चुंबकीय परिपथ: Difference between revisions

From Vigyanwiki
m (22 revisions imported from alpha:चुंबकीय_सर्किट)
No edit summary
Line 116: Line 116:
|}
|}


[[Category:Articles with hatnote templates targeting a nonexistent page|Magnetic Circuit]]
 
[[Category:Created On 17/01/2023|Magnetic Circuit]]
 
[[Category:Machine Translated Page|Magnetic Circuit]]
 
[[Category:Pages with empty portal template|Magnetic Circuit]]
 
[[Category:Portal-inline template with redlinked portals|Magnetic Circuit]]
 
[[Category:Templates Vigyan Ready|Magnetic Circuit]]
 
[[Category:Webarchive template wayback links|Magnetic Circuit]]
 
[[Category:चुंबकीय सर्किट|*]]
 
[[Category:पदार्थ में विद्युत और चुंबकीय क्षेत्र|Magnetic Circuit]]
 
[[Category:विद्युत उपमाएँ|Magnetic Circuit]]
 


=== समानता की सीमाएं ===
=== समानता की सीमाएं ===
Line 173: Line 173:
* [https://web.archive.org/web/20080804012619/http://www.magnet.fsu.edu/education/tutorials/java/magneticshunt/ Interactive Java Tutorial on Magnetic Shunts] National High Magnetic Field Laboratory
* [https://web.archive.org/web/20080804012619/http://www.magnet.fsu.edu/education/tutorials/java/magneticshunt/ Interactive Java Tutorial on Magnetic Shunts] National High Magnetic Field Laboratory


{{DEFAULTSORT:Magnetic Circuit}}[[Category: विद्युत चुंबकत्व]] [[Category: पदार्थ में विद्युत और चुंबकीय क्षेत्र]] [[Category: चुंबकीय सर्किट|*]] [[Category: विद्युत उपमाएँ]]
{{DEFAULTSORT:Magnetic Circuit}}


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Magnetic Circuit]]
 
[[Category:Created On 17/01/2023|Magnetic Circuit]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page|Magnetic Circuit]]
[[Category:Created On 17/01/2023]]
[[Category:Pages with empty portal template|Magnetic Circuit]]
[[Category:Vigyan Ready]]
[[Category:Portal-inline template with redlinked portals|Magnetic Circuit]]
[[Category:Templates Vigyan Ready|Magnetic Circuit]]
[[Category:Webarchive template wayback links|Magnetic Circuit]]
[[Category:चुंबकीय सर्किट|*]]
[[Category:पदार्थ में विद्युत और चुंबकीय क्षेत्र|Magnetic Circuit]]
[[Category:विद्युत उपमाएँ|Magnetic Circuit]]
[[Category:विद्युत चुंबकत्व|Magnetic Circuit]]

Revision as of 13:10, 22 January 2023

चुंबकीय परिपथ एक या अधिक बंद लूप वाले मार्गों से बना होता है। जिसमें चुंबकीय फ्लक्स होता है। यह फ्लक्स सामान्यतः किसी स्थायी चुम्बकों या विद्युत चुम्बक द्वारा उत्पन्न किया जाता है। और इन मार्गों में स्थित लौह चुंबकीय पदार्थों के कारण फ्लक्स इन मार्गों में ही सीमित रहता है तथा मार्ग के बाहर फ्लक्स की मात्रा नगण्य ही रहती है। चुंबकीय परिपथों को कई यंत्रों जैसे विद्युत की मोटर, जेनरेटर, ट्रांसफॉर्मर, रिले, उत्तोलक, विद्युत चुम्बक, स्क्विड्स, विद्युत शक्ति नापने का यंत्र तथा चुंबकीय अभिलेखन को कुशलतापूर्वक चुंबकीय क्षेत्रों के लिए प्रयुक्त किया जाता है।

