मैट्रिक्स कैलकुलस
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
गणित में, आव्यूह मुख्यतः कैलकुलस में विशेष रूप से आव्यूह (गणित) के रिक्त स्थान पर बहुभिन्नरूपी कैलकुलस की गणना करने के लिए विशेष संकेतन के रूप में उपयोग किया जाता है। यह कई वैरियेबल्स (गणित) के संबंध में एकल फ़ंक्शन (गणित) के विभिन्न आंशिक डेरिवेटिव, और एकल चरों के संबंध में बहुभिन्नरूपी फ़ंक्शन को वेक्टर (गणित और भौतिकी) और आव्यूह में एकत्रित करता है जिसे एकल रूप में माना जा सकता है। यह संचालन को बहुत सरल कर देता है जैसे कि बहुभिन्नरूपी फ़ंक्शन का अधिकतम या न्यूनतम पता लगाने और अंतर समीकरण की प्रणाली को हल करने में सहायक हैं। यहाँ प्रयुक्त अंकन सामान्यतः सांख्यिकी और अभियांत्रिकी में उपयोग किया जाता है, जबकि भौतिकी में टेन्सर इंडेक्स संकेतन को प्राथमिकता दी जाती है।
दो प्रतिस्पर्धी नोटेशनल कन्वेंशन आव्यूह कैलकुलस के क्षेत्र को दो अलग-अलग समूहों में विभाजित करते हैं। इस प्रकार दो समूहों को इस बात से अलग किया जाता है कि क्या वे पंक्ति और स्तंभ वैक्टर के रूप में वेक्टर के संबंध में स्केलर (गणित) के व्युत्पन्न लिखते हैं। ये दोनों संयोजन तभी संभव हैं जब इनकी सरल धारणा बनाई जाती है जैसे कि आव्यूह के साथ संयुक्त होने पर वैक्टर को स्तंभ वैक्टर (पंक्ति वैक्टर के अतिरिक्त) के रूप में माना जाना चाहिए। एकल सम्मेलन एकल क्षेत्र में कुछ सीमा तक मानक हो सकता है जो सामान्यतः आव्यूह कैलकुलस (जैसे अर्थमिति, सांख्यिकी, अनुमान सिद्धांत और यंत्र अधिगम ) का उपयोग करता है। चूंकि किसी दिए गए क्षेत्र के भीतर भी विभिन्न लेखकों को प्रतिस्पर्धी सम्मेलनों का उपयोग करते हुए पाया जा सकता है। इस प्रकार दोनों समूहों के लेखक अधिकांशतः लिखते हैं कि उनका विशिष्ट संयोजन मानक किया गया था। विभिन्न लेखकों के परिणामों को ध्यान से सत्यापित किए बिना कि संगत नोटेशन का उपयोग किया गया है, गंभीर गलतियाँ हो सकती हैं। इन दो सम्मेलनों की परिभाषाएँ और उनके बीच तुलना लेआउट सम्मेलनों के अनुभाग में एकत्र की जाती है।
सीमा
आव्यूह गणना कई अलग-अलग नोटेशन को संदर्भित करता है जो स्वतंत्र चर के प्रत्येक घटक के संबंध में निर्भर चर के प्रत्येक घटक के व्युत्पन्न एकत्र करने के लिए आव्यूह और वैक्टर का उपयोग करता है। सामान्यतः स्वतंत्र वैरियेबल अदिश, सदिश या आव्यूह किसी भी प्रकार का हो सकता है जबकि आश्रित चर इनमें से कोई भी हो सकता है। इस प्रकार शब्द के व्यापक अर्थ का उपयोग करते हुए, प्रत्येक को अलग स्थितियों के नियमों के अलग समुच्चयों या अलग कलन की ओर ले जाती हैं। आव्यूह संकेतन संगठित विधियों से कई डेरिवेटिव को एकत्रित करने की सुविधाजनक विधि है।
इस प्रकार पहले उदाहरण के रूप में, वेक्टर कैलकुलस से ग्रेडियेंट पर विचार करना आवश्यक होता हैं। इस प्रकार तीन स्वतंत्र चरों के अदिश फलन के लिए, , ग्रेडिएंट वेक्टर समीकरण द्वारा दिया जाता है
- ,
जहाँ में इकाई वेक्टर का प्रतिनिधित्व करता है, इस प्रकार के लिए सीमा . इस प्रकार के सामान्यीकृत व्युत्पन्न को वेक्टर के संबंध में स्केलर, f के व्युत्पन्न के रूप में देखा जा सकता है, , और इसका परिणाम वेक्टर रूप में सरलता से एकत्र किया जा सकता है।
अधिक जटिल उदाहरणों में आव्यूह के संबंध में स्केलर फ़ंक्शन का व्युत्पन्न सम्मिलित है, जिसे आव्यूह के साथ डेरिवेटिव्स के रूप में जाना जाता है, जो परिणामी आव्यूह में संबंधित स्थिति में प्रत्येक आव्यूह तत्व के संबंध में व्युत्पन्न एकत्र करता है। उस स्थिति में स्केलर आव्यूह में प्रत्येक स्वतंत्र चर का कार्य होना चाहिए। अन्य उदाहरण के रूप में, यदि हमारे पास स्वतंत्र चर के निर्भर चर, या कार्यों का n-वेक्टर है, तो हम स्वतंत्र वेक्टर के संबंध में निर्भर वेक्टर के व्युत्पन्न पर विचार कर सकते हैं। परिणाम m × n आव्यूह में एकत्र किया जा सकता है जिसमें सभी संभावित व्युत्पन्न संयोजन सम्मिलित हैं।
