, और निरंतर कार्य, यौगिक और अभिन्न को परिभाषित करने के लिए उपयोग की जाती हैं।

एक अनुक्रम की एक सीमा की अवधारणा को एक नेट (टोपोलॉजी) की एक सीमा की अवधारणा के लिए सामान्यीकृत किया जाता है, और श्रेणी सिद्धांत में सीमा (श्रेणी सिद्धांत) और प्रत्यक्ष सीमा से निकटता से संबंधित है।

सूत्रों में, किसी फलन की सीमा को सामान्यतः इस रूप में लिखा जाता है

(चूंकि कुछ लेखक लिम "lim" के अतिरिक्त एलटी "Lt" का उपयोग कर सकते हैं[2])

और इसे x में f की सीमा के रूप में x के रूप में c के बराबर L के रूप में पढ़ा जाता है. तथ्य यह है कि एक फलन f सीमा L तक पहुँचता है जैसा x c तक पहुँचता है, कभी-कभी दायां तीर (→ या → ) द्वारा दर्शाया जाता है, जैसा कि

जो पढ़ता है का की ओर जाता है क्योंकि जैसा की ओर जाता है.

इतिहास

ग्रेगोइरे डी सेंट-विंसेंट ने अपने काम ओपस जियोमीट्रिक श्रंखला (1647) में एक ज्यामितीय श्रृंखला की सीमा (टर्मिनस) की पहली परिभाषा दी: "एक प्रगति का टर्मिनस श्रृंखला का अंत है, जो कोई भी प्रगति तक नहीं पहुंच सकता है, भले ही वह अनंत में जारी है, लेकिन जिस तक वह किसी दिए गए खंड की तुलना में अधिक निकट पहुंच सकती है |[3]

एक सीमा की आधुनिक परिभाषा बर्नार्ड बोलजानो के पास वापस जाती है, जिन्होंने 1817 में निरंतर कार्यों को परिभाषित करने के लिए एप्सिलॉन-डेल्टा तकनीक की मूल बातें प्रस्तुत कीं। चूंकि, उनके काम को उनके जीवनकाल में नहीं जाना गया था।[4]

1821 में ऑगस्टिन-लुई कॉची,[5] इसके बाद कार्ल वीयरस्ट्रास ने एक फलन की सीमा की परिभाषा को औपचारिक रूप दिया जिसे (ε, δ)-सीमा की परिभाषा के रूप में जाना जाने लगा।

सीमा चिह्न के नीचे तीर रखने की आधुनिक धारणा जी. एच. हार्डी के कारण है, जिन्होंने 1908 में अपनी पुस्तक शुद्ध गणित का एक कोर्स में इसका परिचय दिया था।[6]


सीमा के प्रकार

क्रम में

वास्तविक संख्या

व्यंजक 0.999... की व्याख्या अनुक्रम 0.9, 0.99, 0.999, ... और इसी तरह की सीमा के रूप में की जानी चाहिए। इस क्रम को सख्ती से 1 की सीमा के रूप में दिखाया जा सकता है, और इसलिए इस अभिव्यक्ति की सार्थक व्याख्या 1 के मान के रूप में की जाती है।[7]

औपचारिक रूप से, मान लीजिए a1, a2, … वास्तविक संख्याओं का एक क्रम है। जब अनुक्रम की सीमा मौजूद होती है, वास्तविक संख्या L इस क्रम की सीमा है यदि और केवल यदि प्रत्येक वास्तविक संख्या के लिए ε > 0, एक प्राकृतिक संख्या N मौजूद है ऐसा कि सभी के लिए n > N के लिये , |anL| < ε हमारे पास.[8]

अंकन

अधिकांश उपयोग किया जाता है, और जिसे पढ़ा जाता है

an की सीमा जैसे-जैसे n अनंत की ओर बढ़ता है, L के बराबर होती जाती है

औपचारिक परिभाषा का सहज अर्थ है कि अंततः, अनुक्रम के सभी तत्व अव्यवस्थित रूप से सीमा के करीब हो जाते हैं, क्योंकि निरपेक्ष मान |anL| an तथा L के बीच की दूरी है.