असंतृप्त चुंबकीय परिपथ में चुंबकीय फ्लक्स, चुंबकवाहक बल और चुंबकीय प्रतिष्टम्भ के बीच के संबंध को हॉपकिन्सन के नियम द्वारा वर्णित किया जा सकता है, जो विद्युत परिपथ में ओम के नियम के लिए स्पष्ट समानता रखता है जिसके परिणामस्वरूप चुंबकीय परिपथ के गुणों के बीच पत्राचार होता है। इस अवधारणा का उपयोग करके विद्युत परिपथों के लिए विकसित विधियों और प्रौद्योगिकी का उपयोग करके ट्रांसफार्मर जैसे जटिल उपकरणों के चुंबकीय क्षेत्र को जल्दी से हल किया जा सकता है।

चुंबकीय परिपथ के कुछ उदाहरण इस प्रकार है

  • घोड़े की नाल चुंबक लोहे की कीपर कम प्रतिष्टम्भ परिपथ के रूप में होती है।
  • घोड़े की नाल चुंबक लोहे की कीपर के उच्च प्रतिष्टम्भ परिपथ के रूप में होती है।
  • इलेक्ट्रिक मोटर चर प्रतिष्टम्भ परिपथ के रूप में होती है।
  • कुछ प्रकार के चुंबकीय कार्ट्रिज चर प्रतिष्टम्भ परिपथ के रूप में होती है।

चुंबकवाहक बल (एमएमएफ)

जिस तरह से वैद्युतवाहक बल (ईएमएफ) विद्युत परिपथों में विद्युत आवेश की धारा को चलाता है, उसी प्रकार चुंबकत्व बल (एमएमएफ)) चुंबकीय परिपथों के माध्यम से चुंबकीय फ्लक्स को 'संचालित' करता है। चूंकि चुंबकवाहक बल एक नाम है क्योंकि यह कोई बल नहीं है और न ही कोई गतिमान है। इसे केवल एमएमएफ कहना उचित होगा। विद्युत वाहक बल की परिभाषा के अनुरूप, चुंबकवाहक बल एक बंद लूप के आसपास परिभाषित किया गया जाता है

एमएमएफ उस क्षमता का प्रतिनिधित्व करता है जो लूप को पूरा करके काल्पनिक चुंबकीय मोनोपोल प्राप्त करता है। चुंबकीय फ्लक्स जो संचालित चुंबकीय आवेश की धारा नहीं है यह केवल एमएमएफ के साथ संबंध होता है विद्युत धारा का ईएमएफ से संबंध आगे के वर्णन के लिए प्रतिष्टम्भ की सूक्ष्म उत्पत्ति को दर्शाता है।

चुंबकवाहक बल की इकाई एम्पेयर टर्न प्रतिवेबर होती है, जो निर्वात में विद्युत प्रवाहकीय पदार्थों के सिंगल टर्न लूप में बहने वाले एम्पीयर के स्थिर प्रत्यक्ष विद्युत प्रवाह द्वारा दर्शाया जाता है। 1930 में आईईसी द्वारा स्थापित गिल्बर्ट (जीबी),[1] चुंबकवाहक बल की सीजीएस इकाई एम्पीयर-टर्न की तुलना में थोड़ी छोटी इकाई है। (1544-1603) शताब्दी में विलियम गिल्बर्ट (खगोलविद) अंग्रेजी चिकित्सक और प्राकृतिक दार्शनिक के नाम पर पर इस यूनिट का नाम रखा गया है।

[2]

चुंबकवाहक बल की गणना एम्पीयर के नियम का उपयोग करके जल्दी से की जा सकती है। उदाहरण के लिए, चुंबकवाहक बल एक लंबी कुंडल के रूप में होती है।

जहाँ N फेरों की संख्या है और I कुण्डली में धारा है। प्रयोग में इस समीकरण का उपयोग प्रेरक के एमएमएफ के लिए किया जाता है जिसमें N प्रेरक कॉइल की वाइंडिंग संख्या के रूप में होती है।