स्केलर, वैक्टर और आव्यूह का उपयोग करने की कुल नौ संभावनाएँ हैं। ध्यान दें कि जैसा कि हम प्रत्येक स्वतंत्र और आश्रित चर में घटकों की उच्च संख्या पर विचार करते हैं, हम बहुत बड़ी संख्या में संभावनाओं के साथ रह सकते हैं। छह प्रकार के डेरिवेटिव जिन्हें आव्यूह रूप में सबसे अच्छी तरह से व्यवस्थित किया जा सकता है, उन्हें निम्न तालिका में एकत्र किया गया है।[1]
प्रकार | स्केलर | वैक्टर | आव्यूह |
---|---|---|---|
स्केलर | |||
वैक्टर | |||
आव्यूह |
यहां हमने आव्यूह शब्द का उपयोग इसके सबसे सामान्य अर्थ में किया है, यह पहचानते हुए कि वैक्टर और स्केलर क्रमशः कॉलम और पंक्ति के साथ आव्यूह का उपयोग होता हैं। इसके अतिरिक्त हमने आव्यूह के लिए बोल्ड अक्षरों और बोल्ड कैपिटल अक्षरों को इंगित करने के लिए बोल्ड अक्षरों का उपयोग किया है। इस संकेतन का प्रयोग सर्वत्र किया जाता है।
ध्यान दें कि हम आव्यूह के संबंध में सदिश के व्युत्पन्न के बारे में भी बात कर सकते हैं, या हमारी सूंची में किसी भी अन्य अपूर्ण सेल्स के बारे में बात कर सकते हैं। चूंकि ये डेरिवेटिव सबसे स्वाभाविक रूप से 2 से अधिक रैंक के टेन्सर में व्यवस्थित होते हैं, जिससे कि वे आव्यूह में बड़े भाग से फिट नही होता हैं। इस प्रकार निम्नलिखित तीन भागों में हम इनमें से प्रत्येक अवकलज को परिभाषित करेंगे और उन्हें गणित की अन्य शाखाओं से संबंधित रहते हैं। इस प्रकार अधिक विस्तृत सूंची के लिए लेआउट कन्वेंशन अनुभाग को देखें।
अन्य अवकलज से संबंध
गणना हेतु आंशिक डेरिवेटिव का ट्रैक रखने के लिए आव्यूह डेरिवेटिव सुविधाजनक संकेतन है। वैक्टर के संबंध में डेरिवेटिव लेने के लिए कार्यात्मक विश्लेषण की सेटिंग में फ्रेचेट की व्युत्पन्न मानक विधि है। इस स्थिति में कि आव्यूह का आव्यूह फ़ंक्शन फ़्रेचेट अलग-अलग है, दो डेरिवेटिव नोटेशन के अनुवाद के लिए सहमत होंगे। जैसा कि सामान्य रूप से आंशिक डेरिवेटिव के स्थिति में होता है, कुछ सूत्र कमजोर विश्लेषणात्मक स्थितियों के अनुसार डेरिवेटिव के अस्तित्व की तुलना में अनुमानित रैखिक मानचित्रण के रूप में विस्तारित हो सकते हैं।
उपयोग
इष्टतम स्टोचैस्टिक अनुमानक प्राप्त करने के लिए आव्यूह कैलकुलस का उपयोग किया जाता है, जिसमें अधिकांशतः लैग्रेंज गुणक का उपयोग सम्मिलित होता है। इसमें निम्न की व्युत्पत्ति सम्मिलित है:
- कलमन फिल्टर
- विनीज़ फ़िल्टर
- अपेक्षा-अधिकतमीकरण एल्गोरिथ्म, गाऊसी मिश्रण या गाऊसी मिश्रण के लिए अपेक्षा-अधिकतमकरण एल्गोरिथ्म का उपयोग होता हैं।
- ढतला हुआ क्रम
नोटेशन
बड़ी संख्या में चर का प्रतिनिधित्व करने के लिए एकल चर का उपयोग करते हुए, आव्यूह संकेतन का पूरा लाभ उठाने के लिए अनुभागों में प्रस्तुत वेक्टर और आव्यूह डेरिवेटिव का उपयोग होता हैं। इसके पश्चात हम स्केलर, वैक्टर और आव्यूह को उनके टाइपफेस द्वारा अलग करते हैं। हम m (n, m) को n पंक्तियों और m कॉलम के साथ वास्तविक संख्या n × m आव्यूह अंकन स्थान को इंगित करते हैं। इस प्रकार के आव्यूह को बोल्ड कैपिटल लेटर्स: 'A', 'X', 'Y', आदि का उपयोग करके दर्शाया जाता हैं। इस प्रकार m (n, 1) के तत्व, जो कॉलम वेक्टर है, को बोल्डफेस लोअरकेस लेटर के साथ दर्शाया गया है: ' a', 'X', 'Y', आदि। इस प्रकार m (1,1) का तत्व स्केलर है, जिसे लोअरकेस इटैलिक टाइपफेस के साथ दर्शाया गया है: a, t, X, आदि। इसी तरह 'x'T आव्यूह खिसकाना को दर्शाता है, जो tr(X) रूप में ट्रेस (रैखिक बीजगणित) किया जाता है, और det(X) या X का फंक्शन है। जिसके लिए सभी फंक्शन्स को अवकलनीयता वर्ग में C1 के रूप में माना जाता है जब तक अन्यथा नोट न किया गया हो। सामान्यतः वर्णमाला के पहले भाग (ए, बी, सी, ...) के अक्षरों का उपयोग स्थिरांक को दर्शाने के लिए किया जाएगा, और दूसरी छमाही (टी, X, Y, ...) से चर को दर्शाने के लिए आवश्यक हैं।