सभी क्रम की एक सीमा नहीं होती। यदि होता है तो अभिसारी कहलाता है और यदि नहीं होता है तो अपसारी कहलाता है। कोई दिखा सकता है कि एक अभिसरण अनुक्रम की केवल एक सीमा होती है।

किसी अनुक्रम की सीमा और किसी फलन की सीमा का आपस में गहरा संबंध है। एक ओर, n के रूप में सीमा एक अनुक्रम {an} की अनंतता तक पहुँचती है केवल एक फलन a(n) की अनंतता की सीमा है - प्राकृतिक {n} संख्या पर परिभाषित. वहीं दूसरी ओर यदि X एक फलन f(x) का डोमेन है और यदि f(xn) की सीमा n के अनंतता तक पहुँचती है तो {X – {x0}} में बिंदुओं {xn} के प्रत्येक स्वेच्छ अनुक्रम के लिए L है | जो x0 पर अभिसरित होता है, तो फलन f(x) की सीमा जैसा x x0 की ओर अग्रसर होता है, वह L है.[9] ऐसा ही एक क्रम होगा {x0 + 1/n}होगा.

एक सीमा के रूप में अनंत

कुछ परिमित के विपरीत "अनंत पर" एक सीमा होने की भी धारणा है. एक अनुक्रम को "अनंत की ओर प्रवृत्त" कहा जाता है, यदि प्रत्येक वास्तविक संख्या के लिए जिसे बाउंड के रूप में जाना जाता है, एक पूर्णांक मौजूद होता है जैसे कि प्रत्येक के लिए होता है ,

अर्थात्, हर संभव सीमा के लिए, अनुक्रम का परिमाण अंततः सीमा से अधिक हो जाता है। यह अधिकांश या केवल लिखा जाता है. ऐसे अनुक्रमों को असीमित भी कहा जाता है।

किसी अनुक्रम का विचलन होना संभव है, लेकिन अनंत की ओर विचलन नहीं होगा। ऐसे अनुक्रमों को दोलन कहा जाता है। दोलन अनुक्रम का एक उदाहरण है.

वास्तविक संख्याओं के लिए, उपरोक्त परिभाषा से गुणांक चिह्न को हटाकर, धनात्मक अनंत और ऋणात्मक अनंतता की प्रवृत्ति के समान विचार हैं:

धनात्मक अनंत की ओर प्रवृत्त परिभाषित करता है, जबकि
ऋणात्मक अनंतता की प्रवृत्ति को परिभाषित करता है।

वे क्रम जो अनंत की ओर नहीं जाते हैं, परिबद्ध कहलाते हैं। अनुक्रम जो धनात्मक अनन्तता की ओर प्रवृत्त नहीं होते हैं उन्हें ऊपर परिबद्ध कहा जाता है, जबकि जो ऋणात्मक अनन्तता की ओर प्रवृत्त नहीं होते हैं उन्हें नीचे परिबद्ध किया जाता है।

मीट्रिक स्थान

उपरोक्त अनुक्रमों की चर्चा वास्तविक संख्याओं के अनुक्रमों के लिए है। सीमाओं की धारणा को अधिक अमूर्त स्थानों में मूल्यवान अनुक्रमों के लिए परिभाषित किया जा सकता है। अधिक अमूर्त स्थान का एक उदाहरण मीट्रिक रिक्त स्थान है। यदि दूरी फलन के साथ एक मीट्रिक स्थान है, में क्रम है, तो अनुक्रम की सीमा (जब यह मौजूद है) एक तत्व ऐसा दिया, दिया , वहाँ एक मौजूद है जैसे कि प्रत्येक के लिए, समीकरण

संतुष्ट है।

समतुल्य कथन यह है कि यदि वास्तविक संख्याओं का अनुक्रम हो तो.

उदाहरण: ℝn

एक महत्वपूर्ण उदाहरण -आयामी वास्तविक वैक्टर का स्थान है, तत्वों के साथ जहां प्रत्येक वास्तविक हैं, उपयुक्त दूरी फलन का एक उदाहरण यूक्लिडियन दूरी है, जिसे परिभाषित किया गया है

बिंदुओं का क्रम में परिवर्तित होता है यदि सीमा मौजूद है.

टोपोलॉजिकल स्पेस

कुछ अर्थों में सबसे अमूर्त स्थान जिसमें सीमाओं को परिभाषित किया जा सकता है, वे सामयिक स्थान हैं। यदि टोपोलॉजी के साथ एक टोपोलॉजिकल स्पेस है, तथा में क्रम है, तो अनुक्रम की सीमा (जब यह मौजूद है) एक बिंदु है जैसे कि, एक (खुला) निकट (टोपोलॉजी) का दिया गया, वहाँ एक मौजूद है जैसे कि प्रत्येक के लिए ,

संतुष्ट है।

फलन स्पेस

यह खंड फलन के अनुक्रमों की सीमाओं के विचार से संबंधित है, नीचे चर्चा की गई फलनो की सीमाओं के विचार से भ्रमित नहीं होना चाहिए।