चुंबकीय फ्लक्स

प्रणाली के एमएमएफ ड्राइव चुंबकीय घटकों के माध्यम से चुंबकीय फ्लक्स को 'संचालित' करता है। चुंबकीय घटक के माध्यम से चुंबकीय फ्लक्स उस घटक के क्रॉस धारा के क्षेत्र से गुजरने वाले चुंबकीय क्षेत्र रेखाओं की संख्या के समानुपाती होता है। यह उसकी शुद्ध संख्या है, अर्थात एक दिशा में गुजरने वाली संख्या, दूसरी दिशा में गुजरने वाली संख्या को घटाती है। चुंबकीय क्षेत्र सदिश 'B' की दिशा परिभाषा के अनुसार चुम्बक के भीतर चुंबक के दक्षिण से उत्तरी ध्रुव की ओर होती है और मैदान के बाहर रेखाएँ उत्तर से दक्षिण की ओर जाती हैं।

चुंबकीय क्षेत्र की दिशा के लंबवत क्षेत्र तत्व के माध्यम से प्रवाह चुंबकीय क्षेत्र और क्षेत्र तत्व के उत्पाद द्वारा दिया जाता है। और सामान्यतः चुंबकीय फ्लक्स Φ को चुंबकीय क्षेत्र और क्षेत्र के अदिश उत्पाद द्वारा परिभाषित किया जाता है। मात्रात्मक रूप से सतह S के माध्यम से चुंबकीय फ्लक्स को सतह के क्षेत्र में चुंबकीय क्षेत्र के अभिन्न अंग के रूप में परिभाषित किया गया है

एक चुंबकीय घटक के लिए चुंबकीय फ्लक्स Φ की गणना करने के लिए उपयोग किया जाने वाला क्षेत्र S सामान्यतः घटक के क्रॉस क्षेत्र के रूप में चुना जाता है।

चुंबकीय फ्लक्स की माप की एसआई इकाई व्युत्पन्न इकाइयों में वेबर वोल्ट-सेकंड और चुंबकीय फ्लक्स घनत्व या चुंबकीय प्रेरण की इकाई B वेबर प्रति वर्ग मीटर या टेस्ला (यूनिट) है।

परिपथ मॉडल

चुंबकीय परिपथ को प्रस्तुत करने का सबसे सामान्य तरीका प्रतिरोध प्रतिष्टम्भ का नमूना है, जो विद्युत और चुंबकीय परिपथ के बीच एक समानता बनाता है। यह मॉडल उन प्रणालियों के लिए अच्छा है जिनमें केवल चुंबकीय घटक होते हैं, परंतु ऐसी प्रणाली के प्रतिरूपण में विद्युत और चुंबकीय दोनों प्रकार के भाग होते हैं, इसमें गंभीर कमियां होती हैं। यह विद्युत और चुंबकीय डोमेन के बीच विद्युत और ऊर्जा प्रवाह को उचित रूप से मॉडल नहीं करता है। ऐसा इसलिए होता है क्योंकि विद्युत प्रतिरोध ऊर्जा को नष्ट करता है जबकि चुंबकीय प्रतिष्टम्भ से इसे संग्रहीत करता है और बाद में इसे वापस लौटा देती है। एक वैकल्पिक मॉडल जो ऊर्जा प्रवाह को सही ढंग से मॉडल करता है वह जाइरेटर संधारित्र मॉडल के रूप में होते है।

प्रतिरोध प्रतिष्टम्भ मॉडल

चुंबकीय परिपथ के लिए प्रतिरोध प्रतिष्टम्भ मॉडल एक स्थानीकृत तत्व मॉडल के रूप में होता है जो विद्युत प्रतिरोध को चुंबकीय प्रतिष्टम्भ के अनुरूप बनाता है।

हॉपकिन्सन का नियम

विद्युत परिपथों में, ओम का नियम वैद्युतवाहक बल के बीच एक अनुभवजन्य संबंध होता है एक तत्व और वर्तमान धारा में लागू उस तत्व के माध्यम से उत्पन्न होता है। इसे इस प्रकार लिखा गया है

