ग्रोथेंडिक समूह: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{Short description|Abelian group constructed from a commutative monoid in the same way as integers from natural numbers}} | {{Short description|Abelian group constructed from a commutative monoid in the same way as integers from natural numbers}} | ||
गणित में, ग्रोथेंडिक समूह, या भिन्नताओं का समूह,<ref>{{cite book |last1=Bruns |first1=Winfried |last2=Gubeladze |first2=Joseph |title=पॉलीटोप्स, रिंग्स और के-थ्योरी|date=2009 |publisher=Springer |isbn=978-0-387-76355-2 |page=50}}</ref> एक [[क्रमविनिमेय मोनोइड]] | गणित में, ग्रोथेंडिक समूह, या भिन्नताओं का समूह,<ref>{{cite book |last1=Bruns |first1=Winfried |last2=Gubeladze |first2=Joseph |title=पॉलीटोप्स, रिंग्स और के-थ्योरी|date=2009 |publisher=Springer |isbn=978-0-387-76355-2 |page=50}}</ref> एक [[क्रमविनिमेय मोनोइड]] {{math|''M''}} का एक निश्चित [[एबेलियन समूह|विनिमेय समूह]] है। इस विनिमेय समूह का निर्माण {{math|''M''}} से सबसे सार्वभौमिक तरीके से किया गया है, इस अर्थ में कि {{math|''M''}} की होमोमोर्फिक छवि वाले किसी भी विनिमेय समूह {{math|''M''}} के ग्रोथेंडिक समूह की एक होमोमोर्फिक [[समूह समरूपता]] [[छवि (गणित)]] होगी। ग्रोथेंडिक समूह निर्माण [[श्रेणी सिद्धांत]] में एक विशिष्ट मामले से अपना नाम लेता है, जिसे [[अलेक्जेंडर ग्रोथेंडिक]] ने ग्रोथेंडिक-रीमैन-रोच प्रमेय के अपने [[गणितीय प्रमाण]] में प्रस्तुत किया, जिसके परिणामस्वरूप K-सिद्धांत का विकास हुआ। यह विशिष्ट मामला एक [[एबेलियन श्रेणी|विनिमेय समूह]] के वस्तुओं (श्रेणी सिद्धांत) के [[समरूपता वर्ग|समरूपता वर्गों]] का [[मोनोइड]] है, जिसका [[प्रत्यक्ष योग]] इसके संचालन के रूप में है | ||
== कम्यूटेटिव मोनॉइड == का ग्रोथेंडिक समूह | == कम्यूटेटिव मोनॉइड == का ग्रोथेंडिक समूह |
Revision as of 19:35, 8 December 2022
गणित में, ग्रोथेंडिक समूह, या भिन्नताओं का समूह,[1] एक क्रमविनिमेय मोनोइड M का एक निश्चित विनिमेय समूह है। इस विनिमेय समूह का निर्माण M से सबसे सार्वभौमिक तरीके से किया गया है, इस अर्थ में कि M की होमोमोर्फिक छवि वाले किसी भी विनिमेय समूह M के ग्रोथेंडिक समूह की एक होमोमोर्फिक समूह समरूपता छवि (गणित) होगी। ग्रोथेंडिक समूह निर्माण श्रेणी सिद्धांत में एक विशिष्ट मामले से अपना नाम लेता है, जिसे अलेक्जेंडर ग्रोथेंडिक ने ग्रोथेंडिक-रीमैन-रोच प्रमेय के अपने गणितीय प्रमाण में प्रस्तुत किया, जिसके परिणामस्वरूप K-सिद्धांत का विकास हुआ। यह विशिष्ट मामला एक विनिमेय समूह के वस्तुओं (श्रेणी सिद्धांत) के समरूपता वर्गों का मोनोइड है, जिसका प्रत्यक्ष योग इसके संचालन के रूप में है
== कम्यूटेटिव मोनॉइड == का ग्रोथेंडिक समूह
प्रेरणा
क्रमविनिमेय मोनॉइड दिया है M, सबसे सामान्य एबेलियन समूह K से उत्पन्न होता है M के सभी तत्वों के व्युत्क्रम तत्वों को शुरू करके बनाया जाना है M. ऐसा एबेलियन समूह K हमेशा मौजूद है; इसे ग्रोथेंडिक समूह कहा जाता है M. यह एक निश्चित सार्वभौमिक संपत्ति की विशेषता है और इसे ठोस रूप से भी बनाया जा सकता है M.