कार्यात्मक विश्लेषण का क्षेत्र आंशिक रूप से कार्य स्थान पर अभिसरण की उपयोगी धारणाओं की पहचान करना चाहता है। उदाहरण के लिए, सामान्य समुच्चेय प्रति तक फलनो की स्थान पर विचार करें. फलनो के अनुक्रम को देखते हुए कि ऐसा है कि प्रत्येक एक फलन है , मान लीजिए कि एक ऐसा फलन उपस्थित है जैसे कि प्रत्येक के लिए में,

फिर क्रम को बिंदुवार अभिसरण कहा जाता है. चूँकि, ऐसे क्रम अनपेक्षित व्यवहार प्रदर्शित कर सकते हैं। उदाहरण के लिए, निरंतर कार्यों के एक अनुक्रम का निर्माण करना संभव है जिसकी एक बिंदुवार सीमा होती है।

अभिसरण की एक अन्य धारणा एकसमान अभिसरण है। दो कार्यों के बीच समान दूरी तर्क के रूप में दो कार्यों के बीच अधिकतम अंतर है विविध है। वह है,

फिर क्रम को समान रूप से अभिसरण या एक समान सीमा होती है यदि इस दूरी के संबंध में। एकसमान सीमा में बिंदुवार सीमा की तुलना में अच्छे गुण होते हैं। उदाहरण के लिए, निरंतर कार्यों के अनुक्रम की एकसमान सीमा निरंतर है।

फलन रिक्त स्थान पर अभिसरण की कई अलग-अलग धारणाओं को परिभाषित किया जा सकता है। यह कभी-कभी अंतरिक्ष की चिकनीता पर निर्भर होता है। अभिसरण की कुछ धारणा के साथ फलन रिक्त स्थान के प्रमुख उदाहरण एलपी रिक्त स्थान और सोबोलेव स्पेस हैं।

कार्यों में

300x300पीएक्स

मान लीजिए f एक वास्तविक मूल्यवान फलन है और c एक वास्तविक संख्या है। सहज रूप से बोलना, एस प्रकार

अर्थ है कि f(x) के निकट बनाया जा सकता है L इच्छानुसार, बनाकर x काफी करीब c.[10] उस स्थिति में, उपरोक्त समीकरण को की सीमा के रूप में पढ़ा जा सकता है f का x, जैसा x दृष्टिकोण c, है L.

औपचारिक रूप से, की सीमा की परिभाषा जैसा दृष्टिकोण निम्नानुसार दिया गया है। सीमा एक वास्तविक संख्या है ताकि, एक मनमाना वास्तविक संख्या दी जाए (त्रुटि के रूप में माना जाता है), एक है ऐसा कि, किसी के लिए संतुष्टि देने वाला , यह मानता है . इसे (ε, δ)-सीमा की परिभाषा के रूप में जाना जाता है।

असमानता बहिष्कृत करने के लिए प्रयोग किया जाता है विचाराधीन बिंदुओं के सेट से, लेकिन कुछ लेखकों ने इसे अपनी सीमा की परिभाषा में शामिल नहीं किया है बस के साथ . यह प्रतिस्थापन इसके अतिरिक्त आवश्यकता के बराबर है पर निरंतर रहें .

यह सिद्ध किया जा सकता है कि एक समतुल्य परिभाषा है जो अनुक्रमों की सीमाओं और कार्यों की सीमाओं के बीच संबंध को प्रकट करती है।[11] समतुल्य परिभाषा इस प्रकार दी गई है। पहले निरीक्षण करें कि हर क्रम के लिए के अधिकार क्षेत्र में , एक संबद्ध क्रम है , नीचे अनुक्रम की छवि . सीमा एक वास्तविक संख्या है ताकि, सभी अनुक्रमों के लिए , संबद्ध अनुक्रम .

एकतरफा सीमा

ऊपर या बाईं सीमा से सीमा होने की धारणा और नीचे या दाईं सीमा से सीमा की धारणा को परिभाषित करना संभव है। इन पर सहमत होने की आवश्यकता नहीं है। धनात्मक संकेतक फलन द्वारा एक उदाहरण दिया गया है, , इस प्रकार परिभाषित किया गया है यदि , तथा यदि . पर फलन की बाईं सीमा 0 है, दाईं सीमा 1 है, और इसकी सीमा मौजूद नहीं है।

कार्यों की सीमा में अनंत

के क्षेत्र में अनंतता की प्रवृत्ति की धारणा को परिभाषित करना संभव है ,

इस अभिव्यक्ति में, अनंत को हस्ताक्षरित माना जाता है: या तो या . x के रूप में f की सीमा धनात्मक अनंत तक जाती है, इसे निम्नानुसार परिभाषित किया गया है। यह एक वास्तविक संख्या है ऐसा है कि, कोई वास्तविक दिया , वहाँ एक मौजूद है ताकि अगर , . समान रूप से, किसी भी क्रम के लिए , अपने पास .