जहाँ R उस पदार्थ का विद्युत प्रतिरोध है। चुंबकीय परिपथों में प्रयुक्त ओम के नियम का एक प्रतिरूप है। इस नियम को अधिकांशतः जॉन हॉपकिंसन के बाद 'हॉपकिंसन का नियम कहा जाता है, लेकिन वास्तव में इसे 1873 में हेनरी ऑगस्टस रोलैंड द्वारा तैयार किया गया था।[3] यह दिखाता है की[4][5]
जहाँ पे एक चुंबकीय तत्व में चुंबकत्व बल (एमएमएफ) के रूप में होता है, चुंबकीय तत्व के माध्यम से चुंबकीय फ्लक्स है, और उस तत्व की चुंबकीय प्रतिष्टम्भ है। यह बाद में दिखाया गया है कि यह संबंध H क्षेत्र और चुंबकीय क्षेत्र बी, बी=μH के बीच अनुभवजन्य संबंध के कारण होता है, जहां μ पदार्थों की पारगम्यता (विद्युत चुंबकत्व) के रूप में होती है। ओम के नियम की भांति हॉपकिंसन के नियम की व्याख्या या तो एक अनुभवजन्य समीकरण के रूप में की जा सकती है जो कुछ सामग्रियों के लिए काम करता है यह प्रतिष्टम्भ की परिभाषा के रूप में काम कर सकता है।

मॉडलिंग शक्ति और ऊर्जा प्रवाह के संदर्भ में हॉपकिंसन का नियम ओम के नियम के साथ एक सही सादृश्य नहीं है। विशेष रूप से, चुंबकीय प्रतिष्टम्भ से संबंधित कोई शक्ति अपव्यय नहीं होती है जैसे विद्युत प्रतिरोध में अपव्यय होता है। चुंबकीय प्रतिरोध जो इस संबंध में विद्युत प्रतिरोध का एक वास्तविक सादृश्य को चुंबकत्व बल के अनुपात और चुंबकीय फ्लक्स के परिवर्तन की दर के रूप में परिभाषित किया जाता है। यहाँ विद्युत प्रवाह के लिए चुंबकीय फ्लक्स के परिवर्तन की दर स्थायी होती है और ओम का नियम सादृश्य बन जाता है,

जहाँ पे चुंबकीय प्रतिरोध के रूप में होता है। यह संबंध विद्युत-चुंबकीय सादृश्य का भाग है जिसे गाइरेटर-संधारित्र मॉडल कहा जाता है और इसका उद्देश्य प्रतिष्टम्भ मॉडल की कमियों को दूर करना होता है। गाइरेटर संधारित्र मॉडल संगत समानता के एक व्यापक समूह का हिस्सा है जो एकाधिक ऊर्जा डोमेन पर प्रणालियों के मॉडल के लिए उपयोग किया जाता है.।

प्रतिष्टम्भ

चुंबकीय प्रतिरोध या विद्युत नेटवर्क में विद्युत प्रतिरोध के समान होते है चूंकि यह चुंबकीय ऊर्जा को नष्ट नहीं करता है। जिस प्रकार से विद्युत क्षेत्र विद्युत प्रवाह को कम से कम प्रतिरोध के पथ का अनुसरण करने का कारण बनता है, एक चुंबकीय क्षेत्र चुंबकीय फ्लक्स को कम से कम चुंबकीय प्रतिष्टम्भ के पथ का अनुसरण करने का कारण बनता है। यह विद्युत प्रतिरोध के समान अदिश, व्यापक मात्रा के रूप में होता है।

कुल प्रतिरोध एक निष्क्रिय चुंबकीय परिपथ में एमएमएफ के अनुपात और इस परिपथ में चुंबकीय फ्लक्स के बराबर होता है। एक एसी क्षेत्र में, रिलक्टेंस साइन वेव एमएमएफ और चुंबकीय फ्लक्स के लिए आयाम मानों का अनुपात होता है। फासर को इस प्रकार दर्शाया गया है

परिभाषा को इस प्रकार व्यक्त किया जा सकता है

जहाँ पे एम्पीयर-टर्न प्रति वेबर (यूनिट) में प्रतिष्टम्भ है ( इकाई जो टर्न प्रति हेनरी (यूनिट) के बराबर है)।