नोट: जैसा कि ऊपर उल्लेख किया गया है, वेक्टर और आव्यूह में आंशिक डेरिवेटिव की प्रणालियों को निर्धारित करने के लिए प्रतिस्पर्धी अंकन हैं, और अभी तक कोई मानक उभरता हुआ प्रतीत नहीं होता है। चर्चा को अत्यधिक जटिल बनाने से बचने के लिए, अगले दो परिचयात्मक खंड केवल सुविधा के प्रयोजनों के लिए लेआउट सम्मेलनों का उपयोग करते हैं। उनके बाद का खंड लेआउट सम्मेलनों पर अधिक विस्तार से चर्चा करता है। निम्नलिखित को समझना महत्वपूर्ण है:
- गणक लेआउट और भाजक लेआउट शब्दों के उपयोग के अतिरिक्त, वास्तव में दो से अधिक संभावित नोटेशनल विकल्प सम्मिलित हैं। इसका कारण यह है कि अदिश-दर-सदिश, सदिश-दर-अदिश, सदिश-दर-सदिश, और अदिश-दर-सदिश के लिए अंश बनाम भाजक (या कुछ स्थितियों में, अंश बनाम मिश्रित) का चुनाव स्वतंत्र रूप से किया जा सकता है। आव्यूह डेरिवेटिव, और कई लेखक विभिन्न विधियों से अपने लेआउट विकल्पों को मिलाते हैं और मेल खाते हैं।
- नीचे दिए गए परिचयात्मक खंडों में अंश लेआउट का विकल्प यह नहीं दर्शाता है कि यह दाये या इसका उत्तम विकल्प है। विभिन्न लेआउट प्रकारों के लाभ और हानि दोनों रहते हैं। इस प्रकार अलग-अलग लेआउट में लिखे गए फ़ार्मुलों को संयोजित करने से गंभीर गलतियाँ हो सकती हैं, और त्रुटियों से बचने के लिए लेआउट से दूसरे में परिवर्तित करने के लिए देखभाल की आवश्यकता होती है। जिसके परिणामस्वरूप, सूत्रों के साथ कार्य करते समय सबसे अच्छी नीति यह है कि सभी स्थितियों में समान लेआउट का उपयोग करने का प्रयास करने के अतिरिक्त किसी भी लेआउट का उपयोग किया जाए और उसके साथ निरंतरता बनाए रखी जाती हैं।
विकल्प
इसके आइंस्टीन सारांश सम्मेलन के साथ टेंसर इंडेक्स नोटेशन आव्यूह कैलकुस के समान ही है, सिवाय इसके कि समय में केवल ही घटक लिखता है। इसका लाभ यह है कि मनमाने ढंग से उच्च कोटि के टेंसरों में सरलता से हेरफेर किया जा सकता है, जबकि दो से अधिक रैंक के टेंसर आव्यूह संकेतन के साथ अधिक बोझिल होते हैं। इस प्रकार एकल-चर आव्यूह संकेतन के उपयोग के बिना इस अंकन में यहां सभी कार्य किए जा सकते हैं। चूंकि, आकलन सिद्धांत और अनुप्रयुक्त गणित के अन्य क्षेत्रों में कई समस्याओं के परिणामस्वरूप उन क्षेत्रों में आव्यूह कैलकुलस के पक्ष में इंगित करते हुए ठीक से ट्रैक रखने के लिए बहुत सारे सूचकांक होंगे। इसके अतिरिक्त, आइंस्टीन योग विशिष्ट तत्व संकेतन के विकल्प के रूप में यहां प्रस्तुत पहचानों को प्रमाणित करने में बहुत उपयोगी हो सकता है (रिक्की कैलकुलस डिफरेंशिएशन पर अनुभाग देखें), जो स्पष्ट योगों के चारों ओर ले जाने पर हो सकता है। ध्यान दें कि आव्यूह को कोटि दो का टेन्सर माना जा सकता है।
वैक्टर के साथ डेरिवेटिव्स
क्योंकि सदिश केवल स्तंभ वाले आव्यूह होते हैं, सरलतम आव्यूह व्युत्पन्न सदिश अवकलज होते हैं।
यहां विकसित अंकन यूक्लिडियन समतल 'आर' के साथ n-वैक्टरों के समतल एमn (n, 1) की पहचान करके वेक्टर कैलकुस के सामान्य संचालन को समायोजित कर सकते हैं।, और अदिश M(1,1) की पहचान 'R' से की जाती है। सदिश कलन से संबंधित अवधारणा प्रत्येक उपधारा के अंत में इंगित की गई है।
'टिप्पणी': इस खंड में चर्चा शैक्षणिक उद्देश्यों के लिए #लेआउट सम्मेलनों को मानती है। कुछ लेखक विभिन्न सम्मेलनों का उपयोग करते हैं। लेआउट सम्मेलनों पर अनुभाग इस मुद्दे पर अधिक विस्तार से चर्चा करता है। नीचे दी गई पहचानों को उन रूपों में प्रस्तुत किया जाता है जिनका उपयोग सभी सामान्य लेआउट सम्मेलनों के संयोजन में किया जा सकता है।
वेक्टर-बाय-स्केलर
एक यूक्लिडियन वेक्टर का व्युत्पन्न , अदिश (गणित) द्वारा x को (लेआउट परिपाटियों में) के रूप में लिखा जाता है
सदिश कलन में अदिश x के संबंध में सदिश y के व्युत्पन्न को सदिश y के स्पर्शरेखा सदिश के रूप में जाना जाता है, . यहाँ ध्यान दें कि y: R1 → आरमी.