यदि M रद्द करने की संपत्ति नहीं है (अर्थात, मौजूद है a, b तथा c में M ऐसा है कि तथा ), फिर ग्रोथेंडिक समूह K समाहित नहीं कर सकता M. विशेष रूप से, एक मोनोइड ऑपरेशन के मामले में गुणक रूप से निरूपित होता है जिसमें एक अवशोषित तत्व संतोषजनक होता है हरएक के लिए ग्रोथेंडिक समूह केवल एक तत्व के साथ तुच्छ समूह (समूह (गणित)) होना चाहिए, क्योंकि किसी के पास होना चाहिए
हरएक के लिए x.
सार्वभौमिक संपत्ति
मान लीजिए कि M एक क्रमविनिमेय मोनॉइड है। इसका ग्रोथेंडिक समूह एक एबेलियन समूह K है जिसमें एक मोनोइड समरूपता है निम्नलिखित सार्वभौमिक संपत्ति को संतुष्ट करना: किसी भी मोनोइड होमोमोर्फिज्म के लिए एम से एबेलियन समूह ए तक, एक अद्वितीय समूह समरूपता है ऐसा है कि यह इस तथ्य को व्यक्त करता है कि कोई भी एबेलियन समूह ए जिसमें एम की एक होमोमोर्फिक छवि होती है, उसमें के की एक होमोमोर्फिक छवि भी शामिल होगी, के सबसे सामान्य एबेलियन समूह है जिसमें एम की एक होमोमोर्फिक छवि होती है।
स्पष्ट निर्माण
कम्यूटेटिव मोनॉइड एम के ग्रोथेंडिक ग्रुप के के निर्माण के लिए, एक कार्टेशियन उत्पाद बनाता है . दो निर्देशांक सकारात्मक भाग और नकारात्मक भाग का प्रतिनिधित्व करने के लिए हैं, इसलिए से मेल खाती है के. में
जोड़ चालू समन्वय के अनुसार परिभाषित किया गया है:
- .
अगला एक तुल्यता संबंध को परिभाषित करता है , ऐसा है कि के बराबर है अगर, एम के कुछ तत्व के लिए, एम1 + एन2 + क = म2 + एन1 + k (तत्व k आवश्यक है क्योंकि रद्दीकरण कानून सभी मोनोइड्स में नहीं होता है)। तत्व का समतुल्य वर्ग (एम1, एम2) द्वारा दर्शाया गया है [(एम1, एम2)]। एक K को तुल्यता वर्गों के समुच्चय के रूप में परिभाषित करता है। चूँकि M × M पर जोड़ संक्रिया हमारे तुल्यता संबंध के अनुकूल है, इसलिए K पर योग प्राप्त होता है, और K एक एबेलियन समूह बन जाता है। के की पहचान तत्व [(0, 0)] है, और [(एम1, एम2)] है [(एम2, एम1)]। समरूपता तत्व m को [(m, 0)] भेजता है।
वैकल्पिक रूप से, M के ग्रोथेंडिक समूह K का निर्माण समूह की प्रस्तुति का उपयोग करके भी किया जा सकता है: द्वारा इंगित करना समुच्चय M द्वारा उत्पन्न मुक्त एबेलियन समूह, ग्रोथेंडिक समूह K का भागफल समूह है द्वारा एक समूह के उपसमूह जनरेटिंग सेट द्वारा . (यहाँ +' और -' मुक्त एबेलियन समूह में जोड़ और घटाव को दर्शाता है जबकि + मोनॉइड एम में जोड़ को दर्शाता है।) इस निर्माण का लाभ यह है कि यह किसी भी semigroup एम के लिए किया जा सकता है और एक समूह पैदा करता है जो सेमीग्रुप्स के लिए संबंधित सार्वभौमिक गुणों को संतुष्ट करता है, यानी सबसे सामान्य और सबसे छोटा समूह जिसमें होमोमोर्फिक छवि होती है एम एंड हेयरस्प; . इसे सेमीग्रुप के समूह समापन या सेमीग्रुप के अंशों के समूह के रूप में जाना जाता है।