के मान में अनंत की ओर प्रवृत्त होने की धारणा को परिभाषित करना भी संभव है ,

परिभाषा इस प्रकार दी गई है। कोई वास्तविक संख्या दी गई है , वहां एक है ताकि के लिए , फलन का निरपेक्ष मान . समान रूप से, किसी भी क्रम के लिए , क्रम .

अमानक विश्लेषण

गैर-मानक विश्लेषण में (जिसमें संख्या प्रणाली का एक अति वास्तविक संख्या इज़ाफ़ा शामिल है), एक अनुक्रम की सीमा मान के मानक भाग फलन के रूप में व्यक्त किया जा सकता है एक अनंत अतिप्राकृतिक सूचकांक n=H पर अनुक्रम के प्राकृतिक विस्तार का। इस प्रकार,

यहां, मानक भाग फलन सेंट प्रत्येक परिमित हाइपररियल संख्या को निकटतम वास्तविक संख्या में बंद कर देता है (उनके बीच का अंतर असीम है)। यह स्वाभाविक अंतर्ज्ञान को औपचारिक रूप देता है कि सूचकांक के बहुत बड़े मानो के लिए, अनुक्रम में शर्तें अनुक्रम के सीमा मान के बहुत करीब हैं। इसके विपरीत, एक अतियथार्थवादी का मानक भाग कौशी अनुक्रम द्वारा अल्ट्रापावर निर्माण में प्रतिनिधित्व किया गया , बस उस क्रम की सीमा है:

इस अर्थ में, सीमा लेना और मानक भाग लेना समतुल्य प्रक्रियाएँ हैं।

सीमा सेट

अनुक्रम का सीमा सेट

होने देना टोपोलॉजिकल स्पेस में एक अनुक्रम हो . संक्षिप्तता के लिए, के रूप में सोचा जा सकता है , लेकिन परिभाषाएँ आम तौर पर अधिक होती हैं। सीमा सेट बिंदुओं का सेट है जैसे कि यदि कोई अभिसारी क्रम है साथ , फिर निर्धारित सीमा के अंतर्गत आता है। इस संदर्भ में ए कभी-कभी सीमा बिंदु कहा जाता है।

इस धारणा का उपयोग ऑसिलेटरी अनुक्रमों के दीर्घकालिक व्यवहार को चिह्नित करना है। उदाहरण के लिए, अनुक्रम पर विचार करें . n=1 से शुरू करते हुए, इस क्रम के पहले कुछ पद हैं . यह जाँचा जा सकता है कि यह दोलनशील है, इसलिए इसकी कोई सीमा नहीं है, लेकिन इसके सीमा बिंदु हैं .

एक प्रक्षेपवक्र की सीमा सेट

प्रक्षेपवक्र की सीमाओं का अध्ययन करने के लिए, इस धारणा का उपयोग गतिशील प्रणालियों में किया जाता है। एक फलन होने के लिए एक प्रक्षेपवक्र को परिभाषित करना , बिंदु समय पर प्रक्षेपवक्र की स्थिति के रूप में माना जाता है . एक प्रक्षेपवक्र की सीमा निर्धारित निम्नानुसार परिभाषित की गई है। बढ़ते समय के किसी भी क्रम के लिए , पदों का एक संबद्ध क्रम है . यदि अनुक्रम की सीमा निर्धारित है बढ़ते समय के किसी भी क्रम के लिए, तब प्रक्षेपवक्र का एक सीमा सेट है।

तकनीकी रूप से, यह है -सीमा सेट। घटते समय के अनुक्रमों के लिए निर्धारित संगत सीमा कहलाती है -सीमा सेट।

एक उदाहरण उदाहरण सर्कल प्रक्षेपवक्र है: . इसकी कोई अनूठी सीमा नहीं है, लेकिन प्रत्येक के लिए , बिंदु समय के अनुक्रम द्वारा दिया गया एक सीमा बिंदु है . लेकिन सीमा बिंदुओं को प्रक्षेपवक्र पर प्राप्त करने की आवश्यकता नहीं है। प्रक्षेपवक्र इसकी सीमा सेट के रूप में यूनिट सर्कल भी है।

उपयोग

विश्लेषण में कई महत्वपूर्ण अवधारणाओं को परिभाषित करने के लिए सीमाओं का उपयोग किया जाता है।