'उदाहरण' इसके सरल उदाहरणों में यूक्लिडियन समतल में वेग वेक्टर सम्मिलित है, जो स्थिति (वेक्टर) वेक्टर (समय के कार्य के रूप में माना जाता है) का स्पर्शरेखा वेक्टर है। साथ ही, त्वरण वेग का स्पर्शरेखा सदिश है।
स्केलर-बाय-वेक्टर
सदिश द्वारा अदिश (गणित) y का व्युत्पन्न , लिखा है (#लेआउट सम्मेलनों में) के रूप में
सदिश कलन में, समतल 'R' में अदिश क्षेत्र f की प्रवणताn (जिसके स्वतंत्र निर्देशांक 'x' के घटक हैं) सदिश द्वारा अदिश के व्युत्पन्न का स्थानान्तरण है।
उदाहरण के लिए, भौतिकी में, विद्युत क्षेत्र विद्युत क्षमता का ऋणात्मक सदिश प्रवणता है।
स्पेस वेक्टर 'x' के स्केलर फंक्शन f('x') का दिशात्मक व्युत्पन्न यूनिट वेक्टर 'u' (इस स्थिति में कॉलम वेक्टर के रूप में दर्शाया गया है) की दिशा में ग्रेडिएंट का उपयोग करके परिभाषित किया गया है।
एक वेक्टर के संबंध में स्केलर के व्युत्पन्न के लिए परिभाषित नोटेशन का उपयोग करके हम दिशात्मक व्युत्पन्न को फिर से लिख सकते हैं उत्पाद नियमों और श्रृंखला नियमों को प्रमाणित करते समय इस प्रकार का अंकन अच्छा होगा जो स्केलर डेरिवेटिव के लिए हम परिचित हैं।
वेक्टर-दर-वेक्टर
पिछले दो स्थितियों में से प्रत्येक को वेक्टर के संबंध में वेक्टर के व्युत्पन्न के आवेदन के रूप में माना जा सकता है, आकार के वेक्टर का उचित उपयोग करके। इसी तरह हम पाएंगे कि आव्यूह वाले डेरिवेटिव समान तरीके से वैक्टर से जुड़े डेरिवेटिव में कम हो जाएंगे।
सदिश फलन का व्युत्पन्न (एक सदिश जिसके घटक फलन हैं) , इनपुट वेक्टर के संबंध में, , लिखा है (#लेआउट सम्मेलनों में) के रूप में
सदिश कैलकुलस में, सदिश x के संबंध में सदिश फलन y का व्युत्पन्न, जिसके घटक स्थान का प्रतिनिधित्व करते हैं, पुशफॉरवर्ड (डिफरेंशियल) या पुशफॉरवर्ड (या डिफरेंशियल) या जैकबियन आव्यूह के रूप में जाना जाता है।
R में वेक्टर v के संबंध में वेक्टर फ़ंक्शन f के साथ पुशफ़ॉरवर्डn द्वारा दिया गया है
आव्यूह के साथ डेरिवेटिव्स
आव्यूह के साथ दो प्रकार के डेरिवेटिव हैं जिन्हें समान आकार के आव्यूह में व्यवस्थित किया जा सकता है। ये अदिश द्वारा आव्यूह के व्युत्पन्न और आव्यूह द्वारा अदिश के व्युत्पन्न हैं। ये लागू math के कई क्षेत्रों में पाई जाने वाली न्यूनीकरण समस्याओं में उपयोगी हो सकते हैं और सदिशों के लिए उनके अनुरूपों के बाद क्रमशः स्पर्शरेखा आव्यूह और ढाल आव्यूह नामों को अपनाया है।
नोट: इस खंड में चर्चा शैक्षणिक उद्देश्यों के लिए #लेआउट सम्मेलनों को मानती है। कुछ लेखक विभिन्न सम्मेलनों का उपयोग करते हैं। #लेआउट सम्मेलनों पर अनुभाग इस मुद्दे पर अधिक विस्तार से चर्चा करता है। नीचे दी गई पहचानों को उन रूपों में प्रस्तुत किया जाता है जिनका उपयोग सभी सामान्य लेआउट सम्मेलनों के संयोजन में किया जा सकता है।
आव्यूह-बाय-स्केलर
एक अदिश x द्वारा आव्यूह फ़ंक्शन Y के व्युत्पन्न को स्पर्शरेखा आव्यूह के रूप में जाना जाता है और इसे (#लेआउट सम्मेलनों में) द्वारा दिया जाता है
अदिश-दर-आव्यूह
आव्यूह 'X' के संबंध में स्वतंत्र चर के पी × क्यू आव्यूह 'X' के स्केलर Y फ़ंक्शन का व्युत्पन्न (#लेआउट सम्मेलनों में) द्वारा दिया जाता है
आव्यूह के स्केलर फ़ंक्शंस के महत्वपूर्ण उदाहरणों में आव्यूह का ट्रेस (रैखिक बीजगणित) और निर्धारक सम्मिलित हैं।
वेक्टर कलन के अनुरूप इस व्युत्पन्न को अधिकांशतः निम्नलिखित के रूप में लिखा जाता है।
सदिश कलन के अनुरूप भी, आव्यूह Y की दिशा में आव्यूह X के अदिश f(X) का दिशात्मक व्युत्पन्न द्वारा दिया जाता है
यह ग्रेडिएंट आव्यूह है, विशेष रूप से, जो अनुमान सिद्धांत में न्यूनीकरण की समस्याओं में कई उपयोग पाता है, विशेष रूप से कलमन फ़िल्टर कलमैन फ़िल्टर एल्गोरिथम की व्युत्पत्ति, जो इस क्षेत्र में बहुत महत्वपूर्ण है।
अन्य आव्यूह डेरिवेटिव
जिन तीन प्रकार के डेरिवेटिव पर विचार नहीं किया गया है, वे वे हैं जिनमें वैक्टर-बाय-आव्यूह, आव्यूह-बाय-वैक्टर और आव्यूह-बाय-आव्यूह सम्मिलित हैं। इन्हें व्यापक रूप से नहीं माना जाता है और संकेतन पर व्यापक रूप से सहमति नहीं है।
लेआउट कन्वेंशन
यह खंड आव्यूह कैलकुलस का लाभ उठाने वाले विभिन्न क्षेत्रों में उपयोग किए जाने वाले सांकेतिक सम्मेलनों के बीच समानता और अंतर पर चर्चा करता है। चूंकि मोटे तौर पर दो सुसंगत परिपाटियां हैं, कुछ लेखकों को दो परिपाटियों को उन रूपों में मिलाना सुविधाजनक लगता है जिनकी चर्चा नीचे की गई है। इस खंड के बाद, समीकरणों को दोनों प्रतिस्पर्धी रूपों में अलग-अलग सूचीबद्ध किया जाएगा।