गुण
श्रेणी सिद्धांत की भाषा में, कोई भी सार्वभौमिक संपत्ति निर्माण एक फ़ैक्टर को जन्म देता है; one इस प्रकार एबेलियन समूहों की श्रेणी के लिए कम्यूटेटिव मोनोइड्स की श्रेणी (गणित) से एक फ़ैक्टर प्राप्त करता है जो कम्यूटेटिव मोनोइड एम को अपने ग्रोथेंडिक समूह के को भेजता है। यह ऑपरेटर एबेलियन समूहों की श्रेणी से भुलक्कड़ फ़ंक्टर के लिए आसन्न फ़ैक्टर है। क्रमविनिमेय मोनोइड्स की।
क्रमविनिमेय मोनॉइड M के लिए, मानचित्र i : M → K अंतःक्षेपी है यदि और केवल यदि M में रद्दीकरण गुण है, और यह विशेषण है यदि और केवल यदि M पहले से ही एक समूह है।
उदाहरण: पूर्णांक
ग्रोथेंडिक समूह का सबसे आसान उदाहरण पूर्णांकों का निर्माण है (योगात्मक) प्राकृतिक संख्या से . पहला यह देखता है कि प्राकृतिक संख्याएं (0 सहित) सामान्य जोड़ के साथ वास्तव में एक कम्यूटेटिव मोनॉयड बनाती हैं अब जब कोई ग्रोथेंडिक समूह निर्माण का उपयोग करता है तो वह प्राकृतिक संख्याओं के बीच औपचारिक अंतर प्राप्त करता है जैसे तत्व n - m और एक के पास समानता संबंध होता है
- कुछ के लिए .
अब परिभाषित करें
यह पूर्णांकों को परिभाषित करता है . दरअसल, प्राकृतिक संख्याओं से पूर्णांक प्राप्त करने के लिए यह सामान्य निर्माण है। पूर्णांक देखें#निर्माण| अधिक विस्तृत विवरण के लिए पूर्णांक के तहत निर्माण।
उदाहरण: धनात्मक परिमेय संख्या
इसी तरह, गुणक कम्यूटेटिव मोनोइड का ग्रोथेंडिक समूह (1 से शुरू) में औपचारिक अंश होते हैं समानता के साथ
- कुछ के लिए
जो निश्चित रूप से धनात्मक परिमेय संख्याओं से पहचाना जा सकता है।
=== उदाहरण: मैनिफोल्ड === का ग्रोथेंडिक समूह ग्रोथेंडिक समूह के-सिद्धांत का मौलिक निर्माण है। समूह एक कॉम्पैक्ट जगह विविध एम को सीधे योग द्वारा दिए गए मोनोइड ऑपरेशन के साथ एम पर परिमित रैंक के वेक्टर बंडलों के सभी आइसोमोर्फिज्म वर्गों के कम्यूटेटिव मोनोइड के ग्रोथेंडिक समूह के रूप में परिभाषित किया गया है। यह एबेलियन समूहों के लिए कई गुना की श्रेणी से एक प्रतिपरिवर्तक फ़ैक्टर देता है। इस फ़ैक्टर का अध्ययन और टोपोलॉजिकल के-थ्योरी में विस्तारित किया गया है।
उदाहरण: रिंग का ग्रोथेंडिक समूह
शून्यवाँ बीजगणितीय K समूह एक (जरूरी नहीं कि क्रमविनिमेय अंगूठी) रिंग (गणित) R मोनोइड का ग्रोथेंडिक समूह है जिसमें मॉड्यूल के प्रत्यक्ष योग द्वारा दिए गए मोनोइड ऑपरेशन के साथ R के ऊपर सूक्ष्मता से उत्पन्न मॉड्यूल प्रक्षेपी मॉड्यूल मॉड्यूल (गणित) के आइसोमोर्फिज्म वर्ग शामिल हैं। फिर अंगूठियों की श्रेणी से लेकर एबेलियन समूहों तक एक सहसंयोजक फ़ंक्टर है।