श्रृंखला

ब्याज की एक विशेष अभिव्यक्ति जिसे एक अनुक्रम की सीमा के रूप में औपचारिक रूप दिया जाता है, वह अनंत श्रृंखला का योग है। ये वास्तविक संख्याओं के अनंत योग हैं, जिन्हें आम तौर पर इस रूप में लिखा जाता है

इसे इस प्रकार सीमाओं के माध्यम से परिभाषित किया गया है:[11] वास्तविक संख्याओं का एक क्रम दिया , आंशिक रकम के अनुक्रम द्वारा परिभाषित किया गया है
यदि अनुक्रम की सीमा मौजूद है, अभिव्यक्ति का मान सीमा के रूप में परिभाषित किया गया है। अन्यथा, श्रृंखला को अपसारी कहा जाता है।

एक उत्कृष्ट उदाहरण बेसल समस्या है, जहाँ . फिर

हालाँकि, जबकि अनुक्रमों के लिए अनिवार्य रूप से अभिसरण की एक अनूठी धारणा है, श्रृंखला के लिए अभिसरण की विभिन्न धारणाएँ हैं। यह इस तथ्य के कारण है कि अभिव्यक्ति अनुक्रम के विभिन्न क्रमों के बीच कोई भेदभाव नहीं करता है , जबकि आंशिक योगों के अनुक्रम के अभिसरण गुण अनुक्रम के क्रम पर निर्भर कर सकते हैं।

एक श्रृंखला जो सभी क्रमों के लिए अभिसरित होती है, 'बिना शर्त अभिसरण' कहलाती है। यह पूर्ण अभिसरण के समकक्ष सिद्ध हो सकता है। इसे इस प्रकार परिभाषित किया गया है। एक श्रृंखला पूरी तरह से अभिसारी है अगर अच्छी तरह परिभाषित है। इसके अलावा, सभी संभव आदेश समान मान देते हैं।

अन्यथा, श्रृंखला सशर्त अभिसारी है। सशर्त रूप से अभिसरण श्रृंखला के लिए एक आश्चर्यजनक परिणाम रीमैन श्रृंखला प्रमेय है: आदेश के आधार पर, आंशिक रकम को किसी भी वास्तविक संख्या में अभिसरण करने के लिए बनाया जा सकता है, साथ ही साथ .

शक्ति श्रृंखला

श्रृंखला के योग के सिद्धांत का एक उपयोगी अनुप्रयोग शक्ति श्रृंखला के लिए है। ये प्रपत्र की श्रृंखला के योग हैं

अक्सर एक जटिल संख्या के रूप में माना जाता है, और जटिल अनुक्रमों के अभिसरण की उपयुक्त धारणा की आवश्यकता होती है। के मानो का सेट जिसके लिए श्रृंखला योग अभिसरण एक वृत्त है, जिसकी त्रिज्या को अभिसरण की त्रिज्या के रूप में जाना जाता है।

एक बिंदु पर एक फलन की निरंतरता

एक बिंदु पर निरंतरता की परिभाषा सीमाओं के माध्यम से दी गई है।

एक सीमा की उपरोक्त परिभाषा सत्य है भले ही . दरअसल, फलन f पर परिभाषित करने की भी आवश्यकता नहीं है c. हालांकि, यदि परिभाषित किया गया है और इसके बराबर है , तब फलन को बिंदु पर सतत कहा जाता है.

समान रूप से, कार्य निरंतर है यदि जैसा , या अनुक्रमों के संदर्भ में, जब भी , फिर .

एक सीमा का उदाहरण जहां पर परिभाषित नहीं है नीचे दिया गया है।

फलन पर विचार करें

फिर f(1) परिभाषित नहीं है (अनिश्चित रूप देखें), अभी तक के रूप में x मनमाने ढंग से 1 के करीब जाता है, f(x) तदनुसार 2 तक पहुंचता है:[12]

f(0.9) f(0.99) f(0.999) f(1.0) f(1.001) f(1.01) f(1.1)
1.900 1.990 1.999 undefined 2.001 2.010 2.100

इस प्रकार, f(x) मनमाने ढंग से 2 की सीमा के करीब बनाया जा सकता है—सिर्फ बनाकर x काफी करीब 1.

दूसरे शब्दों में,

इसकी गणना बीजगणितीय रूप से भी की जा सकती है, जैसे सभी वास्तविक संख्याओं के लिए x ≠ 1.