मूलभूत मुद्दा यह है कि वेक्टर के संबंध में वेक्टर का व्युत्पन्न, अर्ताथ , अधिकांशतः दो प्रतिस्पर्धी तरीकों से लिखा जाता है। यदि अंश y का आकार m और भाजक x का आकार n है, तो परिणाम को m×n आव्यूह या n×m के रूप में रखा जा सकता है। आव्यूह, अर्ताथ y के तत्व स्तंभों में रखे गए हैं और x के तत्व पंक्तियों में रखे गए हैं, या इसके विपरीत। यह निम्नलिखित संभावनाओं की ओर जाता है:
- न्यूमरेटर लेआउट, अर्ताथ y और x के हिसाब से लेआउटटी (अर्थात् x के विपरीत)। इसे कभी-कभी 'जैकोबियन सूत्रीकरण' के रूप में जाना जाता है। यह पिछले उदाहरण में m×n लेआउट से संबंधित है।
- डीनॉमिनेटर लेआउट, अर्ताथ Y के हिसाब से लेआउटT और x (अर्ताथ y के विपरीत)। इसे कभी-कभी 'हेस्सियन सूत्रीकरण' के रूप में जाना जाता है। कुछ लेखक इस लेआउट को जैकोबियन (अंकीय लेआउट) के भेद में ग्रेडिएंट कहते हैं, जो इसका स्थानान्तरण है। (चूंकि, ढाल का अर्थ सामान्यतः व्युत्पन्न होता है लेआउट की परवाह किए बिना।) यह पिछले उदाहरण में n×m लेआउट से संबंधित है।
- कभी-कभी दिखाई देने वाली तीसरी संभावना यह है कि डेरिवेटिव को इस रूप में लिखने पर जोर दिया जाए (अर्थात व्युत्पन्न x के स्थानान्तरण के संबंध में लिया गया है) और अंश लेआउट का पालन करें। इससे यह दावा करना संभव हो जाता है कि आव्यूह को अंश और भाजक दोनों के अनुसार रखा गया है। व्यवहार में यह अंश लेआउट के समान परिणाम उत्पन्न करता है।
ढाल को संभालते समय और विपरीत मामला हमारे पास समान मुद्दे हैं। सुसंगत होने के लिए, हमें निम्नलिखित में से करना चाहिए:
- अगर हम न्यूमरेटर लेआउट चुनते हैं हमें ग्रेडिएंट रखना चाहिए पंक्ति वेक्टर के रूप में, और स्तंभ वेक्टर के रूप में।
- अगर हम डिनॉमिनेटर लेआउट चुनते हैं हमें ग्रेडिएंट रखना चाहिए स्तंभ वेक्टर के रूप में, और पंक्ति वेक्टर के रूप में।
- ऊपर तीसरी संभावना में हम लिखते हैं और और न्यूमरेटर लेआउट का उपयोग करें।
गणित की सभी पाठ्यपुस्तकें और पेपर इस संबंध में सुसंगत नहीं हैं। यही है, कभी-कभी ही किताब या पेपर के भीतर अलग-अलग संदर्भों में अलग-अलग परंपराओं का उपयोग किया जाता है। उदाहरण के लिए, कुछ लोग ग्रेडिएंट्स के लिए डिनोमिनेटर लेआउट चुनते हैं (उन्हें कॉलम वैक्टर के रूप में रखना), किन्तु वेक्टर-बाय-वेक्टर डेरिवेटिव के लिए न्यूमरेटर लेआउट इसी प्रकार, जब स्केलर-बाय-आव्यूह डेरिवेटिव की बात आती है और आव्यूह-बाय-स्केलर डेरिवेटिव फिर Y और XT के अनुसार क्रमशः न्यूमरेटर लेआउट देता है, जबकि सुसंगत भाजक लेआउट Y के अनुसार निर्धारित होता हैT और X. व्यवहार में, चूंकि, के लिए भाजक लेआउट का पालन करना और Y के अनुसार परिणाम देनाटी, संभवतः ही कभी देखा जाता है क्योंकि यह सूत्रों के लिए बनाता है जो स्केलर सूत्रों के अनुरूप नहीं होते हैं। परिणामस्वरूप, निम्नलिखित लेआउट अधिकांशतः पाए जा सकते हैं:
- कंसिसटेंट अंश लेआउट, जो बताता है Y और के अनुसार X के अनुसारटी
- मिश्रित लेआउट, जो बताता है Y और के अनुसार X के अनुसार
- नोटेशन का प्रयोग करें परिणामों के साथ संगत अंश लेआउट के समान।
निम्नलिखित सूत्रों में, हम पाँच संभावित संयोजनों को संभालते हैं और अलग से। हम स्केलर-बाय-स्केलर डेरिवेटिव के स्थितियों को भी संभालते हैं जिसमें मध्यवर्ती वेक्टर या आव्यूह सम्मिलित होता है। (यह उत्पन्न हो सकता है, उदाहरण के लिए, यदि बहु-आयामी पैरामीट्रिक वक्र को स्केलर चर के संदर्भ में परिभाषित किया गया है, और फिर वक्र के स्केलर फ़ंक्शन का व्युत्पन्न उस स्केलर के संबंध में लिया जाता है जो वक्र को पैरामीटर करता है।) प्रत्येक के लिए विभिन्न संयोजनों में, हम अंश-लेआउट और हर-लेआउट परिणाम देते हैं, ऊपर दिए गए स्थितियों को छोड़कर जहां डिनोमिनेटर लेआउट संभवतः ही कभी होता है। आव्यूह से जुड़े स्थितियों में जहां यह समझ में आता है, हम अंश-लेआउट और मिश्रित-लेआउट परिणाम देते हैं। जैसा कि ऊपर उल्लेख किया गया है, ऐसे स्थिति जहां वेक्टर और आव्यूह डिनॉमिनेटर ट्रांसपोज़ नोटेशन में लिखे गए हैं, वे न्यूमरेटर लेआउट के बराबर हैं, जिसमें ट्रांसपोज़ के बिना लिखे गए डिनोमिनेटर हैं।
