चिरसम्मत क्षेत्र सिद्धांत: Difference between revisions
(Created page with "{{short description|Physical theory describing classical fields}} शास्त्रीय क्षेत्र सिद्धांत एक भौतिक सि...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Physical theory describing classical fields}} | {{short description|Physical theory describing classical fields}} | ||
शास्त्रीय क्षेत्र सिद्धांत एक [[ भौतिक सिद्धांत ]] है जो [[ क्वांटम यांत्रिकी ]] पर विचार किए बिना भविष्यवाणी करता है कि कैसे एक या अधिक [[ क्षेत्र (भौतिकी) ]] क्षेत्र समीकरणों के माध्यम से पदार्थ के साथ बातचीत करते हैं; सिद्धांत जो क्वांटम यांत्रिकी को शामिल करते हैं उन्हें [[ क्वांटम क्षेत्र सिद्धांत ]] कहा जाता है। अधिकांश संदर्भों में, 'शास्त्रीय क्षेत्र सिद्धांत' का उद्देश्य विशेष रूप से [[ विद्युत ]] चुंबकत्व और गुरुत्वाकर्षण, प्रकृति की दो मूलभूत शक्तियों का वर्णन करना है। | शास्त्रीय क्षेत्र सिद्धांत एक [[ भौतिक सिद्धांत |भौतिक सिद्धांत]] है जो [[ क्वांटम यांत्रिकी |क्वांटम यांत्रिकी]] पर विचार किए बिना भविष्यवाणी करता है कि कैसे एक या अधिक [[ क्षेत्र (भौतिकी) |क्षेत्र (भौतिकी)]] क्षेत्र समीकरणों के माध्यम से पदार्थ के साथ बातचीत करते हैं; सिद्धांत जो क्वांटम यांत्रिकी को शामिल करते हैं उन्हें [[ क्वांटम क्षेत्र सिद्धांत |क्वांटम क्षेत्र सिद्धांत]] कहा जाता है। अधिकांश संदर्भों में, 'शास्त्रीय क्षेत्र सिद्धांत' का उद्देश्य विशेष रूप से [[ विद्युत |विद्युत]] चुंबकत्व और गुरुत्वाकर्षण, प्रकृति की दो मूलभूत शक्तियों का वर्णन करना है। | ||
भौतिक क्षेत्र को [[ अंतरिक्ष |अंतरिक्ष]] और [[ समय |समय]] के प्रत्येक बिंदु पर [[ भौतिक मात्रा |भौतिक मात्रा]] के असाइनमेंट के रूप में माना जा सकता है। उदाहरण के लिए, मौसम पूर्वानुमान में, एक देश में एक दिन के दौरान हवा के वेग को अंतरिक्ष में प्रत्येक बिंदु पर [[ वेक्टर (गणित और भौतिकी) |वेक्टर (गणित और भौतिकी)]] निर्दिष्ट करके वर्णित किया जाता है। प्रत्येक वेक्टर उस बिंदु पर हवा की गति की दिशा का प्रतिनिधित्व करता है, इसलिए एक निश्चित समय पर एक क्षेत्र में सभी पवन वैक्टरों का सेट [[ वेक्टर क्षेत्र |वेक्टर क्षेत्र]] का गठन करता है। जैसे-जैसे दिन बढ़ता है, वैसे-वैसे दिशाएँ बदल जाती हैं, जैसे हवा की दिशा बदल जाती है। | |||
1905 में [[ सापेक्षता सिद्धांत ]] के आगमन से पहले प्रथम क्षेत्र सिद्धांत, [[ न्यूटोनियन गुरुत्वाकर्षण ]] और विद्युत चुम्बकीय क्षेत्र के मैक्सवेल के समीकरणों को शास्त्रीय भौतिकी में विकसित किया गया था, और उस सिद्धांत के अनुरूप होने के लिए संशोधित किया जाना था। नतीजतन, शास्त्रीय क्षेत्र सिद्धांतों को आमतौर पर 'गैर-सापेक्षवादी'' और 'सापेक्षवादी' के रूप में वर्गीकृत किया जाता है। आधुनिक क्षेत्र सिद्धांतों को आमतौर पर [[ टेंसर कैलकुलेशन ]] के गणित का उपयोग करके व्यक्त किया जाता है। एक और हालिया वैकल्पिक गणितीय औपचारिकता शास्त्रीय क्षेत्रों को गणितीय वस्तुओं के खंडों के रूप में वर्णित करती है जिन्हें [[ फाइबर बंडल ]] कहा जाता है। | 1905 में [[ सापेक्षता सिद्धांत |सापेक्षता सिद्धांत]] के आगमन से पहले प्रथम क्षेत्र सिद्धांत, [[ न्यूटोनियन गुरुत्वाकर्षण |न्यूटोनियन गुरुत्वाकर्षण]] और विद्युत चुम्बकीय क्षेत्र के मैक्सवेल के समीकरणों को शास्त्रीय भौतिकी में विकसित किया गया था, और उस सिद्धांत के अनुरूप होने के लिए संशोधित किया जाना था। नतीजतन, शास्त्रीय क्षेत्र सिद्धांतों को आमतौर पर 'गैर-सापेक्षवादी'' और 'सापेक्षवादी' के रूप में वर्गीकृत किया जाता है। आधुनिक क्षेत्र सिद्धांतों को आमतौर पर [[ टेंसर कैलकुलेशन |टेंसर कैलकुलेशन]] के गणित का उपयोग करके व्यक्त किया जाता है। एक और हालिया वैकल्पिक गणितीय औपचारिकता शास्त्रीय क्षेत्रों को गणितीय वस्तुओं के खंडों के रूप में वर्णित करती है जिन्हें [[ फाइबर बंडल |फाइबर बंडल]] कहा जाता है।'' | ||
== गैर-सापेक्ष क्षेत्र सिद्धांत == | == गैर-सापेक्ष क्षेत्र सिद्धांत == | ||
कुछ सबसे सरल भौतिक क्षेत्र सदिश बल क्षेत्र हैं। ऐतिहासिक रूप से, पहली बार फ़ील्ड्स को गंभीरता से लिया गया था जब विद्युत क्षेत्र का वर्णन करते समय माइकल फैराडे | फैराडे की बल की रेखाएं थीं। [[ गुरुत्वाकर्षण क्षेत्र ]] को तब इसी तरह वर्णित किया गया था। | कुछ सबसे सरल भौतिक क्षेत्र सदिश बल क्षेत्र हैं। ऐतिहासिक रूप से, पहली बार फ़ील्ड्स को गंभीरता से लिया गया था जब विद्युत क्षेत्र का वर्णन करते समय माइकल फैराडे | फैराडे की बल की रेखाएं थीं। [[ गुरुत्वाकर्षण क्षेत्र |गुरुत्वाकर्षण क्षेत्र]] को तब इसी तरह वर्णित किया गया था। | ||
=== न्यूटोनियन गुरुत्वाकर्षण === | === न्यूटोनियन गुरुत्वाकर्षण === | ||
गुरुत्वाकर्षण का पहला [[ क्षेत्र सिद्धांत (भौतिकी) ]] न्यूटन का गुरुत्वाकर्षण का सिद्धांत था जिसमें दो [[ द्रव्यमान ]] | गुरुत्वाकर्षण का पहला [[ क्षेत्र सिद्धांत (भौतिकी) |क्षेत्र सिद्धांत (भौतिकी)]] न्यूटन का गुरुत्वाकर्षण का सिद्धांत था जिसमें दो [[ द्रव्यमान |द्रव्यमान]] के बीच परस्पर क्रिया [[ व्युत्क्रम वर्ग नियम |व्युत्क्रम वर्ग नियम]] का पालन करती है। सूर्य के चारों ओर ग्रहों की गति की भविष्यवाणी करने के लिए यह बहुत उपयोगी था। | ||
किसी भी विशाल पिंड M में | किसी भी विशाल पिंड M में गुरुत्वाकर्षण क्षेत्र 'g' होता है जो अन्य विशाल पिंडों पर इसके प्रभाव का वर्णन करता है। अंतरिक्ष में एक बिंदु 'r' पर M का गुरुत्वाकर्षण क्षेत्र 'F' बल का निर्धारण करके पाया जाता है जो M, 'r' पर स्थित एक छोटे [[ परीक्षण द्रव्यमान |परीक्षण द्रव्यमान]] m पर लगाता है, और फिर m से विभाजित होता है:<ref name="kleppner85">{{cite book|last1=Kleppner|first1=David|last2=Kolenkow|first2=Robert|title=An Introduction to Mechanics|page=85}}</ref> | ||
<math display="block"> \mathbf{g}(\mathbf{r}) = \frac{\mathbf{F}(\mathbf{r})}{m}.</math> | <math display="block"> \mathbf{g}(\mathbf{r}) = \frac{\mathbf{F}(\mathbf{r})}{m}.</math> | ||
यह निर्धारित करना कि m, M से बहुत छोटा है, यह सुनिश्चित करता है कि m की उपस्थिति का M के व्यवहार पर नगण्य प्रभाव पड़ता है। | यह निर्धारित करना कि m, M से बहुत छोटा है, यह सुनिश्चित करता है कि m की उपस्थिति का M के व्यवहार पर नगण्य प्रभाव पड़ता है। | ||
Line 18: | Line 18: | ||
न्यूटन के सार्वत्रिक गुरुत्वाकर्षण के नियम के अनुसार, 'F'('r') द्वारा दिया जाता है<ref name="kleppner85" /> | न्यूटन के सार्वत्रिक गुरुत्वाकर्षण के नियम के अनुसार, 'F'('r') द्वारा दिया जाता है<ref name="kleppner85" /> | ||
<math display="block">\mathbf{F}(\mathbf{r}) = -\frac{G M m}{r^2}\hat{\mathbf{r}},</math> | <math display="block">\mathbf{F}(\mathbf{r}) = -\frac{G M m}{r^2}\hat{\mathbf{r}},</math> | ||
कहाँ पे <math>\hat{\mathbf{r}}</math> M से m तक की रेखा के साथ इंगित करने वाला | कहाँ पे <math>\hat{\mathbf{r}}</math> M से m तक की रेखा के साथ इंगित करने वाला [[ इकाई वेक्टर |इकाई वेक्टर]] है, और G न्यूटन का [[ गुरुत्वाकर्षण स्थिरांक |गुरुत्वाकर्षण स्थिरांक]] है। इसलिए, M का गुरुत्वाकर्षण क्षेत्र है<ref name="kleppner85" /> | ||
<math display="block">\mathbf{g}(\mathbf{r}) = \frac{\mathbf{F}(\mathbf{r})}{m} = -\frac{G M}{r^2}\hat{\mathbf{r}}.</math> | <math display="block">\mathbf{g}(\mathbf{r}) = \frac{\mathbf{F}(\mathbf{r})}{m} = -\frac{G M}{r^2}\hat{\mathbf{r}}.</math> | ||