मैक्सवेल के समीकरणों द्वारा वर्णित चुंबकीय फ्लक्स हमेशा एक बंद लूप बनाता है, लेकिन लूप का मार्ग आसपास की सामग्रियों की प्रतिष्टम्भ पर निर्भर करता है। यह कम से कम प्रतिष्टम्भ के मार्ग पर केंद्रित है। वायु और निर्वात में उच्च प्रतिबाधा होती है, जबकि आसानी से चुंबकित पदार्थों जैसे नरम लोहे में कम प्रतिष्टम्भ होती है। कम प्रतिरोध पदार्थों में प्रवाह की एकाग्रता मजबूत अस्थायी ध्रुव बनाती है और यांत्रिक बलों का कारण बनती है जो पदार्थों को उच्च प्रवाह के क्षेत्रों की ओर ले जाती है इसलिए यह हमेशा एक आकर्षक बल होता है।

प्रतिष्टम्भ के व्युत्क्रम को अनुमेय कहा जाता है।

इसकी एसआई व्युत्पन्न इकाई हेनरी इकाई होती है अधिष्ठापन की इकाई के समान है, चूंकि दो अवधारणाएं भिन्न हैं।

पारगम्यता और चालकता

चुंबकीय रूप से समान चुंबकीय परिपथ तत्व की प्रतिष्टम्भ की गणना इस प्रकार की जा सकती है

जहाँ पे

  • l तत्व की लंबाई है
  • पदार्थों की पारगम्यता विद्युत चुंबकत्व है पदार्थों आयाम रहित सापेक्ष पारगम्यता है, और मुक्त स्थान की पारगम्यता है
  • A परिपथ का क्रॉस-सेक्शनल क्षेत्र होता है।

यह पदार्थों में विद्युत प्रतिरोध के समीकरण के समान होता है, जिसमें पारगम्यता चालकता के अनुरूप होती है पारगम्यता के व्युत्क्रम को चुंबकीय सापेक्षता के रूप में जाना जाता है तथा यह प्रतिरोधकता के अनुरूप होता है। कम पारगम्यता वाले लंबे पतले ज्यामिति उच्च प्रतिष्टम्भ की ओर ले जाते हैं। विद्युत परिपथों में कम प्रतिरोध की तरह कम प्रतिष्टम्भ को ही वरीयता दी जाती है।

सादृश्य का सारांश

निम्न तालिका विद्युत परिपथ सिद्धांत और चुंबकीय परिपथ सिद्धांत के बीच गणितीय समानता को सारांशित करती है। यह गणितीय सादृश्य के रूप में होता है और यह भौतिक नहीं है। एक ही पंक्ति में वस्तुओं की समान गणितीय भूमिका होती है जो दो सिद्धांतों के भौतिकी भिन्न रूप में होता है। उदाहरण के लिए, धारा विद्युत आवेश का प्रवाह है, जबकि चुंबकीय फ्लक्स किसी मात्रा का प्रवाह नहीं है।

'मैग्नेटिक सर्किट' और इलेक्ट्रिकल सर्किट के बीच समानता
Magnetic Electric
नाम प्रतीक इकाइयों नाम प्रतीक इकाइयों
चुंबकवाहक बल (एमएमएफ ) एम्पीयर-टर्न वैद्युतवाहक बल (ईएमएफ ) वोल्ट
चुंबकीय क्षेत्र H एम्पीयर/मीटर वैद्युत क्षेत्र E वोल्ट/मीटर = न्यूटन/कूलम्ब
चुंबकीय फ्लक्स वेबर विद्युत धारा I एम्पेयर
Hopkinson's law or Rowland's law एम्पीयर-टर्न ओम नियम
प्रतिष्टम्भ 1/हेनरी प्रतिरोधक क्षमता R ओम
व्याप्ति हेनरी विद्युत चालकता G = 1/R 1/ओम = म्हो = सीमेंस
बी और एच के बीच संबंध सूक्ष्मदर्शीय ओम नियम
चुंबकीय फ्लक्स घनत्व B B टेस्ला वर्तमान घनत्व J एम्पीयर / वर्ग मीटर
भेद्यता μ हेनरी/मीटर विद्युत् चालकता σ सीमेंस / मीटर