ध्यान रखें कि विभिन्न लेखक विभिन्न प्रकार के डेरिवेटिव के लिए अंश और भाजक लेआउट के विभिन्न संयोजनों का उपयोग करते हैं, और इस बात की कोई गारंटी नहीं है कि लेखक सभी प्रकार के लिए अंश या भाजक लेआउट का क्रमशः उपयोग करेगा। उस विशेष प्रकार के डेरिवेटिव के लिए उपयोग किए गए लेआउट को निर्धारित करने के लिए स्रोत में उद्धृत सूत्रों के साथ नीचे दिए गए फ़ार्मुलों का मिलान करें, किन्तु सावधान रहें कि यह न मानें कि अन्य प्रकार के डेरिवेटिव आवश्यक रूप से उसी प्रकार के लेआउट का पालन करते हैं।
योग का अधिकतम या न्यूनतम पता लगाने के लिए समुच्चय (वेक्टर या आव्यूह) भाजक के साथ डेरिवेटिव लेते समय, यह ध्यान में रखा जाना चाहिए कि अंश लेआउट का उपयोग करने से ऐसे परिणाम प्राप्त होंगे जो समुच्चय के संबंध में स्थानांतरित किए गए हैं। उदाहरण के लिए, आव्यूह कैलकुलस का उपयोग करके बहुभिन्नरूपी सामान्य वितरण की अधिकतम संभावना का अनुमान लगाने के प्रयास में, यदि डोमेन k×1 कॉलम वेक्टर है, तो अंश लेआउट का उपयोग करने वाला परिणाम 1×k पंक्ति वेक्टर के रूप में होगा। इस प्रकार, या तो परिणामों को अंत में स्थानांतरित किया जाना चाहिए या भाजक लेआउट (या मिश्रित लेआउट) का उपयोग किया जाना चाहिए।
विभिन्न प्रकार के समुच्चय को अन्य प्रकार के समुच्चय के साथ विभेदित करने का परिणाम अदिश Y स्तंभ सदिश y (आकार m×1) आव्यूह Y (आकार m×n) नोटेशन टाईप नोटेशन टाईप नोटेशन टाईप अदिश X अंश अदिश आकार-m कॉलम वेक्टर m×n आव्यूह हर आकार-m पंक्ति वेक्टर कॉलम वेक्टर X (आकार n×1)
अंश आकार-n पंक्ति वेक्टर m×n आव्यूह हर आकार-n स्तंभ वेक्टर n×m आव्यूह आव्यूह X (आकार p × q)
अंश q×p आव्यूह हर p×q आव्यूह
अंश-लेआउट और हर-लेआउट नोटेशन के बीच स्विच करने पर संचालन के परिणाम स्थानांतरित हो जाएंगे।
न्यूमरेटर-लेआउट नोटेशन
अंश-लेआउट संकेतन का उपयोग करते हुए, हमारे पास:[1]
निम्नलिखित परिभाषाएँ केवल अंश-लेआउट संकेतन में प्रदान की जाती हैं:
भाजक-लेआउट संकेतन
भाजक-लेआउट संकेतन का उपयोग करते हुए, हमारे पास:[2]
पहचान
जैसा कि ऊपर उल्लेख किया गया है, सामान्यतः अंश-लेआउट और भाजक-लेआउट नोटेशन के बीच स्विच करने पर संचालन के परिणाम स्थानांतरित हो जाएंगे।
नीचे दी गई सभी सर्वसमिकाओं को समझने में मदद के लिए, सबसे महत्वपूर्ण नियमों को ध्यान में रखें: श्रृंखला नियम, उत्पाद नियम और विभेदन में योग नियम। योग नियम सार्वभौमिक रूप से लागू होता है, और उत्पाद नियम नीचे दिए गए अधिकांश स्थितियों में लागू होता है, बशर्ते कि आव्यूह उत्पादों का क्रम बनाए रखा जाए, क्योंकि आव्यूह उत्पाद क्रमविनिमेय नहीं होते हैं। श्रृंखला नियम कुछ स्थितियों में लागू होता है, किन्तु दुर्भाग्य से आव्यूह-बाय-स्केलर डेरिवेटिव या स्केलर-बाय-आव्यूह डेरिवेटिव में लागू नहीं होता है (बाद वाले स्थिति में, अधिकतम आव्यूह पर लागू ट्रेस (रैखिक बीजगणित) ऑपरेटर सम्मिलित होता है)। इसके बाद के स्थिति में, उत्पाद नियम को सीधे तौर पर लागू नहीं किया जा सकता है, किन्तु अंतर पहचान का उपयोग करके समकक्ष को थोड़ा और कार्य किया जा सकता है।
निम्नलिखित पहचान निम्नलिखित सम्मेलनों को अपनाती हैं:
- स्केलर, ए, बी, सी, डी, और ई के संबंध में स्थिर हैं, और स्केलर, यू, और वी X, 'X', या 'X' में से किसी के कार्य हैं;
- वैक्टर, 'ए', 'बी', 'सी', 'डी', और 'ई' के संबंध में स्थिर हैं, और वैक्टर, 'यू', और 'वी' X में से के कार्य हैं, ' X', या 'X';
- आव्यूह, 'ए', 'बी', 'सी', 'डी', और 'ई' के संबंध में स्थिर हैं, और आव्यूह, 'यू' और 'वी' X, 'X' में से के कार्य हैं ', या 'X'।
वेक्टर-दर-वेक्टर पहचान
इसे सबसे पहले प्रस्तुत किया गया है क्योंकि वेक्टर-बाय-वेक्टर भेदभाव पर लागू होने वाले सभी ऑपरेशन सीधे वेक्टर-बाय-स्केलर या स्केलर-बाय-वेक्टर भेदभाव पर लागू होते हैं, बस अंश में उचित वेक्टर को कम करके या स्केलर में भाजक को कम करके।
पहचान: वेक्टर-बाय-वेक्टर स्थिति अभिव्यक्ति अंश प्रारूप, जैसे y और xT हर प्रारूप, जैसे yT और x a का कार्य नहीं है x A का कार्य नहीं है x A का कार्य नहीं है x a का कार्य नहीं है x,
u = u(x)v = v(x),
a का कार्य नहीं है xv = v(x), u = u(x) A का कार्य नहीं है x,
u = u(x)u = u(x), v = v(x) u = u(x) u = u(x)
स्केलर-बाय-वेक्टर पहचान
मौलिक पहचान मोटी काली रेखा के ऊपर रखी गई है।
पहचान: स्केलर-बाय-वेक्टर स्थिति अभिव्यक्ति अंश प्रारूप,
जैसे xT; परिणाम पंक्ति वेक्टर हैहर प्रारूप,
जैसे by x; परिणाम पंक्ति वेक्टर हैa का कार्य नहीं है x [3] [3] a का कार्य नहीं है x,
