लीजेंड्रे वेवलेट
कार्यात्मक विश्लेषण में, लेजेंड्रे बहुपदों से प्राप्त जटिल रूप से समर्थित तरंगिकाओं को लेजेंड्रे तरंगिकाएं या गोलाकार आवर्ती तरंगिकाएं कहा जाता है।[1] लीजेंड्रे फ़ंक्शंस के व्यापक अनुप्रयोग हैं जिनमें गोलाकार समन्वय प्रणाली उपयुक्त है।[2][3][4] कई तरंगों की प्रकार इन आवर्ती गोलाकार तरंगों का वर्णन करने के लिए कोई उचित विश्लेषणात्मक सूत्र नहीं है। लीजेंड्रे बहुवैकल्पिक विश्लेषण से जुड़ा निम्नपरक फ़िल्टर सीमित आवेग प्रतिक्रिया (एफआईआर) फ़िल्टर है।
अधिकांश अनुप्रयोगों में एफआईआर फिल्टर से जुड़े वेवलेट्स को आमतौर पर पसंद किया जाता है।[3]एक अतिरिक्त आकर्षक विशेषता यह है कि लीजेंड्रे फिल्टर रैखिक चरण एफआईआर (यानी रैखिक चरण फिल्टर से जुड़े बहुविकल्पी विश्लेषण) हैं। ये वेवलेट्स MATLAB (वेवलेट टूलबॉक्स) पर लागू किए गए हैं। हालांकि ठोस रूप से समर्थित वेवलेट होने के कारण, लेगडीएन ऑर्थोगोनल नहीं हैं (लेकिन एन = 1 के लिए)।[5]
लेजेंड्रे मल्टीरिज़ॉल्यूशन फ़िल्टर
एसोसिएटेड लेजेंड्रे बहुपद गोलाकार हार्मोनिक्स के कोलैटिट्यूडिनल भाग हैं जो गोलाकार ध्रुवीय निर्देशांक में लाप्लास के समीकरण के सभी पृथक्करणों के लिए आम हैं।[2] समाधान का रेडियल भाग एक क्षमता से दूसरे में भिन्न होता है, लेकिन हार्मोनिक्स हमेशा समान होते हैं और गोलाकार समरूपता का परिणाम होते हैं। गोलाकार हार्मोनिक्स लीजेंड्रे के समाधान हैं -ऑर्डर अंतर समीकरण, एन पूर्णांक:
चौरसाई फिल्टर को परिभाषित करने के लिए बहुपद का उपयोग किया जा सकता है एक बहुविकल्पी विश्लेषण (एमआरए) का।[6] चूंकि MRA के लिए उपयुक्त सीमा शर्तें हैं और , MRA के स्मूथिंग फिल्टर को परिभाषित किया जा सकता है ताकि लो-पास का परिमाण लीजेंड्रे बहुपदों के अनुसार संबद्ध किया जा सकता है:
लीजेन्ड्रे एमआरए के लिए फिल्टर ट्रांसफर फंक्शन के उदाहरण चित्र 1 में दिखाए गए हैं उम्मीद के मुताबिक फ़िल्टर एच के लिए एक कम-पास व्यवहार प्रदर्शित किया जाता है। भीतर शून्य की संख्या लीजेंड्रे बहुपद की घात के बराबर है। इसलिए, आवृत्ति के साथ साइड-लॉब्स का धड़ल्ले से बोलना पैरामीटर द्वारा आसानी से नियंत्रित किया जाता है .
लो-पास फिल्टर ट्रांसफर फंक्शन किसके द्वारा दिया जाता है
हाई-पास एनालिसिस फिल्टर का ट्रांसफर फंक्शन द्विघात दर्पण फ़िल्टर स्थिति के अनुसार चुना जाता है,[6][7] उपज:
वास्तव में, और , आशा के अनुसार।
लेजेंड्रे मल्टीरिज़ॉल्यूशन फ़िल्टर गुणांक
ट्रांसफर फ़ंक्शन को ठीक से समायोजित करने के लिए एक उपयुक्त चरण असाइनमेंट किया जाता है रूप को
फ़िल्टर गुणांक द्वारा दिया गया है:
जिससे समरूपता:
अनुसरण करता है। बस हैं गैर-शून्य फ़िल्टर गुणांक चालू , ताकि लीजेंड्रे वेवलेट्स को हर विषम पूर्णांक के लिए कॉम्पैक्ट सपोर्ट मिले .