अब, चूंकि x + 1 में निरंतर है x 1 पर, अब हम 1 के लिए प्लग इन कर सकते हैं x, समीकरण के लिए अग्रणी

परिमित मानो की सीमाओं के अतिरिक्त, कार्यों की अनंतता पर भी सीमाएं हो सकती हैं। उदाहरण के लिए, फलन पर विचार करें
कहाँ पे:

  • f(100) = 1.9900
  • f(1000) = 1.9990
  • f(10000) = 1.9999

जैसा x बहुत बड़ा हो जाता है, का मान f(x) दृष्टिकोण 2, और का मान f(x) के निकट बनाया जा सकता है 2 जैसा कोई चाहे - बना कर x पर्याप्त रूप से बड़ा। तो इस मामले में, की सीमा f(x) जैसा x अनंत तक पहुँचता है 2, या गणितीय अंकन में,


सतत कार्य

सीमाओं पर विचार करते समय कार्यों का एक महत्वपूर्ण वर्ग निरंतर कार्य होता है। ये ठीक वे कार्य हैं जो सीमाओं को संरक्षित करते हैं, इस अर्थ में कि यदि एक सतत कार्य है, फिर जब भी के अधिकार क्षेत्र में , फिर सीमा मौजूद है और है भी .

टोपोलॉजिकल स्पेस की सबसे सामान्य सेटिंग में, एक छोटा सा प्रमाण नीचे दिया गया है:

होने देना टोपोलॉजिकल स्पेस के बीच एक सतत कार्य करें तथा . परिभाषा के अनुसार, प्रत्येक खुले सेट के लिए में , पूर्व चित्र में खुला है .

अब मान लीजिए सीमा के साथ एक क्रम है में . फिर में क्रम है , तथा कुछ बिंदु है।

एक पड़ोस चुनें का . फिर एक खुला सेट है (की निरंतरता से ) जिसमें विशेष रूप से शामिल है , और इसीलिए का पड़ोस है . के अभिसरण से प्रति , वहाँ एक मौजूद है ऐसा कि के लिए , अपने पास .

फिर आवेदन करना दोनों पक्षों को देता है, उसी के लिए , प्रत्येक के लिए अपने पास . मौलिक रूप से का मनमाना पड़ोस था , इसलिए . यह सबूत समाप्त करता है।

वास्तविक विश्लेषण में, सबसेट पर परिभाषित वास्तविक-मूल्यवान कार्यों के अधिक ठोस मामले के लिए , वह है, , एक सतत कार्य को एक ऐसे कार्य के रूप में भी परिभाषित किया जा सकता है जो अपने डोमेन के प्रत्येक बिंदु पर निरंतर है।

सीमा अंक

टोपोलॉजी में, एक टोपोलॉजिकल स्पेस के सबसेट के सीमा बिंदुओं को परिभाषित करने के लिए सीमाओं का उपयोग किया जाता है, जो बदले में बंद सेटों का एक उपयोगी लक्षण वर्णन देता है।

एक टोपोलॉजिकल स्पेस में , एक उपसमुच्चय पर विचार करें . एक बिंदु एक अनुक्रम होने पर सीमा बिंदु कहा जाता है में ऐसा है कि .

कारण क्यों में परिभाषित किया गया है बल्कि सिर्फ निम्नलिखित उदाहरण द्वारा स्पष्ट किया गया है। लेना तथा . फिर , और इसलिए निरंतर अनुक्रम की सीमा है . परंतु का कोई सीमा बिंदु नहीं है .

एक बंद सेट, जिसे एक खुले सेट के पूरक के रूप में परिभाषित किया गया है, समतुल्य कोई भी सेट है जिसमें इसके सभी सीमा बिंदु शामिल हैं।

व्युत्पन्न

व्युत्पन्न औपचारिक रूप से एक सीमा के रूप में परिभाषित किया गया है। वास्तविक विश्लेषण के दायरे में, व्युत्पन्न को पहले वास्तविक कार्यों के लिए परिभाषित किया जाता है एक उपसमुच्चय पर परिभाषित . पर व्युत्पन्न निम्नानुसार परिभाषित किया गया है। यदि सीमा

जैसा मौजूद है, तो व्युत्पन्न पर क्या यह सीमा है।

समान रूप से, यह सीमा है का

यदि व्युत्पन्न मौजूद है, तो इसे आमतौर पर निरूपित किया जाता है .

गुण

वास्तविक संख्याओं का क्रम

वास्तविक संख्याओं के अनुक्रमों के लिए, अनेक गुणों को सिद्ध किया जा सकता है।[11] मान लीजिए तथा अभिसरण करने वाले दो क्रम हैं तथा क्रमश।

  • सीमा का योग योग की सीमा के बराबर है

  • सीमा का उत्पाद उत्पाद की सीमा के बराबर है

  • सीमा का व्युत्क्रम व्युत्क्रम की सीमा के बराबर है (जब तक )

समतुल्य, फलन धनात्मक के बारे में निरंतर है .