u = u(x)u = u(x), v = v(x) u = u(x), v = v(x) u = u(x) u = u(x) u = u(x), v = v(x) अंश प्रारूप में
भाजक प्रारूप में
u = u(x), v = v(x),
A का कार्य नहीं है xअंश प्रारूप में
भाजक प्रारूप में
, the Hessian आव्यूह[4] a का कार्य नहीं है x
A का कार्य नहीं है x
b का कार्य नहीं है xA का कार्य नहीं है x A का कार्य नहीं है x
A सममित हैA का कार्य नहीं है x A का कार्य नहीं है x
A सममित हैa का कार्य नहीं है x,
u = u(x)अंश प्रारूप में
भाजक प्रारूप में
a, b के कार्य नहीं हैंx A, b, C, D, e के कार्य नहीं हैंx a का कार्य नहीं है x Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected [, ;!_#%$&], [a-zA-Z], or [{}|] but "आ" found.in 1:64"): {\displaystyle \frac{\partial \; \|\mathbf{x} - \mathbf{a}\|}{\आंशिक \; \mathbf{x}} = } \mathbf{x} - \mathbf{a}\|}</math>
वेक्टर-बाय-स्केलर पहचान
पहचान: वेक्टर-बाय-स्केलर स्थिति अभिव्यक्ति मौलिक प्रारूप, अर्ताथ y द्वारा, परिणाम कॉलम वेक्टर है
हर प्रारूप, जैसे yT,
परिणाम पंक्ति वेक्टर हैa का कार्य नहीं है x [3] a का कार्य नहीं है x,
u = u(x)A का कार्य नहीं है x,
u = u(x)u = u(x) u = u(x), v = v(x) u = u(x), v = v(x) u = u(x) सुसंगत एव्यूह प्रारूप मानता है; नीचे देखें। u = u(x) सुसंगत एव्यूह प्रारूप मानता है; नीचे देखें। U = U(x), v = v(x)
नोट: वेक्टर-बाय-वेक्टर डेरिवेटिव वाले सूत्र और (जिनके आउटपुट आव्यूह हैं) मान लें कि आव्यूह को वेक्टर लेआउट के अनुरूप रखा गया है, अर्ताथ न्यूमरेटर-लेआउट आव्यूह जब न्यूमरेटर-लेआउट वेक्टर और इसके विपरीत; अन्यथा, वेक्टर-दर-वेक्टर डेरिवेटिव को स्थानांतरित करें।
स्केलर-दर-आव्यूह पहचान
ध्यान दें कि आव्यूह के आव्यूह-मूल्यवान कार्यों पर लागू होने पर स्केलर उत्पाद नियम और श्रृंखला नियम के सटीक समकक्ष सम्मिलित नहीं होते हैं। चूंकि, इस प्रकार का उत्पाद नियम अंतर रूप (नीचे देखें) पर लागू होता है, और यह ट्रेस (रैखिक बीजगणित) फ़ंक्शन को सम्मिलित करने वाली कई पहचानों को प्राप्त करने का तरीका है, इस तथ्य के साथ संयुक्त है कि ट्रेस फ़ंक्शन ट्रांसपोज़िंग की अनुमति देता है और चक्रीय क्रमचय, अर्ताथ:
उदाहरण के लिए, गणना करने के लिए
इसलिए,
- (अंकीय लेआउट)
(अंतिम चरण के लिए, #convert_differential_derivative अनुभाग देखें।)
पहचान: स्केलर-आव्यूह स्थिति अभिव्यक्ति अंश प्रारूप, जैसे by XT हर प्रारूप, जैसे by X a का कार्य नहीं है X [5] [5] a का कार्य नहीं है X, u = u(X) u = u(X), v = v(X) u = u(X), v = v(X) u = u(X) u = u(X) U = U(X) [4] दोनों फॉर्म ड्राफ्ट के लिए न्यूमरेटर मान लेते हैं
अर्ताथ मिश्रित प्रारूप यदि X के लिए भाजक प्रारूप का उपयोग किया जा रहा है।
ए और बी X के कार्य नहीं हैं ए और बी X के कार्य नहीं हैं ए, बी और सी X के कार्य नहीं हैं ए, बी और सी X के कार्य नहीं हैं U = U(X), V = V(X) a का कार्य नहीं है X,
U = U(X)g(X) अदिश गुणांकों वाला कोई भी बहुपद है, या अनंत बहुपद श्रृंखला द्वारा परिभाषित कोई भी आव्यूह फलन है (जैसे eX, sin(X), cos(X), ln(X), इत्यादि टेलर श्रृंखला का उपयोग करके); g(x) समतुल्य अदिश फलन है, g′(x) इसका व्युत्पन्न है, और g′(X) संगत आव्यूह फलन है A का कार्य नहीं है X [6] A का कार्य नहीं है X [4] A का कार्य नहीं है X [4] A का कार्य नहीं है X [4] ए, बी X के कार्य नहीं हैं A, B, C, X के फलन नहीं हैं n एक सकारात्मक पूर्णांक है [4] A का कार्य नहीं है X, n एक सकारात्मक पूर्णांक है
[4] [4] [4] [7] Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected [, ;!_#%$&], [a-zA-Z], or [{}|] but "आ" found.in 1:46"): {\displaystyle \frac{\partial |\mathbf{X}|}{\आंशिक \mathbf{X}} =} \mathbf{X}|\mathbf{X}^{-1}</math> \mathbf{X}|\left(\mathbf{X}^{-1}\right)^\top</math> a 'X' का फलन नहीं है [4][8] A, B, X के फलन नहीं हैं [4] n धनात्मक पूर्णांक है [4] (छद्म उलटा देखें) [4] (छद्म उलटा देखें) [4] A, X का फलन नहीं है,
X वर्गाकार और उलटा हैA, X का फलन नहीं है,
X गैर-वर्गाकार है,
A सममित हैA, X का फलन नहीं है,
X वर्गाकार नहीं है,
A असममित नहीं है
आव्यूह-बाय-स्केलर पहचान
पहचान: आव्यूह-बाय-स्केलर स्थिति अभिव्यक्ति अंश प्रारूप, जैसे by Y U = U(x) A, B के कार्य नहीं हैं x,