प्रायोगिक अवलोकन कि जड़त्वीय द्रव्यमान और गुरुत्वाकर्षण द्रव्यमान तुल्यता सिद्धांत के बराबर हैं # कमजोर तुल्यता सिद्धांत के परीक्षण एक कण द्वारा अनुभव किए गए त्वरण के समान गुरुत्वाकर्षण क्षेत्र की ताकत की पहचान की ओर ले जाते हैं। यह तुल्यता सिद्धांत का प्रारंभिक बिंदु है, जो [[ सामान्य सापेक्षता ]] की ओर ले जाता है। | प्रायोगिक अवलोकन कि जड़त्वीय द्रव्यमान और गुरुत्वाकर्षण द्रव्यमान तुल्यता सिद्धांत के बराबर हैं # कमजोर तुल्यता सिद्धांत के परीक्षण एक कण द्वारा अनुभव किए गए त्वरण के समान गुरुत्वाकर्षण क्षेत्र की ताकत की पहचान की ओर ले जाते हैं। यह तुल्यता सिद्धांत का प्रारंभिक बिंदु है, जो [[ सामान्य सापेक्षता |सामान्य सापेक्षता]] की ओर ले जाता है। | ||
जनता के असतत संग्रह के लिए, एम<sub>i</sub>, बिंदुओं पर स्थित, 'आर'<sub>''i''</sub>द्रव्यमान के कारण बिंदु r पर गुरुत्वाकर्षण क्षेत्र है | जनता के असतत संग्रह के लिए, एम<sub>i</sub>, बिंदुओं पर स्थित, 'आर'<sub>''i''</sub>द्रव्यमान के कारण बिंदु r पर गुरुत्वाकर्षण क्षेत्र है | ||
Line 34: | Line 34: | ||
इसलिए, गुरुत्वीय क्षेत्र g को गुरुत्वीय विभव की प्रवणता के रूप में लिखा जा सकता है {{math|''φ''('''r''')}}: | इसलिए, गुरुत्वीय क्षेत्र g को गुरुत्वीय विभव की प्रवणता के रूप में लिखा जा सकता है {{math|''φ''('''r''')}}: | ||
<math display="block">\mathbf{g}(\mathbf{r}) = -\nabla \phi(\mathbf{r}).</math> | <math display="block">\mathbf{g}(\mathbf{r}) = -\nabla \phi(\mathbf{r}).</math> | ||
यह गुरुत्वाकर्षण बल F के [[ रूढ़िवादी क्षेत्र ]] होने का परिणाम है। | यह गुरुत्वाकर्षण बल F के [[ रूढ़िवादी क्षेत्र |रूढ़िवादी क्षेत्र]] होने का परिणाम है। | ||
=== विद्युत चुंबकत्व === | === विद्युत चुंबकत्व === | ||
Line 54: | Line 54: | ||
==== मैग्नेटोस्टैटिक्स ==== | ==== मैग्नेटोस्टैटिक्स ==== | ||
{{Main|Magnetostatics}} | {{Main|Magnetostatics}} | ||
पथ ℓ के साथ बहने वाली एक स्थिर धारा I पास के आवेशित कणों पर | पथ ℓ के साथ बहने वाली एक स्थिर धारा I पास के आवेशित कणों पर बल लगाती है जो ऊपर वर्णित विद्युत क्षेत्र बल से मात्रात्मक रूप से भिन्न होता है। वेग 'v' के साथ पास के आवेश q पर I द्वारा लगाया गया बल है | ||
<math display="block">\mathbf{F}(\mathbf{r}) = q\mathbf{v} \times \mathbf{B}(\mathbf{r}),</math> | <math display="block">\mathbf{F}(\mathbf{r}) = q\mathbf{v} \times \mathbf{B}(\mathbf{r}),</math> | ||
जहां बी (आर) [[ चुंबकीय क्षेत्र ]] है, जो बायोट-सावर्ट कानून द्वारा ''आई'' से निर्धारित होता है: | जहां बी (आर) [[ चुंबकीय क्षेत्र |चुंबकीय क्षेत्र]] है, जो बायोट-सावर्ट कानून द्वारा ''आई'' से निर्धारित होता है: | ||
<math display="block">\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \int \frac{d\boldsymbol{\ell} \times d\hat{\mathbf{r}}}{r^2}.</math> | <math display="block">\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \int \frac{d\boldsymbol{\ell} \times d\hat{\mathbf{r}}}{r^2}.</math> | ||
चुंबकीय क्षेत्र सामान्य रूप से रूढ़िवादी नहीं है, और इसलिए आमतौर पर स्केलर क्षमता के संदर्भ में नहीं लिखा जा सकता है। हालांकि, इसे एक चुंबकीय सदिश क्षमता, A(r) के संदर्भ में लिखा जा सकता है: | चुंबकीय क्षेत्र सामान्य रूप से रूढ़िवादी नहीं है, और इसलिए आमतौर पर स्केलर क्षमता के संदर्भ में नहीं लिखा जा सकता है। हालांकि, इसे एक चुंबकीय सदिश क्षमता, A(r) के संदर्भ में लिखा जा सकता है: | ||
Line 64: | Line 64: | ||
जबकि अवकल रूप में है | जबकि अवकल रूप में है | ||
<math display="block">\nabla \cdot\mathbf{B} = 0. </math> | <math display="block">\nabla \cdot\mathbf{B} = 0. </math> | ||
भौतिक व्याख्या यह है कि कोई [[ चुंबकीय मोनोपोल ]] नहीं हैं। | भौतिक व्याख्या यह है कि कोई [[ चुंबकीय मोनोपोल |चुंबकीय मोनोपोल]] नहीं हैं। | ||
==== इलेक्ट्रोडायनामिक्स ==== | ==== इलेक्ट्रोडायनामिक्स ==== | ||
{{Main|Electrodynamics}} | {{Main|Electrodynamics}} | ||
सामान्य तौर पर, आवेश घनत्व ρ('r', t) और धारा घनत्व 'J'('r', t) दोनों की उपस्थिति में, | सामान्य तौर पर, आवेश घनत्व ρ('r', t) और धारा घनत्व 'J'('r', t) दोनों की उपस्थिति में, विद्युत और चुंबकीय क्षेत्र दोनों होंगे, और दोनों समय के साथ अलग-अलग होंगे . वे मैक्सवेल के समीकरणों द्वारा निर्धारित होते हैं, अंतर समीकरणों का एक सेट जो सीधे 'ई' और 'बी' को विद्युत चार्ज घनत्व (चार्ज प्रति इकाई मात्रा) ρ और [[ वर्तमान घनत्व |वर्तमान घनत्व]] (विद्युत वर्तमान प्रति इकाई क्षेत्र) 'जे' से संबंधित करता है।<ref name="griffiths326">{{cite book |last=Griffiths |first=David |title=Introduction to Electrodynamics |edition=3rd |page=326 }}</ref> | ||
वैकल्पिक रूप से, कोई सिस्टम को उसके स्केलर और वेक्टर क्षमता V और 'A' के संदर्भ में वर्णित कर सकता है। [[ मंद क्षमता ]] के रूप में जाने जाने वाले अभिन्न समीकरणों का एक सेट, ρ और 'J' से V और 'A' की गणना करने की अनुमति देता है,{{NoteTag|This is contingent on the correct choice of [[gauge fixing|gauge]]. ''φ'' and '''A''' are not uniquely determined by ''ρ'' and '''J'''; rather, they are only determined up to some scalar function ''f''('''r''', ''t'') known as the gauge. The retarded potential formalism requires one to choose the [[Lorenz gauge]].}} और वहां से संबंधों के माध्यम से विद्युत और चुंबकीय क्षेत्र निर्धारित किए जाते हैं<ref name="wangsness469">{{cite book |last = Wangsness |first=Roald |title=Electromagnetic Fields |edition=2nd |page=469 }}</ref> | वैकल्पिक रूप से, कोई सिस्टम को उसके स्केलर और वेक्टर क्षमता V और 'A' के संदर्भ में वर्णित कर सकता है। [[ मंद क्षमता |मंद क्षमता]] के रूप में जाने जाने वाले अभिन्न समीकरणों का एक सेट, ρ और 'J' से V और 'A' की गणना करने की अनुमति देता है,{{NoteTag|This is contingent on the correct choice of [[gauge fixing|gauge]]. ''φ'' and '''A''' are not uniquely determined by ''ρ'' and '''J'''; rather, they are only determined up to some scalar function ''f''('''r''', ''t'') known as the gauge. The retarded potential formalism requires one to choose the [[Lorenz gauge]].}} और वहां से संबंधों के माध्यम से विद्युत और चुंबकीय क्षेत्र निर्धारित किए जाते हैं<ref name="wangsness469">{{cite book |last = Wangsness |first=Roald |title=Electromagnetic Fields |edition=2nd |page=469 }}</ref> | ||
<math display="block"> \mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}</math> | <math display="block"> \mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}</math><math display="block"> \mathbf{B} = \nabla \times \mathbf{A}.</math> | ||
<math display="block"> \mathbf{B} = \nabla \times \mathbf{A}.</math> | |||
Line 82: | Line 81: | ||
और नेवियर-स्टोक्स समीकरण द्रव में संवेग के संरक्षण का प्रतिनिधित्व करते हैं, जो तरल पर लागू न्यूटन के नियमों से प्राप्त होता है, | और नेवियर-स्टोक्स समीकरण द्रव में संवेग के संरक्षण का प्रतिनिधित्व करते हैं, जो तरल पर लागू न्यूटन के नियमों से प्राप्त होता है, | ||
<math display="block">\frac {\partial}{\partial t} (\rho \mathbf u) + \nabla \cdot (\rho \mathbf u \otimes \mathbf u + p \mathbf I) = \nabla \cdot \boldsymbol \tau + \rho \mathbf b </math> | <math display="block">\frac {\partial}{\partial t} (\rho \mathbf u) + \nabla \cdot (\rho \mathbf u \otimes \mathbf u + p \mathbf I) = \nabla \cdot \boldsymbol \tau + \rho \mathbf b </math> | ||