पिछले दो उदाहरण संबंधित हैं: मामले पर विचार करें जहां एक कॉम्पैक्ट मैनिफोल्ड एम पर जटिल संख्या-मूल्यवान सुचारू कार्यों की अंगूठी है। इस मामले में प्रक्षेपी आर-मॉड्यूल एम (सेरे-स्वान प्रमेय द्वारा) वेक्टर बंडलों के लिए दोहरी (श्रेणी सिद्धांत) हैं। इस प्रकार तथा एक ही समूह हैं।
ग्रोथेंडिक समूह और एक्सटेंशन
परिभाषा
ग्रोथेंडिक समूह नाम का एक अन्य निर्माण निम्न है: मान लें कि आर किसी क्षेत्र (गणित) के या अधिक आम तौर पर एक मतलब अंगूठी पर एक परिमित-आयामी बीजगणित है। फिर ग्रोथेंडिक समूह को परिभाषित करें सेट द्वारा उत्पन्न एबेलियन समूह के रूप में अंतिम रूप से उत्पन्न आर-मॉड्यूल के आइसोमोर्फिज्म वर्ग और निम्नलिखित संबंध: हर छोटे सटीक अनुक्रम के लिए
आर-मॉड्यूल का, संबंध जोड़ें
इस परिभाषा का तात्पर्य है कि किसी भी दो सूक्ष्म रूप से उत्पन्न आर-मॉड्यूल एम और एन के लिए, , विभाजित सटीक अनुक्रम लघु सटीक अनुक्रम के कारण
उदाहरण
K को एक क्षेत्र होने दें। फिर ग्रोथेंडिक समूह प्रतीकों द्वारा उत्पन्न एक एबेलियन समूह है किसी परिमित-विम K-वेक्टर समष्टि V के लिए। वास्तव में, के लिए समरूप है जिसका जनक तत्व है . यहाँ, प्रतीक एक परिमित-आयामी के-वेक्टर अंतरिक्ष वी के रूप में परिभाषित किया गया है , सदिश समष्टि V का आयाम। मान लीजिए कि किसी के पास K-सदिश समष्टियों का निम्नलिखित संक्षिप्त सटीक क्रम है।
चूंकि वेक्टर रिक्त स्थान का कोई भी छोटा सटीक अनुक्रम विभाजित होता है, इसलिए यह धारण करता है . वास्तव में, किन्हीं दो परिमित-विम सदिश समष्टियों V और W के लिए निम्नलिखित मान्य है:
उपरोक्त समानता इसलिए प्रतीक की स्थिति को संतुष्ट करती है ग्रोथेंडिक समूह में।
ध्यान दें कि किन्हीं भी दो तुल्याकारी परिमित-विमीय K-वेक्टर समष्टियों का आयाम समान होता है। इसके अलावा, कोई भी दो परिमित-आयामी K-वेक्टर रिक्त स्थान V और W एक ही आयाम के एक दूसरे के लिए आइसोमोर्फिक हैं। वास्तव में, प्रत्येक परिमित n-विमीय K-वेक्टर समष्टि V के लिए तुल्याकारी है . पिछले पैराग्राफ से अवलोकन इसलिए निम्नलिखित समीकरण को सिद्ध करता है:
इसलिए, हर प्रतीक तत्व से उत्पन्न होता है पूर्णांक गुणांक के साथ, जिसका अर्थ है कि के लिए आइसोमॉर्फिक है जनरेटर के साथ .
अधिक आम तौर पर, चलो पूर्णांकों का समुच्चय हो। ग्रोथेंडिक समूह प्रतीकों द्वारा उत्पन्न एक एबेलियन समूह है किसी भी अंतिम रूप से उत्पन्न एबेलियन समूह ए के लिए। सबसे पहले यह नोट किया जाता है कि कोई भी परिमित एबेलियन समूह जी संतुष्ट करता है . निम्नलिखित संक्षिप्त सटीक अनुक्रम धारण करता है, जहां मानचित्र n से गुणा है।