कॉची सीक्वेंस

वास्तविक संख्याओं के अभिसरण अनुक्रमों का एक गुण यह है कि वे कॉशी अनुक्रम हैं।[11] कौशी अनुक्रम की परिभाषा क्या वह हर वास्तविक संख्या के लिए है , वहां पर एक ऐसा कि जब भी ,

अनौपचारिक रूप से, किसी भी मनमाने ढंग से छोटी त्रुटि के लिए , व्यास का अंतराल खोजना संभव है ऐसा है कि अंततः अनुक्रम अंतराल के भीतर समाहित है।

कौशी अनुक्रम अभिसरण अनुक्रमों से निकटता से संबंधित हैं। वास्तव में, वास्तविक संख्याओं के अनुक्रमों के लिए वे समतुल्य हैं: कोई भी कॉची अनुक्रम अभिसरण है।

सामान्य मीट्रिक रिक्त स्थान में, यह माना जाता है कि अभिसरण अनुक्रम भी कॉची हैं। लेकिन इसका विलोम सत्य नहीं है: प्रत्येक कॉची अनुक्रम एक सामान्य मीट्रिक स्थान में अभिसरण नहीं होता है। एक क्लासिक प्रति उदाहरण परिमेय संख्या है, , सामान्य दूरी के साथ। दशमलव सन्निकटन का क्रम , पर काट दिया गया वां दशमलव स्थान एक कौशी क्रम है, लेकिन इसमें अभिसरित नहीं होता है .

एक मीट्रिक स्थान जिसमें प्रत्येक कॉची अनुक्रम भी अभिसरण होता है, अर्थात कॉची अनुक्रम अभिसरण अनुक्रम के बराबर होते हैं, एक पूर्ण मीट्रिक स्थान के रूप में जाना जाता है।

अभिसरण अनुक्रमों की तुलना में कॉची अनुक्रमों के साथ काम करना आसान हो सकता है, इसका एक कारण यह है कि वे अनुक्रम की संपत्ति हैं अकेले, जबकि अभिसरण अनुक्रमों को केवल अनुक्रम की आवश्यकता नहीं होती है लेकिन अनुक्रम की सीमा भी .

अभिसरण का क्रम

अनुक्रम से परे है या नहीं एक सीमा में समा जाता है , यह वर्णन करना संभव है कि अनुक्रम कितनी तेजी से एक सीमा तक अभिसरण करता है। इसे परिमाणित करने का एक तरीका अनुक्रम के अभिसरण के क्रम का उपयोग कर रहा है।

अभिसरण के क्रम की एक औपचारिक परिभाषा निम्नानुसार बताई जा सकती है। मान लीजिए वास्तविक संख्याओं का एक क्रम है जो सीमा के साथ अभिसारी है . आगे, सभी के लिए . यदि धनात्मक स्थिरांक तथा ऐसे मौजूद हैं

फिर में मिलना कहा जाता है अभिसरण के क्रम के साथ . अटल स्पर्शोन्मुख त्रुटि स्थिरांक के रूप में जाना जाता है।

त्रुटि विश्लेषण में अभिसरण के क्रम का उपयोग उदाहरण के लिए संख्यात्मक विश्लेषण के क्षेत्र में किया जाता है।

संगणनीयता

सीमाओं की गणना करना कठिन हो सकता है। ऐसी सीमित अभिव्यक्तियाँ मौजूद हैं जिनके अभिसरण का मापांक अनिर्णीत समस्या है। पुनरावर्तन सिद्धांत में, सीमा प्रमेयिका यह साबित करती है कि सीमाओं का उपयोग करके अनिर्णीत समस्याओं को सांकेतिक शब्दों में बदलना संभव है।[13] कई प्रमेय या परीक्षण हैं जो इंगित करते हैं कि सीमा मौजूद है या नहीं। इन्हें अभिसरण परीक्षण के रूप में जाना जाता है। उदाहरणों में अनुपात परीक्षण और निचोड़ प्रमेय शामिल हैं। हालाँकि वे यह नहीं बता सकते हैं कि सीमा की गणना कैसे की जाए।