अगर घनत्व {{mvar|ρ}}, दबाव {{mvar|p}}, [[ विचलित तनाव टेंसर ]] {{mvar|'''τ'''}} तरल पदार्थ के साथ-साथ बाहरी शरीर बल बी, सभी दिए गए हैं। [[ वेग क्षेत्र ]] u हल करने के लिए सदिश क्षेत्र है। | अगर घनत्व {{mvar|ρ}}, दबाव {{mvar|p}}, [[ विचलित तनाव टेंसर |विचलित तनाव टेंसर]] {{mvar|'''τ'''}} तरल पदार्थ के साथ-साथ बाहरी शरीर बल बी, सभी दिए गए हैं। [[ वेग क्षेत्र |वेग क्षेत्र]] u हल करने के लिए सदिश क्षेत्र है। | ||
=== अन्य उदाहरण === | === अन्य उदाहरण === | ||
1839 में, [[ जेम्स मैककुलघ ]] ने क्रिस्टलीय प्रतिबिंब और [[ अपवर्तन ]] के | 1839 में, [[ जेम्स मैककुलघ |जेम्स मैककुलघ]] ने क्रिस्टलीय प्रतिबिंब और [[ अपवर्तन |अपवर्तन]] के गतिशील सिद्धांत की ओर एक निबंध में [[ प्रतिबिंब (भौतिकी) |प्रतिबिंब (भौतिकी)]] और अपवर्तन का वर्णन करने के लिए क्षेत्र समीकरण प्रस्तुत किए।<ref>[[James MacCullagh]] (1839) [https://archive.org/stream/collectedworks00maccuoft#page/144/mode/2up An essay toward a dynamical theory of crystalline reflection and refraction], ''Transactions, [[Royal Irish Academy]] 21''</ref> | ||
Line 94: | Line 93: | ||
जहां σ एक स्रोत फलन है (घनत्व के रूप में, एक मात्रा प्रति इकाई आयतन) और φ के लिए हल करने के लिए अदिश क्षमता है। | जहां σ एक स्रोत फलन है (घनत्व के रूप में, एक मात्रा प्रति इकाई आयतन) और φ के लिए हल करने के लिए अदिश क्षमता है। | ||
न्यूटोनियन गुरुत्वाकर्षण में; द्रव्यमान क्षेत्र के स्रोत हैं ताकि क्षेत्र रेखाएं द्रव्यमान वाली वस्तुओं पर समाप्त हो जाएं। इसी तरह, आवेश इलेक्ट्रोस्टैटिक क्षेत्रों के स्रोत और सिंक हैं: सकारात्मक आवेश विद्युत क्षेत्र रेखाएँ उत्पन्न करते हैं, और क्षेत्र रेखाएँ ऋणात्मक आवेशों पर समाप्त होती हैं। इन क्षेत्र अवधारणाओं को सामान्य [[ विचलन प्रमेय ]] में भी चित्रित किया गया है, विशेष रूप से गुरुत्वाकर्षण और बिजली के लिए गॉस के नियम। समय-स्वतंत्र गुरुत्वाकर्षण और विद्युत चुंबकत्व के मामलों के लिए, क्षेत्र इसी क्षमता के ढाल हैं | न्यूटोनियन गुरुत्वाकर्षण में; द्रव्यमान क्षेत्र के स्रोत हैं ताकि क्षेत्र रेखाएं द्रव्यमान वाली वस्तुओं पर समाप्त हो जाएं। इसी तरह, आवेश इलेक्ट्रोस्टैटिक क्षेत्रों के स्रोत और सिंक हैं: सकारात्मक आवेश विद्युत क्षेत्र रेखाएँ उत्पन्न करते हैं, और क्षेत्र रेखाएँ ऋणात्मक आवेशों पर समाप्त होती हैं। इन क्षेत्र अवधारणाओं को सामान्य [[ विचलन प्रमेय |विचलन प्रमेय]] में भी चित्रित किया गया है, विशेष रूप से गुरुत्वाकर्षण और बिजली के लिए गॉस के नियम। समय-स्वतंत्र गुरुत्वाकर्षण और विद्युत चुंबकत्व के मामलों के लिए, क्षेत्र इसी क्षमता के ढाल हैं | ||
<math display="block">\mathbf{g} = - \nabla \phi_g \,,\quad \mathbf{E} = - \nabla \phi_e </math> | <math display="block">\mathbf{g} = - \nabla \phi_g \,,\quad \mathbf{E} = - \nabla \phi_e </math> | ||
इसलिए इन्हें प्रत्येक मामले के लिए गॉस के कानून में प्रतिस्थापित करना प्राप्त होता है | इसलिए इन्हें प्रत्येक मामले के लिए गॉस के कानून में प्रतिस्थापित करना प्राप्त होता है | ||
<math display="block">\nabla^2 \phi_g = 4\pi G \rho_g \,, \quad \nabla^2 \phi_e = 4\pi k_e \rho_e = - {\rho_e \over \varepsilon_0}</math> | <math display="block">\nabla^2 \phi_g = 4\pi G \rho_g \,, \quad \nabla^2 \phi_e = 4\pi k_e \rho_e = - {\rho_e \over \varepsilon_0}</math> | ||
जहां ρ<sub>g</sub>[[ द्रव्यमान घनत्व ]] है, ρ<sub>e</sub>आवेश घनत्व, G गुरुत्वाकर्षण स्थिरांक और k<sub>e</sub> = 1/4 पी<sub>0</sub>विद्युत बल स्थिरांक। | जहां ρ<sub>g</sub>[[ द्रव्यमान घनत्व | द्रव्यमान घनत्व]] है, ρ<sub>e</sub>आवेश घनत्व, G गुरुत्वाकर्षण स्थिरांक और k<sub>e</sub> = 1/4 पी<sub>0</sub>विद्युत बल स्थिरांक। | ||
संयोग से, यह समानता न्यूटन के गुरुत्वाकर्षण के नियम और कूलम्ब के नियम के बीच समानता से उत्पन्न होती है। | संयोग से, यह समानता न्यूटन के गुरुत्वाकर्षण के नियम और कूलम्ब के नियम के बीच समानता से उत्पन्न होती है। | ||
Line 104: | Line 103: | ||
ऐसे मामले में जहां कोई स्रोत शब्द नहीं है (जैसे निर्वात, या युग्मित शुल्क), ये क्षमताएँ लाप्लास के समीकरण का पालन करती हैं: | ऐसे मामले में जहां कोई स्रोत शब्द नहीं है (जैसे निर्वात, या युग्मित शुल्क), ये क्षमताएँ लाप्लास के समीकरण का पालन करती हैं: | ||
<math display="block">\nabla^2 \phi = 0.</math> | <math display="block">\nabla^2 \phi = 0.</math> | ||
द्रव्यमान (या आवेश) के वितरण के लिए, संभावित को [[ गोलाकार हार्मोनिक्स ]] की एक श्रृंखला में विस्तारित किया जा सकता है, और श्रृंखला में nवें पद को 2 से उत्पन्न होने वाली क्षमता के रूप में देखा जा सकता है।<sup>n</sup>-मोमेंट्स ([[ मल्टीपोल विस्तार ]] देखें)। कई उद्देश्यों के लिए गणना में केवल एकध्रुव, द्विध्रुव और चतुष्कोणीय शब्दों की आवश्यकता होती है। | द्रव्यमान (या आवेश) के वितरण के लिए, संभावित को [[ गोलाकार हार्मोनिक्स |गोलाकार हार्मोनिक्स]] की एक श्रृंखला में विस्तारित किया जा सकता है, और श्रृंखला में nवें पद को 2 से उत्पन्न होने वाली क्षमता के रूप में देखा जा सकता है।<sup>n</sup>-मोमेंट्स ([[ मल्टीपोल विस्तार | मल्टीपोल विस्तार]] देखें)। कई उद्देश्यों के लिए गणना में केवल एकध्रुव, द्विध्रुव और चतुष्कोणीय शब्दों की आवश्यकता होती है। | ||
== सापेक्षवादी क्षेत्र सिद्धांत == | == सापेक्षवादी क्षेत्र सिद्धांत == | ||
{{Main|Covariant classical field theory}} | {{Main|Covariant classical field theory}} | ||
शास्त्रीय क्षेत्र सिद्धांतों के आधुनिक सूत्रीकरण के लिए आम तौर पर [[ लोरेंत्ज़ सहप्रसरण ]] की आवश्यकता होती है क्योंकि इसे अब प्रकृति के एक मूलभूत पहलू के रूप में मान्यता दी गई है। लैग्रैंजियन (क्षेत्र सिद्धांत) का उपयोग करके | शास्त्रीय क्षेत्र सिद्धांतों के आधुनिक सूत्रीकरण के लिए आम तौर पर [[ लोरेंत्ज़ सहप्रसरण |लोरेंत्ज़ सहप्रसरण]] की आवश्यकता होती है क्योंकि इसे अब प्रकृति के एक मूलभूत पहलू के रूप में मान्यता दी गई है। लैग्रैंजियन (क्षेत्र सिद्धांत) का उपयोग करके क्षेत्र सिद्धांत को गणितीय रूप से व्यक्त किया जाता है। यह एक कार्य है, जब [[ क्रिया सिद्धांत |क्रिया सिद्धांत]] के अधीन, सिद्धांत के लिए [[ क्षेत्र समीकरण |क्षेत्र समीकरण]] और [[ संरक्षण कानून (भौतिकी) |संरक्षण कानून (भौतिकी)]] को जन्म देता है। [[ क्रिया (भौतिकी) |क्रिया (भौतिकी)]] एक लोरेंत्ज़ अदिश है, जिससे क्षेत्र समीकरण और समरूपता आसानी से प्राप्त की जा सकती है। | ||
पूरे समय हम इकाइयों का उपयोग इस प्रकार करते हैं कि निर्वात में प्रकाश की गति 1 है, अर्थात c = 1।{{NoteTag|This is equivalent to choosing units of distance and time as light-seconds and seconds or light-years and years. Choosing ''c'' {{=}} 1 allows us to simplify the equations. For instance, ''E'' {{=}} ''mc''<sup>2</sup> reduces to ''E'' {{=}} ''m'' (since ''c''<sup>2</sup> {{=}} 1, without keeping track of units). This reduces complexity of the expressions while keeping focus on the underlying principles. This "trick" must be taken into account when performing actual numerical calculations.}} | पूरे समय हम इकाइयों का उपयोग इस प्रकार करते हैं कि निर्वात में प्रकाश की गति 1 है, अर्थात c = 1।{{NoteTag|This is equivalent to choosing units of distance and time as light-seconds and seconds or light-years and years. Choosing ''c'' {{=}} 1 allows us to simplify the equations. For instance, ''E'' {{=}} ''mc''<sup>2</sup> reduces to ''E'' {{=}} ''m'' (since ''c''<sup>2</sup> {{=}} 1, without keeping track of units). This reduces complexity of the expressions while keeping focus on the underlying principles. This "trick" must be taken into account when performing actual numerical calculations.}} | ||