सटीक क्रम का तात्पर्य है , इसलिए प्रत्येक चक्रीय समूह का प्रतीक 0 के बराबर होता है। इसका अर्थ यह है कि प्रत्येक परिमित आबेली समूह G संतुष्ट करता है परिमित एबेलियन समूहों के मौलिक प्रमेय द्वारा।
निरीक्षण करें कि परिमित रूप से उत्पन्न एबेलियन समूह#वर्गीकरण द्वारा, प्रत्येक एबेलियन समूह ए एक मरोड़ उपसमूह के प्रत्यक्ष योग के लिए आइसोमोर्फिक है और एक मरोड़ मुक्त एबेलियन समूह आइसोमोर्फिक है कुछ गैर-ऋणात्मक पूर्णांक r के लिए, A के एबेलियन समूह की कोटि कहलाती है और इसे द्वारा निरूपित किया जाता है . प्रतीक को परिभाषित कीजिए जैसा . फिर ग्रोथेंडिक समूह के लिए आइसोमॉर्फिक है जनरेटर के साथ दरअसल, पिछले पैराग्राफ से किए गए अवलोकन से पता चलता है कि प्रत्येक एबेलियन ग्रुप ए का अपना प्रतीक है प्रतीक के समान कहाँ पे . इसके अलावा, एबेलियन समूह का रैंक प्रतीक की शर्तों को पूरा करता है ग्रोथेंडिक समूह के। मान लीजिए कि एबेलियन समूहों का निम्न संक्षिप्त सटीक अनुक्रम है:
फिर परिमेय संख्याओं के साथ एबेलियन समूहों का टेंसर उत्पाद निम्नलिखित समीकरण का तात्पर्य है।
चूंकि ऊपर का एक छोटा सटीक क्रम है -वेक्टर रिक्त स्थान, अनुक्रम विभाजित होता है। इसलिए, निम्नलिखित समीकरण है।
दूसरी ओर, एक का निम्नलिखित संबंध भी है; अधिक जानकारी के लिए, एबेलियन समूह का रैंक देखें।
इसलिए, निम्नलिखित समीकरण धारण करता है:
इसलिए एक ने दिखाया है के लिए आइसोमोर्फिक है जनरेटर के साथ
सार्वभौम संपत्ति
ग्रोथेंडिक समूह एक सार्वभौमिक संपत्ति को संतुष्ट करता है। एक प्रारंभिक परिभाषा बनाता है: एक कार्य समरूपता वर्गों के समुच्चय से एबेलियन समूह तक योगात्मक कहा जाता है अगर, प्रत्येक सटीक अनुक्रम के लिए , किसी के पास फिर, किसी भी योगात्मक कार्य के लिए , एक अद्वितीय समूह समरूपता है ऐसा है कि के माध्यम से कारकऔर वह नक्शा जो प्रत्येक वस्तु को लेता है में अपने समरूपता वर्ग का प्रतिनिधित्व करने वाले तत्व के लिए इसका सीधा मतलब है समीकरण को संतुष्ट करता है प्रत्येक निश्चित रूप से उत्पन्न के लिए -मापांक तथा ऐसा करने वाला एकमात्र समूह समरूपता है।
योगात्मक कार्यों के उदाहरण प्रतिनिधित्व सिद्धांत से चरित्र सिद्धांत हैं: यदि परिमित आयामी है -बीजगणित, तब कोई चरित्र को जोड़ सकता है प्रत्येक परिमित-आयामी के लिए -मापांक के ट्रेस (रैखिक बीजगणित) के रूप में परिभाषित किया गया है -रैखिक नक्शा जो तत्व के साथ गुणन द्वारा दिया जाता है पर .
एक उपयुक्त आधार (रैखिक बीजगणित) का चयन करके और संबंधित मैट्रिक्स (गणित) को ब्लॉक त्रिकोणीय रूप में लिखकर आसानी से देखा जा सकता है कि वर्ण कार्य उपरोक्त अर्थों में योगात्मक हैं। सार्वभौमिक संपत्ति के द्वारा यह हमें एक सार्वभौमिक चरित्र देता है ऐसा है कि .