यह भी देखें

  • स्पर्शोन्मुख विश्लेषण: व्यवहार को सीमित करने का वर्णन करने का एक तरीका
    • बिग ओ नोटेशन: किसी फलन के सीमित व्यवहार का वर्णन करने के लिए उपयोग किया जाता है जब तर्क किसी विशेष मान या अनंतता की ओर जाता है
  • बनच सीमा को बनच स्थान पर परिभाषित किया गया है जो सामान्य सीमा का विस्तार करता है।
  • यादृच्छिक चर का अभिसरण
  • अभिसरण मैट्रिक्स
  • सीमा (श्रेणी सिद्धांत)
    • सीधी सीमा
    • उलटी सीमा
  • फलन की सीमा
    • एक तरफा सीमा: एक वास्तविक चर x के कार्यों की दो सीमाओं में से कोई भी, जैसा कि x ऊपर या नीचे से एक बिंदु तक पहुंचता है
    • सीमाओं की सूची: सामान्य कार्यों के लिए सीमाओं की सूची
    • निचोड़ प्रमेय: दो अन्य कार्यों के साथ तुलना करके एक फलन की सीमा पाता है
  • श्रेष्ठ को सीमित करो और हीन को सीमित करो
  • अभिसरण के तरीके
    • अभिसरण का एक तरीका (एनोटेट इंडेक्स)

टिप्पणियाँ

  1. Stewart, James (2008). कैलकुलस: अर्ली ट्रान्सेंडैंटल्स (6th ed.). Brooks/Cole. ISBN 978-0-495-01166-8.
  2. Aggarwal, M.L. (2021). "13. Limits and Derivatives". आईएससी गणित कक्षा ग्यारहवीं को समझना. Vol. II. Industrial Area, Trilokpur Road, Kala Amb-173030, Distt. Simour (H.P.): Arya Publications (Avichal Publishing Company). p. A-719. ISBN 978-81-7855-743-4.{{cite book}}: CS1 maint: location (link)
  3. Van Looy, Herman (1984). "ग्रेगोरियस ए सैंक्टो विंसेंटियो (1584-1667) की गणितीय पांडुलिपियों का कालक्रम और ऐतिहासिक विश्लेषण". Historia Mathematica (in English). 11 (1): 57–75. doi:10.1016/0315-0860(84)90005-3.
  4. Felscher, Walter (2000), "Bolzano, Cauchy, Epsilon, Delta", American Mathematical Monthly, 107 (9): 844–862, doi:10.2307/2695743, JSTOR 2695743
  5. Larson, Ron; Edwards, Bruce H. (2010). एकल चर की गणना (Ninth ed.). Brooks/Cole, Cengage Learning. ISBN 978-0-547-20998-2.
  6. Miller, Jeff (1 December 2004), Earliest Uses of Symbols of Calculus, archived from the original on 2015-05-01, retrieved 2008-12-18
  7. Stillwell, John (1994), Elements of algebra: geometry, numbers, equations, Springer, p. 42, ISBN 978-1441928399
  8. Weisstein, Eric W. "सीमा". mathworld.wolfram.com (in English). Archived from the original on 2020-06-20. Retrieved 2020-08-18.
  9. Apostol (1974, pp. 75–76)
  10. Weisstein, Eric W. "एप्सिलॉन-डेल्टा परिभाषा". mathworld.wolfram.com (in English). Archived from the original on 2020-06-25. Retrieved 2020-08-18.
  11. 11.0 11.1 11.2 11.3 Chua, Dexter. "विश्लेषण I (टिमोथी गोवर्स द्वारा दिए गए पाठ्यक्रम पर आधारित)". Notes from the Mathematical Tripos.
  12. "सीमा | परिभाषा, उदाहरण और तथ्य". Encyclopedia Britannica (in English). Archived from the original on 2021-05-09. Retrieved 2020-08-18.
  13. Soare, Robert I. (2014). पुनरावर्ती रूप से गणना योग्य सेट और डिग्री: गणना योग्य कार्यों और गणनात्मक रूप से उत्पन्न सेट का अध्ययन. Berlin: Springer-Verlag. ISBN 978-3-540-66681-3. OCLC 1154894968.


संदर्भ


इस पेज में लापता आंतरिक लिंक की सूची

  • फलन (गणित)
  • अंक शास्त्र
  • अनुक्रम की सीमा
  • निरपेक्ष मान
  • अभिसरण श्रृंखला
  • एलपी स्पेस
  • वास्तविक मानवान फलन
  • सूचक फलन
  • गैर मानक विश्लेषण
  • बहुत छोता
  • परिणाम को
  • सीमा निर्धारित
  • गतिशील प्रणाली
  • सशर्त अभिसरण
  • कॉची सीक्वेंस
  • अभिसरण का क्रम
  • परीक्षण प्रणाली
  • बनच की सीमा
  • श्रेष्ठ को सीमित करो और निम्न को सीमित करो
  • अभिसरण के मोड (एनोटेटेड इंडेक्स)
  • उलटा सीमा

बाहरी संबंध