Line 115: | Line 114: | ||
=== Lagrangian गतिशीलता === | === Lagrangian गतिशीलता === | ||
{{Main|Lagrangian (field theory)}} | {{Main|Lagrangian (field theory)}} | ||
फील्ड टेन्सर दिया <math>\phi</math>, एक अदिश जिसे Lagrangian Density कहा जाता है<math display="block">\mathcal{L}(\phi,\partial\phi,\partial\partial\phi, \ldots ,x)</math>से बनाया जा सकता है <math>\phi</math> और इसके डेरिवेटिव। | |||
इस घनत्व से, स्पेसटाइम पर एकीकृत करके एक्शन फंक्शनल का निर्माण किया जा सकता है, | इस घनत्व से, स्पेसटाइम पर एकीकृत करके एक्शन फंक्शनल का निर्माण किया जा सकता है, | ||
<math display="block">\mathcal{S} = \int{\mathcal{L}\sqrt{-g}\, \mathrm{d}^4x}.</math> | <math display="block">\mathcal{S} = \int{\mathcal{L}\sqrt{-g}\, \mathrm{d}^4x}.</math> | ||
कहाँ <math>\sqrt{-g} \, \mathrm{d}^4x</math> घुमावदार स्पेसटाइम में वॉल्यूम रूप है। <math>(g\equiv \det(g_{\mu\nu}))</math> | कहाँ <math>\sqrt{-g} \, \mathrm{d}^4x</math> घुमावदार स्पेसटाइम में वॉल्यूम रूप है। <math>(g\equiv \det(g_{\mu\nu}))</math> | ||
इसलिए, Lagrangian ही पूरे स्थान पर Lagrangian घनत्व के अभिन्न के बराबर है। | इसलिए, Lagrangian ही पूरे स्थान पर Lagrangian घनत्व के अभिन्न के बराबर है। | ||
Line 131: | Line 131: | ||
=== विद्युत चुंबकत्व === | === विद्युत चुंबकत्व === | ||
{{Main|Electromagnetic field|Electromagnetism}} | {{Main|Electromagnetic field|Electromagnetism}} | ||
ऐतिहासिक रूप से, पहले (शास्त्रीय) क्षेत्र सिद्धांत वे थे जो विद्युत और [[ चुंबकीय ]] क्षेत्र (अलग-अलग) का वर्णन करते थे। कई प्रयोगों के बाद, यह पाया गया कि ये दो क्षेत्र संबंधित थे, या, वास्तव में, एक ही क्षेत्र के दो पहलू: [[ विद्युत चुम्बकीय ]] क्षेत्र। [[ जेम्स क्लर्क मैक्सवेल ]] का विद्युत चुंबकत्व का सिद्धांत विद्युत चुम्बकीय क्षेत्र के साथ आवेशित पदार्थ की परस्पर क्रिया का वर्णन करता है। इस क्षेत्र सिद्धांत के पहले सूत्रीकरण ने विद्युत और चुंबकीय क्षेत्रों का वर्णन करने के लिए सदिश क्षेत्रों का उपयोग किया। विशेष आपेक्षिकता के आगमन के साथ, [[ टेन्सर ]] क्षेत्रों का उपयोग करते हुए | ऐतिहासिक रूप से, पहले (शास्त्रीय) क्षेत्र सिद्धांत वे थे जो विद्युत और [[ चुंबकीय |चुंबकीय]] क्षेत्र (अलग-अलग) का वर्णन करते थे। कई प्रयोगों के बाद, यह पाया गया कि ये दो क्षेत्र संबंधित थे, या, वास्तव में, एक ही क्षेत्र के दो पहलू: [[ विद्युत चुम्बकीय |विद्युत चुम्बकीय]] क्षेत्र। [[ जेम्स क्लर्क मैक्सवेल |जेम्स क्लर्क मैक्सवेल]] का विद्युत चुंबकत्व का सिद्धांत विद्युत चुम्बकीय क्षेत्र के साथ आवेशित पदार्थ की परस्पर क्रिया का वर्णन करता है। इस क्षेत्र सिद्धांत के पहले सूत्रीकरण ने विद्युत और चुंबकीय क्षेत्रों का वर्णन करने के लिए सदिश क्षेत्रों का उपयोग किया। विशेष आपेक्षिकता के आगमन के साथ, [[ टेन्सर |टेन्सर]] क्षेत्रों का उपयोग करते हुए अधिक पूर्ण सूत्रीकरण पाया गया। विद्युत और चुंबकीय क्षेत्रों का वर्णन करने वाले दो सदिश क्षेत्रों का उपयोग करने के बजाय, इन दो क्षेत्रों का एक साथ प्रतिनिधित्व करने वाले टेंसर क्षेत्र का उपयोग किया जाता है। | ||
[[ विद्युत चुम्बकीय चार-क्षमता ]] को परिभाषित किया गया है {{math|1=''A<sub>a</sub>'' = (−''φ'', '''A''')}}, और चार-धारा | विद्युत-चुंबकीय चार-धारा {{math|1=''j<sub>a</sub>'' = (−''ρ'', '''j''')}}. स्पेसटाइम में किसी भी बिंदु पर विद्युत चुम्बकीय क्षेत्र को एंटीसिमेट्रिक (0,2)-रैंक [[ विद्युत चुम्बकीय क्षेत्र टेंसर ]] द्वारा वर्णित किया गया है | [[ विद्युत चुम्बकीय चार-क्षमता | विद्युत चुम्बकीय चार-क्षमता]] को परिभाषित किया गया है {{math|1=''A<sub>a</sub>'' = (−''φ'', '''A''')}}, और चार-धारा | विद्युत-चुंबकीय चार-धारा {{math|1=''j<sub>a</sub>'' = (−''ρ'', '''j''')}}. स्पेसटाइम में किसी भी बिंदु पर विद्युत चुम्बकीय क्षेत्र को एंटीसिमेट्रिक (0,2)-रैंक [[ विद्युत चुम्बकीय क्षेत्र टेंसर |विद्युत चुम्बकीय क्षेत्र टेंसर]] द्वारा वर्णित किया गया है | ||
<math display="block">F_{ab} = \partial_a A_b - \partial_b A_a.</math> | <math display="block">F_{ab} = \partial_a A_b - \partial_b A_a.</math> | ||
Line 140: | Line 140: | ||
इस क्षेत्र के लिए गतिकी प्राप्त करने के लिए, हम कोशिश करते हैं और क्षेत्र से एक अदिश का निर्माण करते हैं। निर्वात में, हमारे पास है | इस क्षेत्र के लिए गतिकी प्राप्त करने के लिए, हम कोशिश करते हैं और क्षेत्र से एक अदिश का निर्माण करते हैं। निर्वात में, हमारे पास है | ||
<math display="block">\mathcal{L} = -\frac{1}{4\mu_0}F^{ab}F_{ab}\,.</math> | <math display="block">\mathcal{L} = -\frac{1}{4\mu_0}F^{ab}F_{ab}\,.</math> | ||
हम इंटरेक्शन शब्द प्राप्त करने के लिए [[ गेज क्षेत्र सिद्धांत ]] का उपयोग कर सकते हैं, और यह हमें देता है | हम इंटरेक्शन शब्द प्राप्त करने के लिए [[ गेज क्षेत्र सिद्धांत |गेज क्षेत्र सिद्धांत]] का उपयोग कर सकते हैं, और यह हमें देता है | ||
<math display="block">\mathcal{L} = -\frac{1}{4\mu_0}F^{ab}F_{ab} - j^aA_a\,.</math> | <math display="block">\mathcal{L} = -\frac{1}{4\mu_0}F^{ab}F_{ab} - j^aA_a\,.</math> | ||
Line 153: | Line 153: | ||
निर्वात में मैक्सवेल के समीकरण प्राप्त करता है। स्रोत समीकरण (विद्युत के लिए गॉस का नियम और मैक्सवेल-एम्पीयर का नियम) हैं | निर्वात में मैक्सवेल के समीकरण प्राप्त करता है। स्रोत समीकरण (विद्युत के लिए गॉस का नियम और मैक्सवेल-एम्पीयर का नियम) हैं | ||
<math display="block">\partial_b F^{ab}=\mu_0 j^a \, . </math> | <math display="block">\partial_b F^{ab}=\mu_0 j^a \, . </math> | ||
जबकि अन्य दो (चुंबकत्व के लिए गॉस का नियम और फैराडे का नियम) इस तथ्य से प्राप्त होते हैं कि F, A का 4-कर्ल है, या, दूसरे शब्दों में, इस तथ्य से कि [[ बियांची पहचान ]] विद्युत चुम्बकीय क्षेत्र टेंसर के लिए है।<ref>{{Cite web| url=http://mathworld.wolfram.com/BianchiIdentities.html|title=Bianchi Identities}}</ref> | जबकि अन्य दो (चुंबकत्व के लिए गॉस का नियम और फैराडे का नियम) इस तथ्य से प्राप्त होते हैं कि F, A का 4-कर्ल है, या, दूसरे शब्दों में, इस तथ्य से कि [[ बियांची पहचान |बियांची पहचान]] विद्युत चुम्बकीय क्षेत्र टेंसर के लिए है।<ref>{{Cite web| url=http://mathworld.wolfram.com/BianchiIdentities.html|title=Bianchi Identities}}</ref> | ||
<math display="block">6F_{[ab,c]} \, = F_{ab,c} + F_{ca,b} + F_{bc,a} = 0. </math> | <math display="block">6F_{[ab,c]} \, = F_{ab,c} + F_{ca,b} + F_{bc,a} = 0. </math> | ||
जहां अल्पविराम [[ आंशिक व्युत्पन्न ]] इंगित करता है। | जहां अल्पविराम [[ आंशिक व्युत्पन्न |आंशिक व्युत्पन्न]] इंगित करता है। | ||