यदि तथा समूह की अंगूठी है एक परिमित समूह का तब यह वर्ण मानचित्र एक प्राकृतिक समरूपता भी देता है और चरित्र की अंगूठी . परिमित समूहों के मॉड्यूलर प्रतिनिधित्व सिद्धांत में, एक क्षेत्र हो सकता है पी तत्वों के साथ परिमित क्षेत्र का बीजगणितीय समापन। इस मामले में समान रूप से परिभाषित मानचित्र जो प्रत्येक से जुड़ता है -मॉड्यूल इसका ब्राउर चरित्र भी एक प्राकृतिक समरूपता है Brauer पात्रों की अंगूठी पर। इस तरह ग्रोथेंडिक समूह प्रतिनिधित्व सिद्धांत में दिखाई देते हैं।
यह सार्वभौम गुण भी बनाता है सामान्यीकृत यूलर विशेषताओं का 'सार्वभौमिक रिसीवर'। विशेष रूप से, वस्तुओं के प्रत्येक बंधे हुए परिसर के लिए
एक में एक विहित तत्व है
वास्तव में ग्रोथेंडिक समूह को मूल रूप से यूलर विशेषताओं के अध्ययन के लिए पेश किया गया था।
सटीक श्रेणियों के ग्रोथेंडिक समूह
इन दो अवधारणाओं का एक सामान्य सामान्यीकरण एक सटीक श्रेणी के ग्रोथेंडिक समूह द्वारा दिया गया है . सीधे शब्दों में कहें, एक सटीक श्रेणी एक योगात्मक श्रेणी है जिसमें विशिष्ट लघु अनुक्रम A → B → C का एक वर्ग होता है। विशिष्ट अनुक्रमों को सटीक अनुक्रम कहा जाता है, इसलिए यह नाम है। इस प्रतिष्ठित वर्ग के लिए सटीक सिद्धांत ग्रोथेंडिक समूह के निर्माण के लिए मायने नहीं रखते।
ग्रोथेंडिक समूह को उसी तरह से परिभाषित किया गया है जैसे पहले एबेलियन समूह को श्रेणी के प्रत्येक (समरूपता वर्ग) वस्तु (ओं) के लिए एक जनरेटर [M ] के साथ परिभाषित किया गया था। और एक रिश्ता
प्रत्येक सटीक क्रम के लिए
- .
वैकल्पिक रूप से और समतुल्य रूप से, एक सार्वभौमिक संपत्ति का उपयोग करके ग्रोथेंडिक समूह को परिभाषित किया जा सकता है: एक नक्शा से एबेलियन समूह में एक्स को प्रत्येक सटीक अनुक्रम के लिए योगात्मक कहा जाता है किसी के पास ; एक एबेलियन समूह G एक साथ एक योगात्मक मानचित्रण के साथ का ग्रोथेंडिक समूह कहा जाता है iff हर योगात्मक मानचित्र विशिष्ट रूप से कारक .
प्रत्येक एबेलियन श्रेणी एक सटीक श्रेणी है यदि कोई सटीक की मानक व्याख्या का उपयोग करता है। यदि कोई चुनता है तो यह पिछले खंड में ग्रोथेंडिक समूह की धारणा देता है सूक्ष्म रूप से उत्पन्न आर-मॉड्यूल की श्रेणी के रूप में . यह वास्तव में एबेलियन है क्योंकि आर को पिछले खंड में आर्टिनियन (और इसलिए नोथेरियन रिंग) माना गया था।
दूसरी ओर, प्रत्येक योजक श्रेणी भी सटीक होती है यदि कोई उन्हें और केवल उन अनुक्रमों को सटीक घोषित करता है जिनके रूप हैं विहित समावेशन और प्रक्षेपण morphisms के साथ। यह प्रक्रिया क्रमविनिमेय मोनोइड के ग्रोथेंडिक समूह का उत्पादन करती है पहले अर्थ में (यहाँ का अर्थ है समरूपता वर्गों के सेट [सभी आधारभूत मुद्दों को अनदेखा करना] .)
त्रिकोणीय श्रेणियों के ग्रोथेंडिक समूह
आगे भी सामान्यीकरण करते हुए त्रिकोणीय श्रेणी के लिए ग्रोथेंडिक समूह को परिभाषित करना भी संभव है। निर्माण अनिवार्य रूप से समान है लेकिन संबंधों का उपयोग करता है [एक्स] - [वाई] + [जेड] = 0 जब भी एक विशिष्ट त्रिभुज एक्स → वाई → जेड → एक्स [1] होता है।
अन्य उदाहरण
- एक क्षेत्र (गणित) k पर परिमित-आयामी वेक्टर रिक्त स्थान की एबेलियन श्रेणी में, दो वेक्टर रिक्त स्थान आइसोमॉर्फिक हैं यदि और केवल यदि उनके समान आयाम हैं। इस प्रकार, सदिश समष्टि के लिए V
- : इसके अलावा, एक सटीक अनुक्रम के लिए