समानता की सीमाएं

प्रतिरोध- प्रतिष्टम्भ मॉडल की सीमाएँ हैं। हॉपकिंसन के नियम और ओम के नियम के बीच समानता के कारण इलेक्ट्रिक और चुंबकीय परिपथ केवल सतही रूप से समान होते हैं। चुंबकीय परिपथ में महत्वपूर्ण अंतर होते हैं जिन्हें उनके निर्माण में ध्यान में रखा जाना चाहिए

  • विद्युत धाराएँ कणों (इलेक्ट्रॉनों) के प्रवाह का प्रतिनिधित्व करती हैं और शक्ति (भौतिकी) को ले जाती हैं, जिनमें से कुछ या सभी को प्रतिरोधों में गर्मी के रूप में फैलाया जाता है। चुंबकीय क्षेत्र किसी भी चीज के प्रवाह का प्रतिनिधित्व नहीं करते हैं, और प्रतिष्टम्भ में कोई शक्ति नष्ट नहीं होती है।
  • विशिष्ट विद्युत परिपथों में धारा बहुत कम रिसाव के साथ परिपथ तक ही सीमित होती है। चुंबकीय परिपथ में सभी चुंबकीय क्षेत्र चुंबकीय परिपथ तक ही सीमित नहीं होते हैं क्योंकि चुंबकीय पारगम्यता पदार्थों के बाहर भी उपलब्ध होती है ( वैक्यूम पारगम्यता देखें)। इस प्रकार, चुंबकीय कोर के बाहर समतल में महत्वपूर्ण रिसाव प्रवाह हो सकता है, जिसे ध्यान में रखा जाना चाहिए लेकिन गणना करना अधिकांशतः मुश्किल होता है।
  • सबसे महत्वपूर्ण बात यह है कि चुंबकीय परिपथ अरैखिक होते हैं चुंबकीय परिपथ में प्रतिरोध स्थिर नहीं होता है क्योंकि प्रतिरोध होता है लेकिन चुंबकीय क्षेत्र के आधार पर भिन्न होता है। उच्च चुंबकीय फ्लक्स पर चुंबकीय परिपथ संतृप्ति (चुंबकीय) के कोर के लिए उपयोग की जाने वाली लौह-चुंबकीय पदार्थों , चुंबकीय फ्लक्स की वृद्धि को सीमित करती है, इसलिए इस स्तर से ऊपर प्रतिष्टम्भ तेजी से बढ़ जाती है। इसके अतिरिक्त लौह-चुंबकीय पदार्थों हिस्टैरिसीस से असंतुष्ट होती है, इसलिए उनमें प्रवाह न केवल तात्कालिक एमएमएफ पर अपितु एमएमएफ के इतिहास पर भी निर्भर करता है। चुंबकीय फ्लक्स के स्रोत को बंद करने के बाद लौह-चुंबकीय सामग्रियों में अवशेष चुंबकत्व छोड़ दिया जाता है, जिससे कोई एमएमएफ वाला प्रवाह नहीं होता है।

परिपथ कानून

चुंबकीय परिपथ

चुंबकीय परिपथ अन्य नियमो का पालन करते हैं जो विद्युत परिपथ नियमो के समान होते है। उदाहरण के लिए प्रतिष्टम्भ प्रतिष्टम्भ की श्रृंखला में है

यह एम्पीयर के नियम का पालन करता है और श्रृंखला में प्रतिरोध जोड़ने के लिए किरचॉफ के परिपथ नियमो के अनुरूप है। किरचॉफ का वोल्टेज नियम इसके चुंबकीय फ्लक्स का योग किसी भी नोड में हमेशा शून्य होता है
यह चुम्बकत्व के लिए गॉस के नियम का अनुसरण करता है। गॉस का नियम और किरचॉफ के परिपथ नियमो के अनुरूप होता है। विद्युत परिपथों के विश्लेषण के लिए किरचॉफ का वर्तमान नियम इस रूप में होता है।