=== गुरुत्वाकर्षण === | === गुरुत्वाकर्षण === | ||
{{Main|Gravitation}} | {{Main|Gravitation}} | ||
{{Further|General Relativity|Einstein field equation}} | {{Further|General Relativity|Einstein field equation}} | ||
न्यूटोनियन गुरुत्वाकर्षण को [[ विशेष सापेक्षता ]] के साथ असंगत पाए जाने के बाद, [[ अल्बर्ट आइंस्टीन ]] ने गुरुत्वाकर्षण का एक नया सिद्धांत तैयार किया जिसे [[ सामान्य सापेक्षता ]] कहा जाता है। यह गुरुत्वाकर्षण को एक ज्यामितीय घटना ('घुमावदार [[ अंतरिक्ष समय ]]') के रूप में मानता है जो द्रव्यमान के कारण होता है और मीट्रिक टेन्सर (सामान्य सापेक्षता) नामक [[ टेंसर क्षेत्र ]] द्वारा गणितीय रूप से गुरुत्वाकर्षण क्षेत्र का प्रतिनिधित्व करता है। [[ आइंस्टीन फील्ड समीकरण ]] बताते हैं कि यह वक्रता कैसे उत्पन्न होती है। न्यूटोनियन गुरुत्वाकर्षण अब आइंस्टीन के सामान्य सापेक्षता के सिद्धांत से आगे निकल गया है, जिसमें गुरुत्वाकर्षण को एक घुमावदार स्पेसटाइम के कारण माना जाता है, जो द्रव्यमान के कारण होता है। आइंस्टीन क्षेत्र समीकरण, | न्यूटोनियन गुरुत्वाकर्षण को [[ विशेष सापेक्षता |विशेष सापेक्षता]] के साथ असंगत पाए जाने के बाद, [[ अल्बर्ट आइंस्टीन |अल्बर्ट आइंस्टीन]] ने गुरुत्वाकर्षण का एक नया सिद्धांत तैयार किया जिसे [[ सामान्य सापेक्षता |सामान्य सापेक्षता]] कहा जाता है। यह गुरुत्वाकर्षण को एक ज्यामितीय घटना ('घुमावदार [[ अंतरिक्ष समय |अंतरिक्ष समय]] ') के रूप में मानता है जो द्रव्यमान के कारण होता है और मीट्रिक टेन्सर (सामान्य सापेक्षता) नामक [[ टेंसर क्षेत्र |टेंसर क्षेत्र]] द्वारा गणितीय रूप से गुरुत्वाकर्षण क्षेत्र का प्रतिनिधित्व करता है। [[ आइंस्टीन फील्ड समीकरण |आइंस्टीन फील्ड समीकरण]] बताते हैं कि यह वक्रता कैसे उत्पन्न होती है। न्यूटोनियन गुरुत्वाकर्षण अब आइंस्टीन के सामान्य सापेक्षता के सिद्धांत से आगे निकल गया है, जिसमें गुरुत्वाकर्षण को एक घुमावदार स्पेसटाइम के कारण माना जाता है, जो द्रव्यमान के कारण होता है। आइंस्टीन क्षेत्र समीकरण, | ||
<math display="block">G_{ab} = \kappa T_{ab} </math> | <math display="block">G_{ab} = \kappa T_{ab} </math> | ||
वर्णन करें कि यह वक्रता पदार्थ और विकिरण द्वारा कैसे उत्पन्न होती है, जहाँ G<sub>ab</sub>[[ आइंस्टीन टेंसर ]] है, | वर्णन करें कि यह वक्रता पदार्थ और विकिरण द्वारा कैसे उत्पन्न होती है, जहाँ G<sub>ab</sub>[[ आइंस्टीन टेंसर | आइंस्टीन टेंसर]] है, | ||
<math display="block">G_{ab} \, = R_{ab}-\frac{1}{2} R g_{ab}</math> | <math display="block">G_{ab} \, = R_{ab}-\frac{1}{2} R g_{ab}</math> | ||
[[ रिक्की टेंसर ]] आर के संदर्भ में लिखा गया है<sub>ab</sub>और [[ रिक्की अदिश ]] {{math|1=''R'' = ''R<sub>ab</sub>g<sup>ab</sup>''}}, {{math|''T<sub>ab</sub>''}} तनाव-ऊर्जा टेन्सर है और {{math|1=''κ'' = 8''πG''/''c''<sup>4</sup>}} एक स्थिरांक है। पदार्थ और विकिरण (स्रोतों सहित) की अनुपस्थिति में '[[ निर्वात क्षेत्र समीकरण ]], | [[ रिक्की टेंसर | रिक्की टेंसर]] आर के संदर्भ में लिखा गया है<sub>ab</sub>और [[ रिक्की अदिश |रिक्की अदिश]] {{math|1=''R'' = ''R<sub>ab</sub>g<sup>ab</sup>''}}, {{math|''T<sub>ab</sub>''}} तनाव-ऊर्जा टेन्सर है और {{math|1=''κ'' = 8''πG''/''c''<sup>4</sup>}} एक स्थिरांक है। पदार्थ और विकिरण (स्रोतों सहित) की अनुपस्थिति में '[[ निर्वात क्षेत्र समीकरण ]], | ||
<math display="block">G_{ab} = 0 </math> | <math display="block">G_{ab} = 0 </math> | ||
आइंस्टीन-हिल्बर्ट क्रिया को बदलकर प्राप्त किया जा सकता है, | आइंस्टीन-हिल्बर्ट क्रिया को बदलकर प्राप्त किया जा सकता है, | ||
<math display="block"> S = \int R \sqrt{-g} \, d^4x </math> | <math display="block"> S = \int R \sqrt{-g} \, d^4x </math> | ||
मीट्रिक के संबंध में, जहाँ g मीट्रिक टेन्सर (सामान्य सापेक्षता) g का निर्धारक है<sup>अब</sup>. निर्वात क्षेत्र समीकरणों के हल निर्वात विलयन कहलाते हैं। [[ आर्थर एडिंगटन ]] के कारण | मीट्रिक के संबंध में, जहाँ g मीट्रिक टेन्सर (सामान्य सापेक्षता) g का निर्धारक है<sup>अब</sup>. निर्वात क्षेत्र समीकरणों के हल निर्वात विलयन कहलाते हैं। [[ आर्थर एडिंगटन |आर्थर एडिंगटन]] के कारण वैकल्पिक व्याख्या यह है <math>R</math> मौलिक है, <math>T</math> का पहलू मात्र है <math>R</math>, और <math>\kappa</math> इकाइयों की पसंद से मजबूर है। | ||
=== आगे के उदाहरण === | === आगे के उदाहरण === | ||
लोरेंत्ज़-सहसंयोजक शास्त्रीय क्षेत्र सिद्धांतों के और उदाहरण हैं | लोरेंत्ज़-सहसंयोजक शास्त्रीय क्षेत्र सिद्धांतों के और उदाहरण हैं | ||
* वास्तविक या जटिल अदिश क्षेत्रों के लिए [[ Klein-गॉर्डन ]] सिद्धांत | * वास्तविक या जटिल अदिश क्षेत्रों के लिए [[ Klein-गॉर्डन |Klein-गॉर्डन]] सिद्धांत | ||
* डायराक स्पिनर क्षेत्र के लिए डिराक समीकरण सिद्धांत | * डायराक स्पिनर क्षेत्र के लिए डिराक समीकरण सिद्धांत | ||
* गैर-अबेलियन गेज क्षेत्र के लिए यांग-मिल्स सिद्धांत | * गैर-अबेलियन गेज क्षेत्र के लिए यांग-मिल्स सिद्धांत | ||
Line 178: | Line 178: | ||
== एकीकरण के प्रयास == | == एकीकरण के प्रयास == | ||
{{Main|Classical unified field theories}} | {{Main|Classical unified field theories}} | ||
[[ शास्त्रीय भौतिकी ]] पर आधारित एकीकृत क्षेत्र सिद्धांत बनाने का प्रयास शास्त्रीय एकीकृत क्षेत्र सिद्धांत हैं। दो विश्व युद्धों के बीच के वर्षों के दौरान, अल्बर्ट आइंस्टीन, [[ थिओडोर कलुजा ]] जैसे कई गणितज्ञों और भौतिकविदों द्वारा विद्युत चुंबकत्व के साथ [[ गुरुत्वाकर्षण ]] के एकीकरण के विचार को सक्रिय रूप से आगे बढ़ाया गया था।<ref name=kal>{{cite journal |last=Kaluza |first=Theodor |date=1921 |title=Zum Unitätsproblem in der Physik |journal=Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) |pages=966–972 |bibcode=1921SPAW.......966K }}</ref> [[ हरमन वेइल ]],<ref>{{cite journal |author=Weyl, H. |title=Gravitation und Elektrizität |journal=Sitz. Preuss. Akad. Wiss. |year=1918 |pages=465}}</ref> आर्थर एडिंगटन,<ref>{{cite book |author=Eddington, A. S. |title=The Mathematical Theory of Relativity, 2nd ed. |publisher=Cambridge Univ. Press |year=1924 }}</ref> [[ गुस्ताव मि ]]<ref>{{cite journal |author=Mie, G. |title=Grundlagen einer Theorie der Materie |journal=Ann. Phys. |year=1912 |volume=37 |pages=511–534 |doi=10.1002/andp.19123420306 |issue=3|bibcode = 1912AnP...342..511M |url=https://zenodo.org/record/1424223 }}</ref> और अर्न्स्ट रीचेनबैकर।<ref>{{cite journal |author=Reichenbächer, E. |title=Grundzüge zu einer Theorie der Elektrizität und der Gravitation |journal=Ann. Phys. |year=1917 |volume=52 |pages=134–173 |doi=10.1002/andp.19173570203 |issue=2|bibcode = 1917AnP...357..134R |url=https://zenodo.org/record/1424315 }}</ref> | [[ शास्त्रीय भौतिकी |शास्त्रीय भौतिकी]] पर आधारित एकीकृत क्षेत्र सिद्धांत बनाने का प्रयास शास्त्रीय एकीकृत क्षेत्र सिद्धांत हैं। दो विश्व युद्धों के बीच के वर्षों के दौरान, अल्बर्ट आइंस्टीन, [[ थिओडोर कलुजा |थिओडोर कलुजा]] जैसे कई गणितज्ञों और भौतिकविदों द्वारा विद्युत चुंबकत्व के साथ [[ गुरुत्वाकर्षण |गुरुत्वाकर्षण]] के एकीकरण के विचार को सक्रिय रूप से आगे बढ़ाया गया था।