- एम = एल + एन, इसलिए
- इस प्रकार
- तथा के लिए आइसोमोर्फिक है और द्वारा उत्पन्न होता है अंत में परिमित-आयामी वेक्टर रिक्त स्थान V * के परिबद्ध परिसर के लिए,
- कहाँ पे द्वारा परिभाषित मानक यूलर विशेषता है
- चक्राकार स्थान के लिए , कोई श्रेणी पर विचार कर सकता है X के ऊपर सभी स्थानीय रूप से मुक्त शीफ का। फिर इस सटीक श्रेणी के ग्रोथेंडिक समूह के रूप में परिभाषित किया जाता है और फिर से यह एक फ़ैक्टर देता है।
- रिंग्ड स्पेस के लिए , कोई श्रेणी भी परिभाषित कर सकता है एक्स पर सभी सुसंगत शीफ की श्रेणी होना। इसमें विशेष मामला शामिल है (यदि रिंग्ड स्पेस एक एफ़िन योजना है) एक नोथेरियन रिंग आर पर अंतिम रूप से उत्पन्न मॉड्यूल की श्रेणी होने के नाते। दोनों ही मामलों में एक एबेलियन श्रेणी है और एक फोर्टियोरी एक सटीक श्रेणी है इसलिए उपरोक्त निर्माण लागू होता है।
- ऐसे मामले में जहां R किसी क्षेत्र पर परिमित-आयामी बीजगणित है, ग्रोथेंडिक समूह (अंततः उत्पन्न मॉड्यूल के छोटे सटीक अनुक्रमों के माध्यम से परिभाषित) और (परिमित रूप से उत्पन्न प्रोजेक्टिव मॉड्यूल के प्रत्यक्ष योग के माध्यम से परिभाषित) मेल खाता है। वास्तव में, दोनों समूह सरल मॉड्यूल आर-मॉड्यूल के आइसोमोर्फिज्म वर्गों द्वारा उत्पन्न मुक्त एबेलियन समूह के लिए आइसोमोर्फिक हैं।
- एक और ग्रोथेंडिक समूह है एक अंगूठी या एक चक्राकार स्थान जो कभी-कभी उपयोगी होता है। मामले में श्रेणी को रिंग वाली जगह पर सभी सुसंगत शीफ | अर्ध-सुसंगत शीवों की श्रेणी के रूप में चुना जाता है, जो एफाइन योजनाओं के मामले में कुछ रिंग आर पर सभी मॉड्यूल की श्रेणी को कम कर देता है। एक कारक नहीं है, लेकिन फिर भी इसमें महत्वपूर्ण जानकारी है।
- चूँकि (परिबद्ध) व्युत्पन्न श्रेणी त्रिकोणीय है, इसलिए व्युत्पन्न श्रेणियों के लिए ग्रोथेंडिक समूह भी है। इसमें उदाहरण के लिए प्रतिनिधित्व सिद्धांत में अनुप्रयोग हैं। असीमित श्रेणी के लिए ग्रोथेंडिक समूह हालांकि गायब हो जाता है। कुछ जटिल परिमित-आयामी सकारात्मक रूप से वर्गीकृत बीजगणित की एक व्युत्पन्न श्रेणी के लिए असीमित व्युत्पन्न श्रेणी में एक उपश्रेणी होती है जिसमें परिमित-आयामी श्रेणीबद्ध मॉड्यूल की एबेलियन श्रेणी ए होती है जिसका ग्रोथेंडिक समूह ए के ग्रोथेंडिक समूह का क्यू-एडिक पूर्णता है।
यह भी देखें
- अंशों का क्षेत्र
- स्थानीयकरण (कम्यूटेटिव बीजगणित)
- टोपोलॉजिकल के-थ्योरी
- टोपोलॉजिकल के-थ्योरी की गणना के लिए अतियाह-हिर्जेब्रूच स्पेक्ट्रल सीक्वेंस
संदर्भ
- Michael F. Atiyah, K-Theory, (Notes taken by D.W.Anderson, Fall 1964), published in 1967, W.A. Benjamin Inc., New York.
- Achar, Pramod N.; Stroppel, Catharina (2013), "Completions of Grothendieck groups", Bulletin of the London Mathematical Society, 45 (1): 200–212, arXiv:1105.2715, doi:10.1112/blms/bds079, MR 3033967.
- "Grothendieck group", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- "Grothendieck group". PlanetMath.
- The Grothendieck Group of Algebraic Vector Bundles; Calculations of Affine and Projective Space
- Grothendieck Group of a Smooth Projective Complex Curve
- ↑ Bruns, Winfried; Gubeladze, Joseph (2009). पॉलीटोप्स, रिंग्स और के-थ्योरी. Springer. p. 50. ISBN 978-0-387-76355-2.