साथ में, उपरोक्त तीन नियम विद्युत परिपथ के समान तरीके से चुंबकीय परिपथ का विश्लेषण करने के लिए एक पूर्ण प्रणाली बनाते हैं। दो प्रकार के परिपथ की तुलना करने से पता चलता है कि

  • प्रतिरोध R के समतुल्य प्रतिष्टम्भ है
  • वर्तमान I के समतुल्य चुंबकीय फ्लक्स Φ है
  • वोल्टेज वी के बराबर चुंबकवाहक फोर्स एफ है

शुद्ध स्रोत/प्रतिरोध परिपथ के लिए किरचॉफ वोल्टेज नियम (केवीएल ) के चुंबकीय समकक्ष के अनुप्रयोग करके प्रत्येक शाखा में प्रवाह के लिए चुंबकीय परिपथ निकाला जा सकता है। विशेष रूप से, जबकि केवीएल में कहा गया है कि वोल्टेज उत्तेजना, लूप करंट के चारों ओर ओर वोल्टेज ड्रॉप्स (प्रतिरोध समय वर्तमान) के योग के बराबर होती है, चुंबकीय एनालॉग बताता है कि चुंबकवाहक बल एम्पियर-टर्न उत्तेजना के बराबर है और एमएमएफ यदि एक से अधिक लूप्स हैं तो प्रत्येक शाखा की धारा को मैट्रिक्स समीकरण के माध्यम से हल किया जा सकता है लूप विश्लेषण में मेष परिपथ शाखा धाराओं के लिए एक मैट्रिक्स समाधान के रूप में प्राप्त किया जाता है -जिसके बाद अलग-अलग शाखा धाराएं घटक लूप धाराओं को जोड़कर/या घटाते हुए प्राप्त की जाती हैं, जैसा कि स्वीकृत संकेत सम्मेलन और लूप प्राचलनों द्वारा दर्शाया गया है।एम्पीयर के नियम के अनुसार, उत्तेजना वर्तमान और पूरे लूपों की संख्या का उत्पाद है और इसे एम्पीयर-टर्न में मापा जाता है। सामान्यतः इस प्रकार दर्शाया गया है


स्टोक्स के प्रमेय के अनुसार बंद रेखा अभिन्न एक समोच्च के चारों ओर H·dl का क्लोज्ड लाइन इंटीग्रल, क्लोज्ड कंटूर से घिरी सतह पर कर्ल H·dA के ओपन सरफेस इंटीग्रल के बराबर है।। चूंकि मैक्सवेल के समीकरणों से, curl H = J, बंद लाइन का अभिन्न अंग H·dl सतह से गुजरने वाली कुल धारा का मूल्यांकन करता है। यह उत्तेजना के बराबर है, NI, जो सतह से गुजरने वाली धारा को भी मापता है, जिससे यह सत्यापित होता है कि एक बंद प्रणाली में सतह के माध्यम से शुद्ध वर्तमान प्रवाह शून्य एम्पीयर-टर्न है जो ऊर्जा का संरक्षण करता है।

अधिक जटिल चुंबकीय प्रणाली, जहां प्रवाह साधारण पाश तक सीमित नहीं होता है, मैक्सवेल के समीकरणों का उपयोग करके पहले सिद्धांतों से विश्लेषण किया गया है।

अनुप्रयोग

प्रतिष्टम्भ को परिवर्तनीय प्रतिष्टम्भ चुंबकीय पिक अप संगीत प्रौद्योगिकी पर भी लागू किया जा सकता है।

यह भी देखें

संदर्भ

  1. "International Electrotechnical Commission".
  2. Matthew M. Radmanesh, The Gateway to Understanding: Electrons to Waves and Beyond, p. 539, AuthorHouse, 2005 ISBN 1418487406.
  3. Rowland H., Phil. Mag. (4), vol. 46, 1873, p. 140.
  4. "Magnetism (flash)".
  5. Tesche, Fredrick; Michel Ianoz; Torbjörn Karlsson (1997). EMC Analysis Methods and Computational Models. Wiley-IEEE. p. 513. ISBN 0-471-15573-X.


बाहरी कड़ियाँ