<ref name=kal>{{cite journal |last=Kaluza |first=Theodor |date=1921 |title=Zum Unitätsproblem in der Physik |journal=Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) |pages=966–972 |bibcode=1921SPAW.......966K }}</ref> [[ हरमन वेइल |हरमन वेइल]] ,<ref>{{cite journal |author=Weyl, H. |title=Gravitation und Elektrizität |journal=Sitz. Preuss. Akad. Wiss. |year=1918 |pages=465}}</ref> आर्थर एडिंगटन,<ref>{{cite book |author=Eddington, A. S. |title=The Mathematical Theory of Relativity, 2nd ed. |publisher=Cambridge Univ. Press |year=1924 }}</ref> [[ गुस्ताव मि |गुस्ताव मि]] <ref>{{cite journal |author=Mie, G. |title=Grundlagen einer Theorie der Materie |journal=Ann. Phys. |year=1912 |volume=37 |pages=511–534 |doi=10.1002/andp.19123420306 |issue=3|bibcode = 1912AnP...342..511M |url=https://zenodo.org/record/1424223 }}</ref> और अर्न्स्ट रीचेनबैकर।<ref>{{cite journal |author=Reichenbächer, E. |title=Grundzüge zu einer Theorie der Elektrizität und der Gravitation |journal=Ann. Phys. |year=1917 |volume=52 |pages=134–173 |doi=10.1002/andp.19173570203 |issue=2|bibcode = 1917AnP...357..134R |url=https://zenodo.org/record/1424315 }}</ref> | ||
इस तरह के सिद्धांत को बनाने के शुरुआती प्रयास [[ विद्युत चुम्बकीय क्षेत्र ]]ों को सामान्य सापेक्षता की ज्यामिति में शामिल करने पर आधारित थे। 1918 में, 1918 में हर्मन वेइल द्वारा विद्युत चुम्बकीय क्षेत्र के पहले ज्यामितीयकरण का मामला प्रस्तावित किया गया था।<ref name=Tilman>{{Citation| last = Sauer| first = Tilman| author-link = Sauer Tilman| chapter = Einstein’s Unified Field Theory Program| date = May 2014| editor1-last = Janssen| editor1-first = Michel | editor2-last = Lehner| editor2-first = Christoph | title = The Cambridge Companion to Einstein| publisher = Cambridge University Press| publication-date = May 2014| isbn = 9781139024525}}</ref> | |||
1919 में, थिओडोर कलुजा द्वारा पांच-आयामी दृष्टिकोण का विचार सुझाया गया था।<ref name=Tilman/>उसी से, [[ कलुजा-क्लेन थ्योरी ]] नामक | इस तरह के सिद्धांत को बनाने के शुरुआती प्रयास [[ विद्युत चुम्बकीय क्षेत्र |विद्युत चुम्बकीय क्षेत्र]] ों को सामान्य सापेक्षता की ज्यामिति में शामिल करने पर आधारित थे। 1918 में, 1918 में हर्मन वेइल द्वारा विद्युत चुम्बकीय क्षेत्र के पहले ज्यामितीयकरण का मामला प्रस्तावित किया गया था।<ref name="Tilman">{{Citation| last = Sauer| first = Tilman| author-link = Sauer Tilman| chapter = Einstein’s Unified Field Theory Program| date = May 2014| editor1-last = Janssen| editor1-first = Michel | editor2-last = Lehner| editor2-first = Christoph | title = The Cambridge Companion to Einstein| publisher = Cambridge University Press| publication-date = May 2014| isbn = 9781139024525}}</ref> | ||
1919 में, थिओडोर कलुजा द्वारा पांच-आयामी दृष्टिकोण का विचार सुझाया गया था।<ref name="Tilman" /> उसी से, [[ कलुजा-क्लेन थ्योरी |कलुजा-क्लेन थ्योरी]] नामक सिद्धांत विकसित किया गया था। यह पांच आयामी अंतरिक्ष-समय में गुरुत्वाकर्षण और विद्युत चुंबकत्व को एकजुट करने का प्रयास करता है। | |||
एकीकृत क्षेत्र सिद्धांत के लिए प्रतिनिधित्वात्मक ढांचे को विस्तारित करने के कई तरीके हैं जिन पर आइंस्टीन और अन्य शोधकर्ताओं ने विचार किया है। सामान्य तौर पर ये एक्सटेंशन दो विकल्पों पर आधारित होते हैं।<ref name="Tilman" />पहला विकल्प मूल सूत्रीकरण पर लगाई गई शर्तों को शिथिल करने पर आधारित है, और दूसरा सिद्धांत में अन्य गणितीय वस्तुओं को शामिल करने पर आधारित है।<ref name="Tilman" /> पहले विकल्प का उदाहरण उच्च-आयामी अभ्यावेदन पर विचार करके चार-आयामी स्थान-समय के प्रतिबंधों को शिथिल कर रहा है।<ref name="Tilman" /> इसका उपयोग कलुजा-क्लेन थ्योरी में किया जाता है। दूसरे के लिए, सबसे प्रमुख उदाहरण [[ affine कनेक्शन |affine कनेक्शन]] की अवधारणा से उत्पन्न होता है जिसे मुख्य रूप से [[ Tullio Levi-Civita |Tullio Levi-Civita]] और Hermann Weyl के काम के माध्यम से सामान्य सापेक्षता में पेश किया गया था।<ref name="Tilman" /> | |||
क्वांटम क्षेत्र सिद्धांत के आगे के विकास ने एकीकृत क्षेत्र सिद्धांत की खोज के फोकस को क्लासिकल से क्वांटम विवरण में बदल दिया। उसके कारण, कई सैद्धांतिक भौतिकविदों ने शास्त्रीय एकीकृत क्षेत्र सिद्धांत की तलाश छोड़ दी।<ref name="Tilman" />क्वांटम क्षेत्र सिद्धांत में दो अन्य मूलभूत अंतःक्रियाओं का एकीकरण शामिल होगा, मजबूत परमाणु बल और [[ कमजोर परमाणु बल |कमजोर परमाणु बल]] जो उपपरमाण्विक स्तर पर कार्य करते हैं।<ref>{{cite journal |last=Gadzirayi Nyambuya|first=Golden|title=Unified Field Theory – Paper I, Gravitational, Electromagnetic, Weak & the Strong Force| journal=Apeiron |date=October 2007|volume=14|issue=4|page=321|url=http://redshift.vif.com/JournalFiles/V14NO4PDF/V14N4GAD.pdf |access-date=30 December 2017}}</ref><ref>{{cite journal|last1=De Boer|first1=W.|title=Grand unified theories and supersymmetry in particle physics and cosmology|journal=Progress in Particle and Nuclear Physics|date=1994|volume=33| pages=201–301 |url=http://www-ekp.physik.uni-karlsruhe.de/~deboer/html/Lehre/Susy/deboer_review3.pdf|access-date=30 December 2017|arxiv=hep-ph/9402266|bibcode=1994PrPNP..33..201D|doi=10.1016/0146-6410(94)90045-0|s2cid=119353300}}</ref> | |||
Revision as of 19:57, 25 January 2023
शास्त्रीय क्षेत्र सिद्धांत एक भौतिक सिद्धांत है जो क्वांटम यांत्रिकी पर विचार किए बिना भविष्यवाणी करता है कि कैसे एक या अधिक क्षेत्र (भौतिकी) क्षेत्र समीकरणों के माध्यम से पदार्थ के साथ बातचीत करते हैं; सिद्धांत जो क्वांटम यांत्रिकी को शामिल करते हैं उन्हें क्वांटम क्षेत्र सिद्धांत कहा जाता है। अधिकांश संदर्भों में, 'शास्त्रीय क्षेत्र सिद्धांत' का उद्देश्य विशेष रूप से विद्युत चुंबकत्व और गुरुत्वाकर्षण, प्रकृति की दो मूलभूत शक्तियों का वर्णन करना है।
भौतिक क्षेत्र को अंतरिक्ष और समय के प्रत्येक बिंदु पर भौतिक मात्रा के असाइनमेंट के रूप में माना जा सकता है। उदाहरण के लिए, मौसम पूर्वानुमान में, एक देश में एक दिन के दौरान हवा के वेग को अंतरिक्ष में प्रत्येक बिंदु पर वेक्टर (गणित और भौतिकी) निर्दिष्ट करके वर्णित किया जाता है। प्रत्येक वेक्टर उस बिंदु पर हवा की गति की दिशा का प्रतिनिधित्व करता है, इसलिए एक निश्चित समय पर एक क्षेत्र में सभी पवन वैक्टरों का सेट वेक्टर क्षेत्र का गठन करता है। जैसे-जैसे दिन बढ़ता है, वैसे-वैसे दिशाएँ बदल जाती हैं, जैसे हवा की दिशा बदल जाती है।
1905 में सापेक्षता सिद्धांत के आगमन से पहले प्रथम क्षेत्र सिद्धांत, न्यूटोनियन गुरुत्वाकर्षण और विद्युत चुम्बकीय क्षेत्र के मैक्सवेल के समीकरणों को शास्त्रीय भौतिकी में विकसित किया गया था, और उस सिद्धांत के अनुरूप होने के लिए संशोधित किया जाना था। नतीजतन, शास्त्रीय क्षेत्र सिद्धांतों को आमतौर पर 'गैर-सापेक्षवादी और 'सापेक्षवादी' के रूप में वर्गीकृत किया जाता है। आधुनिक क्षेत्र सिद्धांतों को आमतौर पर टेंसर कैलकुलेशन के गणित का उपयोग करके व्यक्त किया जाता है। एक और हालिया वैकल्पिक गणितीय औपचारिकता शास्त्रीय क्षेत्रों को गणितीय वस्तुओं के खंडों के रूप में वर्णित करती है जिन्हें फाइबर बंडल कहा जाता है।