- टेबल I - स्मूथिंग लीजेंड्रे एफआईआर फिल्टर गुणांक ( तरंगिका क्रम है।)
- नायब माइनस सिग्नल को दबाया जा सकता है।
== लीजेंड्रे वेवलेट्स == का MATLAB कार्यान्वयन
लीजेंड्रे वेवलेट्स को MATLAB वेवलेट टूलबॉक्स में आसानी से लोड किया जा सकता है- लीजेंड्रे वेवलेट ट्रांसफॉर्म की गणना की अनुमति देने के लिए एम-फाइलें, विवरण और फिल्टर (फ्रीवेयर) उपलब्ध हैं। परिमित समर्थन चौड़ाई लीजेंड्रे परिवार को लेगड (संक्षिप्त नाम) द्वारा दर्शाया गया है। वेवलेट्स: 'लेगडीएन'। लेगडीएन परिवार में पैरामीटर एन के अनुसार पाया जाता है (एमआरए फिल्टर की लंबाई)।
लेजेंड्रे वेवलेट्स को पुनरावृत्त प्रक्रिया (कैस्केड एल्गोरिदम) द्वारा कम-पास पुनर्निर्माण फिल्टर से प्राप्त किया जा सकता है। वेवलेट में कॉम्पैक्ट सपोर्ट है और परिमित आवेग प्रतिक्रिया एएमआर फिल्टर (एफआईआर) का उपयोग किया जाता है (तालिका 1)। लीजेंड्रे के परिवार की पहली वेवलेट बिल्कुल प्रसिद्ध उसकी तरंगिका है। चित्रा 2 एक उभरता हुआ पैटर्न दिखाता है जो उत्तरोत्तर तरंगिका के आकार जैसा दिखता है।
MATLAB के wavemenu कमांड का उपयोग करके लीजेंड्रे वेवलेट आकार की कल्पना की जा सकती है। चित्रा 3 MATLAB का उपयोग करके प्रदर्शित लेगडी 8 वेवलेट दिखाता है। लीजेंड्रे पॉलीनॉमियल्स भी विंडोज़ परिवारों से जुड़े हैं।[8]
लीजेंड्रे वेवलेट पैकेट
लीजेंड्रे वेवलेट्स से प्राप्त वेवलेट पैकेट (डब्ल्यूपी) सिस्टम भी आसानी से पूरा किया जा सकता है। चित्र 5 लेगडी2 से प्राप्त WP कार्यों को दिखाता है।
संदर्भ
- ↑ Lira et al
- ↑ 2.0 2.1 Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. Zwillinger, Daniel; Moll, Victor Hugo (eds.). इंटीग्रल्स, सीरीज़ और उत्पादों की तालिका (in English). Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. ISBN 978-0-12-384933-5. LCCN 2014010276.
- ↑ 3.0 3.1 Colomer and Colomer
- ↑ Ramm and Zaslavsky
- ↑ Herley and Vetterli
- ↑ 6.0 6.1 Mallat
- ↑ Vetterli and Herley
- ↑ Jaskula
ग्रन्थसूची
- M.M.S. Lira, H.M. de Oliveira, M.A. Carvalho Jr, R.M.C.Souza, Compactly Supported Wavelets Derived from Legendre Polynomials: Spherical Harmonic Wavelets, In: Computational Methods in Circuits and Systems Applications, N.E. Mastorakis, I.A. Stahopulos, C. Manikopoulos, G.E. Antoniou, V.M. Mladenov, I.F. Gonos Eds., WSEAS press, pp. 211–215, 2003. ISBN 960-8052-88-2. Available at ee.ufpe.br
- A. A. Colomer and A. A. Colomer, Adaptive ECG Data Compression Using Discrete Legendre Transform, Digital Signal Processing, 7, 1997, pp. 222–228.
- A.G. Ramm, A.I. Zaslavsky, X-Ray Transform, the Legendre Transform, and Envelopes, J. of Math. Analysis and Appl., 183, pp. 528–546, 1994.
- C. Herley, M. Vetterli, Orthogonalization of Compactly Supported Wavelet Bases, IEEE Digital Signal Process. Workshop, 13-16 Sep., pp. 1.7.1-1.7.2, 1992.
- S. Mallat, A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, July pp. 674–693, 1989.
- M. Vetterli, C. Herly, Wavelets and Filter Banks: Theory and Design, IEEE Trans. on Acoustics, Speech, and Signal Processing, 40, 9, p. 2207, 1992.
- M. Jaskula, New Windows Family Based on Modified Legendre Polynomials, IEEE Instrum. And Measurement Technol. Conf., Anchorage, AK, May, 2002, pp. 553–556.