गैर-सापेक्ष क्षेत्र सिद्धांत
कुछ सबसे सरल भौतिक क्षेत्र सदिश बल क्षेत्र हैं। ऐतिहासिक रूप से, पहली बार फ़ील्ड्स को गंभीरता से लिया गया था जब विद्युत क्षेत्र का वर्णन करते समय माइकल फैराडे | फैराडे की बल की रेखाएं थीं। गुरुत्वाकर्षण क्षेत्र को तब इसी तरह वर्णित किया गया था।
न्यूटोनियन गुरुत्वाकर्षण
गुरुत्वाकर्षण का पहला क्षेत्र सिद्धांत (भौतिकी) न्यूटन का गुरुत्वाकर्षण का सिद्धांत था जिसमें दो द्रव्यमान के बीच परस्पर क्रिया व्युत्क्रम वर्ग नियम का पालन करती है। सूर्य के चारों ओर ग्रहों की गति की भविष्यवाणी करने के लिए यह बहुत उपयोगी था।
किसी भी विशाल पिंड M में गुरुत्वाकर्षण क्षेत्र 'g' होता है जो अन्य विशाल पिंडों पर इसके प्रभाव का वर्णन करता है। अंतरिक्ष में एक बिंदु 'r' पर M का गुरुत्वाकर्षण क्षेत्र 'F' बल का निर्धारण करके पाया जाता है जो M, 'r' पर स्थित एक छोटे परीक्षण द्रव्यमान m पर लगाता है, और फिर m से विभाजित होता है:[1]
न्यूटन के सार्वत्रिक गुरुत्वाकर्षण के नियम के अनुसार, 'F'('r') द्वारा दिया जाता है[1]
जनता के असतत संग्रह के लिए, एमi, बिंदुओं पर स्थित, 'आर'iद्रव्यमान के कारण बिंदु r पर गुरुत्वाकर्षण क्षेत्र है
अभिन्न रूप में गुरुत्वाकर्षण के लिए गॉस का नियम है
विद्युत चुंबकत्व
इलेक्ट्रोस्टैटिक्स
आवेश q के साथ एक परीक्षण आवेश केवल अपने आवेश पर आधारित एक बल 'F' का अनुभव करता है। इसी प्रकार हम स्रोत आवेश Q द्वारा उत्पन्न विद्युत क्षेत्र 'E' का वर्णन कर सकते हैं ताकि F = qE:
मैग्नेटोस्टैटिक्स
पथ ℓ के साथ बहने वाली एक स्थिर धारा I पास के आवेशित कणों पर बल लगाती है जो ऊपर वर्णित विद्युत क्षेत्र बल से मात्रात्मक रूप से भिन्न होता है। वेग 'v' के साथ पास के आवेश q पर I द्वारा लगाया गया बल है
इलेक्ट्रोडायनामिक्स
सामान्य तौर पर, आवेश घनत्व ρ('r', t) और धारा घनत्व 'J'('r', t) दोनों की उपस्थिति में, विद्युत और चुंबकीय क्षेत्र दोनों होंगे, और दोनों समय के साथ अलग-अलग होंगे . वे मैक्सवेल के समीकरणों द्वारा निर्धारित होते हैं, अंतर समीकरणों का एक सेट जो सीधे 'ई' और 'बी' को विद्युत चार्ज घनत्व (चार्ज प्रति इकाई मात्रा) ρ और वर्तमान घनत्व (विद्युत वर्तमान प्रति इकाई क्षेत्र) 'जे' से संबंधित करता है।[2] वैकल्पिक रूप से, कोई सिस्टम को उसके स्केलर और वेक्टर क्षमता V और 'A' के संदर्भ में वर्णित कर सकता है। मंद क्षमता के रूप में जाने जाने वाले अभिन्न समीकरणों का एक सेट, ρ और 'J' से V और 'A' की गणना करने की अनुमति देता है,[note 1] और वहां से संबंधों के माध्यम से विद्युत और चुंबकीय क्षेत्र निर्धारित किए जाते हैं[3]
सातत्य यांत्रिकी
द्रव गतिकी
द्रव गतिकी में दबाव, घनत्व और प्रवाह दर के क्षेत्र होते हैं जो ऊर्जा और संवेग के लिए संरक्षण कानूनों से जुड़े होते हैं। द्रव्यमान निरंतरता समीकरण एक निरंतरता समीकरण है, जो द्रव्यमान के संरक्षण का प्रतिनिधित्व करता है
अन्य उदाहरण
1839 में, जेम्स मैककुलघ ने क्रिस्टलीय प्रतिबिंब और अपवर्तन के गतिशील सिद्धांत की ओर एक निबंध में प्रतिबिंब (भौतिकी) और अपवर्तन का वर्णन करने के लिए क्षेत्र समीकरण प्रस्तुत किए।[4]
संभावित सिद्धांत
संभावित सिद्धांत शब्द इस तथ्य से उत्पन्न होता है कि, 19वीं सदी के भौतिकी में, प्रकृति की मूलभूत शक्तियों को स्केलर क्षमता से प्राप्त माना जाता था जो लाप्लास के समीकरण को संतुष्ट करती थी। पोइसन ने ग्रहों की कक्षाओं की स्थिरता के सवाल को संबोधित किया, जो पहले से ही लाग्रेंज द्वारा गड़बड़ी बलों से सन्निकटन की पहली डिग्री तक तय किया गया था, और उसके नाम पर पॉइसन के समीकरण को व्युत्पन्न किया। इस समीकरण का सामान्य रूप है
न्यूटोनियन गुरुत्वाकर्षण में; द्रव्यमान क्षेत्र के स्रोत हैं ताकि क्षेत्र रेखाएं द्रव्यमान वाली वस्तुओं पर समाप्त हो जाएं। इसी तरह, आवेश इलेक्ट्रोस्टैटिक क्षेत्रों के स्रोत और सिंक हैं: सकारात्मक आवेश विद्युत क्षेत्र रेखाएँ उत्पन्न करते हैं, और क्षेत्र रेखाएँ ऋणात्मक आवेशों पर समाप्त होती हैं। इन क्षेत्र अवधारणाओं को सामान्य विचलन प्रमेय में भी चित्रित किया गया है, विशेष रूप से गुरुत्वाकर्षण और बिजली के लिए गॉस के नियम। समय-स्वतंत्र गुरुत्वाकर्षण और विद्युत चुंबकत्व के मामलों के लिए, क्षेत्र इसी क्षमता के ढाल हैं
संयोग से, यह समानता न्यूटन के गुरुत्वाकर्षण के नियम और कूलम्ब के नियम के बीच समानता से उत्पन्न होती है।
ऐसे मामले में जहां कोई स्रोत शब्द नहीं है (जैसे निर्वात, या युग्मित शुल्क), ये क्षमताएँ लाप्लास के समीकरण का पालन करती हैं:
सापेक्षवादी क्षेत्र सिद्धांत
शास्त्रीय क्षेत्र सिद्धांतों के आधुनिक सूत्रीकरण के लिए आम तौर पर लोरेंत्ज़ सहप्रसरण की आवश्यकता होती है क्योंकि इसे अब प्रकृति के एक मूलभूत पहलू के रूप में मान्यता दी गई है। लैग्रैंजियन (क्षेत्र सिद्धांत) का उपयोग करके क्षेत्र सिद्धांत को गणितीय रूप से व्यक्त किया जाता है। यह एक कार्य है, जब क्रिया सिद्धांत के अधीन, सिद्धांत के लिए क्षेत्र समीकरण और संरक्षण कानून (भौतिकी) को जन्म देता है। क्रिया (भौतिकी) एक लोरेंत्ज़ अदिश है, जिससे क्षेत्र समीकरण और समरूपता आसानी से प्राप्त की जा सकती है।
पूरे समय हम इकाइयों का उपयोग इस प्रकार करते हैं कि निर्वात में प्रकाश की गति 1 है, अर्थात c = 1।[note 2]
Lagrangian गतिशीलता
फील्ड टेन्सर दिया , एक अदिश जिसे Lagrangian Density कहा जाता है
इसलिए, Lagrangian ही पूरे स्थान पर Lagrangian घनत्व के अभिन्न के बराबर है।
फिर क्रिया (भौतिकी) को लागू करके, यूलर-लैग्रेंज समीकरण प्राप्त किए जाते हैं
सापेक्ष क्षेत्र
दो सबसे प्रसिद्ध लोरेंत्ज़-सहसंयोजक शास्त्रीय क्षेत्र सिद्धांतों का अब वर्णन किया गया है।
विद्युत चुंबकत्व
ऐतिहासिक रूप से, पहले (शास्त्रीय) क्षेत्र सिद्धांत वे थे जो विद्युत और चुंबकीय क्षेत्र (अलग-अलग) का वर्णन करते थे। कई प्रयोगों के बाद, यह पाया गया कि ये दो क्षेत्र संबंधित थे, या, वास्तव में, एक ही क्षेत्र के दो पहलू: विद्युत चुम्बकीय क्षेत्र। जेम्स क्लर्क मैक्सवेल का विद्युत चुंबकत्व का सिद्धांत विद्युत चुम्बकीय क्षेत्र के साथ आवेशित पदार्थ की परस्पर क्रिया का वर्णन करता है। इस क्षेत्र सिद्धांत के पहले सूत्रीकरण ने विद्युत और चुंबकीय क्षेत्रों का वर्णन करने के लिए सदिश क्षेत्रों का उपयोग किया। विशेष आपेक्षिकता के आगमन के साथ, टेन्सर क्षेत्रों का उपयोग करते हुए अधिक पूर्ण सूत्रीकरण पाया गया। विद्युत और चुंबकीय क्षेत्रों का वर्णन करने वाले दो सदिश क्षेत्रों का उपयोग करने के बजाय, इन दो क्षेत्रों का एक साथ प्रतिनिधित्व करने वाले टेंसर क्षेत्र का उपयोग किया जाता है।
विद्युत चुम्बकीय चार-क्षमता को परिभाषित किया गया है Aa = (−φ, A), और चार-धारा | विद्युत-चुंबकीय चार-धारा ja = (−ρ, j). स्पेसटाइम में किसी भी बिंदु पर विद्युत चुम्बकीय क्षेत्र को एंटीसिमेट्रिक (0,2)-रैंक विद्युत चुम्बकीय क्षेत्र टेंसर द्वारा वर्णित किया गया है
लैग्रैंगियन
इस क्षेत्र के लिए गतिकी प्राप्त करने के लिए, हम कोशिश करते हैं और क्षेत्र से एक अदिश का निर्माण करते हैं। निर्वात में, हमारे पास है
समीकरण
क्षेत्र समीकरणों को प्राप्त करने के लिए, Lagrangian घनत्व में विद्युत चुम्बकीय टेंसर को 4-संभाव्य A के संदर्भ में इसकी परिभाषा से प्रतिस्थापित करने की आवश्यकता है, और यह वह क्षमता है जो Euler-Lagrange समीकरणों में प्रवेश करती है। EM फ़ील्ड F, EL समीकरणों में भिन्न नहीं है। इसलिए,
गुरुत्वाकर्षण
न्यूटोनियन गुरुत्वाकर्षण को विशेष सापेक्षता के साथ असंगत पाए जाने के बाद, अल्बर्ट आइंस्टीन ने गुरुत्वाकर्षण का एक नया सिद्धांत तैयार किया जिसे सामान्य सापेक्षता कहा जाता है। यह गुरुत्वाकर्षण को एक ज्यामितीय घटना ('घुमावदार अंतरिक्ष समय ') के रूप में मानता है जो द्रव्यमान के कारण होता है और मीट्रिक टेन्सर (सामान्य सापेक्षता) नामक टेंसर क्षेत्र द्वारा गणितीय रूप से गुरुत्वाकर्षण क्षेत्र का प्रतिनिधित्व करता है। आइंस्टीन फील्ड समीकरण बताते हैं कि यह वक्रता कैसे उत्पन्न होती है। न्यूटोनियन गुरुत्वाकर्षण अब आइंस्टीन के सामान्य सापेक्षता के सिद्धांत से आगे निकल गया है, जिसमें गुरुत्वाकर्षण को एक घुमावदार स्पेसटाइम के कारण माना जाता है, जो द्रव्यमान के कारण होता है। आइंस्टीन क्षेत्र समीकरण,
आगे के उदाहरण
लोरेंत्ज़-सहसंयोजक शास्त्रीय क्षेत्र सिद्धांतों के और उदाहरण हैं
- वास्तविक या जटिल अदिश क्षेत्रों के लिए Klein-गॉर्डन सिद्धांत
- डायराक स्पिनर क्षेत्र के लिए डिराक समीकरण सिद्धांत
- गैर-अबेलियन गेज क्षेत्र के लिए यांग-मिल्स सिद्धांत
एकीकरण के प्रयास
शास्त्रीय भौतिकी पर आधारित एकीकृत क्षेत्र सिद्धांत बनाने का प्रयास शास्त्रीय एकीकृत क्षेत्र सिद्धांत हैं। दो विश्व युद्धों के बीच के वर्षों के दौरान, अल्बर्ट आइंस्टीन, थिओडोर कलुजा जैसे कई गणितज्ञों और भौतिकविदों द्वारा विद्युत चुंबकत्व के साथ गुरुत्वाकर्षण के एकीकरण के विचार को सक्रिय रूप से आगे बढ़ाया गया था।[6] हरमन वेइल ,[7] आर्थर एडिंगटन,[8] गुस्ताव मि [9] और अर्न्स्ट रीचेनबैकर।[10]
इस तरह के सिद्धांत को बनाने के शुरुआती प्रयास विद्युत चुम्बकीय क्षेत्र ों को सामान्य सापेक्षता की ज्यामिति में शामिल करने पर आधारित थे। 1918 में, 1918 में हर्मन वेइल द्वारा विद्युत चुम्बकीय क्षेत्र के पहले ज्यामितीयकरण का मामला प्रस्तावित किया गया था।[11]
1919 में, थिओडोर कलुजा द्वारा पांच-आयामी दृष्टिकोण का विचार सुझाया गया था।[11] उसी से, कलुजा-क्लेन थ्योरी नामक सिद्धांत विकसित किया गया था। यह पांच आयामी अंतरिक्ष-समय में गुरुत्वाकर्षण और विद्युत चुंबकत्व को एकजुट करने का प्रयास करता है।
एकीकृत क्षेत्र सिद्धांत के लिए प्रतिनिधित्वात्मक ढांचे को विस्तारित करने के कई तरीके हैं जिन पर आइंस्टीन और अन्य शोधकर्ताओं ने विचार किया है। सामान्य तौर पर ये एक्सटेंशन दो विकल्पों पर आधारित होते हैं।[11]पहला विकल्प मूल सूत्रीकरण पर लगाई गई शर्तों को शिथिल करने पर आधारित है, और दूसरा सिद्धांत में अन्य गणितीय वस्तुओं को शामिल करने पर आधारित है।[11] पहले विकल्प का उदाहरण उच्च-आयामी अभ्यावेदन पर विचार करके चार-आयामी स्थान-समय के प्रतिबंधों को शिथिल कर रहा है।[11] इसका उपयोग कलुजा-क्लेन थ्योरी में किया जाता है। दूसरे के लिए, सबसे प्रमुख उदाहरण affine कनेक्शन की अवधारणा से उत्पन्न होता है जिसे मुख्य रूप से Tullio Levi-Civita और Hermann Weyl के काम के माध्यम से सामान्य सापेक्षता में पेश किया गया था।[11]
क्वांटम क्षेत्र सिद्धांत के आगे के विकास ने एकीकृत क्षेत्र सिद्धांत की खोज के फोकस को क्लासिकल से क्वांटम विवरण में बदल दिया। उसके कारण, कई सैद्धांतिक भौतिकविदों ने शास्त्रीय एकीकृत क्षेत्र सिद्धांत की तलाश छोड़ दी।[11]क्वांटम क्षेत्र सिद्धांत में दो अन्य मूलभूत अंतःक्रियाओं का एकीकरण शामिल होगा, मजबूत परमाणु बल और कमजोर परमाणु बल जो उपपरमाण्विक स्तर पर कार्य करते हैं।[12][13]
यह भी देखें
- आपेक्षिक तरंग समीकरण
- क्वांटम क्षेत्र सिद्धांत
- शास्त्रीय एकीकृत क्षेत्र सिद्धांत
- सामान्य सापेक्षता में परिवर्तनशील तरीके
- हिग्स फील्ड (शास्त्रीय)
- लैग्रेंजियन (क्षेत्र सिद्धांत)
- हैमिल्टनियन क्षेत्र सिद्धांत
- सहसंयोजक हैमिल्टनियन क्षेत्र सिद्धांत
टिप्पणियाँ
- ↑ This is contingent on the correct choice of gauge. φ and A are not uniquely determined by ρ and J; rather, they are only determined up to some scalar function f(r, t) known as the gauge. The retarded potential formalism requires one to choose the Lorenz gauge.
- ↑ This is equivalent to choosing units of distance and time as light-seconds and seconds or light-years and years. Choosing c = 1 allows us to simplify the equations. For instance, E = mc2 reduces to E = m (since c2 = 1, without keeping track of units). This reduces complexity of the expressions while keeping focus on the underlying principles. This "trick" must be taken into account when performing actual numerical calculations.
संदर्भ
उद्धरण
- ↑ 1.0 1.1 1.2 Kleppner, David; Kolenkow, Robert. An Introduction to Mechanics. p. 85.
- ↑ Griffiths, David. Introduction to Electrodynamics (3rd ed.). p. 326.
- ↑ Wangsness, Roald. Electromagnetic Fields (2nd ed.). p. 469.
- ↑ James MacCullagh (1839) An essay toward a dynamical theory of crystalline reflection and refraction, Transactions, Royal Irish Academy 21
- ↑ "Bianchi Identities".
- ↑ Kaluza, Theodor (1921). "Zum Unitätsproblem in der Physik". Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.): 966–972. Bibcode:1921SPAW.......966K.
- ↑ Weyl, H. (1918). "Gravitation und Elektrizität". Sitz. Preuss. Akad. Wiss.: 465.
- ↑ Eddington, A. S. (1924). The Mathematical Theory of Relativity, 2nd ed. Cambridge Univ. Press.
- ↑ Mie, G. (1912). "Grundlagen einer Theorie der Materie". Ann. Phys. 37 (3): 511–534. Bibcode:1912AnP...342..511M. doi:10.1002/andp.19123420306.
- ↑ Reichenbächer, E. (1917). "Grundzüge zu einer Theorie der Elektrizität und der Gravitation". Ann. Phys. 52 (2): 134–173. Bibcode:1917AnP...357..134R. doi:10.1002/andp.19173570203.
- ↑ 11.0 11.1 11.2 11.3 11.4 11.5 11.6 Sauer, Tilman (May 2014), "Einstein's Unified Field Theory Program", in Janssen, Michel; Lehner, Christoph (eds.), The Cambridge Companion to Einstein, Cambridge University Press, ISBN 9781139024525
- ↑ Gadzirayi Nyambuya, Golden (October 2007). "Unified Field Theory – Paper I, Gravitational, Electromagnetic, Weak & the Strong Force" (PDF). Apeiron. 14 (4): 321. Retrieved 30 December 2017.
- ↑ De Boer, W. (1994). "Grand unified theories and supersymmetry in particle physics and cosmology" (PDF). Progress in Particle and Nuclear Physics. 33: 201–301. arXiv:hep-ph/9402266. Bibcode:1994PrPNP..33..201D. doi:10.1016/0146-6410(94)90045-0. S2CID 119353300. Retrieved 30 December 2017.
स्रोत
- Truesdell, C.; Toupin, R.A. (1960). "The Classical Field Theories". In Flügge, Siegfried (ed.). शास्त्रीय यांत्रिकी और क्षेत्र सिद्धांत के सिद्धांत. Handbuch der Physik (Encyclopedia of Physics). Vol. III/1. Berlin–Heidelberg–New York: Springer-Verlag. pp. 226–793. Zbl 0118.39702.
बाहरी कड़ियाँ
- Thidé, Bo. "Electromagnetic Field Theory" (PDF). Archived from the original (PDF) on September 17, 2003. Retrieved February 14, 2006.
- Carroll, Sean M. (1997). "Lecture Notes on General Relativity". arXiv:gr-qc/9712019. Bibcode:1997gr.qc....12019C.
{{cite journal}}
: Cite journal requires|journal=
(help) - Binney, James J. "Lecture Notes on Classical Fields" (PDF). Retrieved April 30, 2007.
- Sardanashvily, G. (November 2008). "Advanced Classical Field Theory". International Journal of Geometric Methods in Modern Physics. 5 (7): 1163–1189. arXiv:0811.0331. Bibcode:2008IJGMM..05.1163S. doi:10.1142/S0219887808003247. ISBN 978-981-283-895-7. S2CID 13884729.