U = U(x)U = U(x), V = V(x) U = U(x), V = V(x) U = U(x), V = V(x) U = U(x), V = V(x) U = U(x) U = U(x,y) A का कार्य नहीं है x, g(X) अदिश गुणांकों वाला कोई बहुपद है, या अनंत बहुपद श्रृंखला द्वारा परिभाषित कोई आव्यूह फलन है (e.g. eX, sin(X), cos(X), ln(X), etc.); g(x) समतुल्य स्केलर फ़ंक्शन है, g′(x) इसका व्युत्पन्न है, and g′(X) संगत आव्यूह फलन है A का कार्य नहीं है x
आगे घातीय मानचित्र का व्युत्पन्न देखें।
स्केलर-दर-स्केलर पहचान
सम्मिलित वैक्टर के साथ
पहचान: स्केलर-बाय-स्केलर, सम्मिलित वैक्टर के साथ स्थिति अभिव्यक्ति कोई भी प्रारूप (मान लें कि डॉट उत्पाद पंक्ति बनाम स्तंभ प्रारूप पर ध्यान नहीं देता) u = u(x) u = u(x), v = v(x)
सम्मिलित आव्यूह के साथ
सर्वसमिकाएँ: अदिश-दर-अदिश, सम्मिलित आव्यूहों के साथ[4] स्थिति अभिव्यक्ति संगत अंश प्रारूप,
जैसे by Y और XTमिला हुआ प्रारूप,
जैसे by Y और XU = U(x) Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected [, ;!_#%$&], [a-zA-Z], or [{}|] but "आ" found.in 1:46"): {\displaystyle \frac{\partial |\mathbf{U}|}{\आंशिक x} =</गणित> || कोलस्पैन=2| गणित>|\mathbf{यू}|\ऑपरेटरनाम{tr}\बाएं (\mathbf{U}^{-1}\frac{\partial \mathbf{U}}{\partial x}\right)} यू = यू(X) math>\frac{\partial \ln|\mathbf{U}|}{\partial x} =</math> || कोलस्पैन=2| math>\operatorname{tr}\left (\mathbf{U}^{-1}\frac{\partial \mathbf{U}}{\partial x}\right)</math>
यू = यू(X) math>\frac{\partial^2 |\mathbf{U}|}{\partial x^2} =</math>
math>|\mathbf{u}|\left[
\operatorname{tr}\left(\mathbf{U}^{-1}\frac{\partial^2 \mathbf{U}}{\partial x^2}\right) + \operatorname{tr}^2\left(\mathbf{U}^{-1}\frac{\partial \mathbf{U}}{\partial x}\right) - \operatorname{tr}\left(\left (\mathbf{U}^{-1}\frac{\partial \mathbf{U}}{\partial x}\right)^2\right)
\right]</math>
यू = यू(X) math>\frac{\partial g(\mathbf{U})}{\partial x} =</math> || math>\operatorname{tr}\left( \frac{\partial g(\mathbf{U})}{\partial \mathbf{U}} \frac{\partial \mathbf{U}}{\partial x}\ right) </math>
math>\operatorname{tr}\left( \left(\frac{\partial g(\mathbf{U})}{\partial \mathbf{U}}\right)^\top \frac{\partial \mathbf{ U}}{\partial x}\right)</math>
A x का कोई फलन नहीं है, g(X) अदिश गुणांकों वाला कोई बहुपद है, या अनंत बहुपद श्रृंखला द्वारा परिभाषित कोई आव्यूह फलन है (उदाहरण के लिए, sin(X)X, cos(X), ln(X), आदि); g(x) समकक्ष स्केलर फ़ंक्शन है, g′(x) इसका व्युत्पन्न है, और g′ (X) संबंधित आव्यूह फ़ंक्शन है। A x का फलन नहीं है
विभेदक रूप में पहचान
डिफरेंशियल फॉर्म में कार्य करना और फिर वापस सामान्य डेरिवेटिव में बदलना सरल होता है। यह केवल अंश लेआउट का उपयोग करके अच्छी तरह से कार्य करता है। इन नियमों में, अदिश राशि है।
विभेदक पहचान: आव्यूह[1][4][9] [10] स्थिति अभिव्यक्ति Result (numerator प्रारूप) A का कार्य नहीं है X a का कार्य नहीं है X (क्रोनकर उत्पाद) (हैडमार्ड उत्पाद) (संयुग्मी स्थानांतरण) n एक सकारात्मक पूर्णांक है विकर्णीय है
f प्रत्येक आइजन मान पर अवकलनीय है
अंतिम पंक्ति में, क्रोनकर डेल्टा है और ऑर्थोगोनल प्रोजेक्शन ऑपरेटरों का समुच्चयों है जो 'X' के के-वें ईजेनवेक्टर पर प्रोजेक्ट करता है। 'क्यू' आव्यूह के ईजेनडीकंपोजीशन का आव्यूह है#के आव्यूह का ईजेनडीकंपोजीशन , और आइगेनवैल्यू हैं। आव्यूह फ़ंक्शन आव्यूह का Eigedecomposition#कार्यात्मक कलन है द्वारा विकर्णीय आव्यूह के लिए जहाँ साथ .
सामान्य व्युत्पन्न रूप में परिवर्तित करने के लिए, पहले इसे निम्नलिखित प्रामाणिक रूपों में से में परिवर्तित करें, और फिर इन सर्वसमिकाओं का उपयोग करें:
अंतर से व्युत्पन्न रूप में रूपांतरण[1] कैनोनिकल डिफरेंशियल फॉर्म समतुल्य व्युत्पन्न रूप (अंशक प्रारूप)
अनुप्रयोग
आव्यूह डिफरेंशियल कैलकुलस का उपयोग सांख्यिकी और अर्थमिति में किया जाता है, विशेष रूप से बहुभिन्नरूपी वितरण के सांख्यिकीय विश्लेषण के लिए, विशेष रूप से बहुभिन्नरूपी सामान्य वितरण और अन्य अण्डाकार वितरण।[11][12][13]
इसका उपयोग प्रतिगमन विश्लेषण में गणना करने के लिए किया जाता है, उदाहरण के लिए, रैखिक कम से कम वर्ग एकाधिक व्याख्यात्मक चर के स्थिति के लिए सामान्य समस्या।[14]
इसका उपयोग स्थानीय संवेदनशीलता और सांख्यिकीय निदान में भी किया जाता है।[15]
यह भी देखें
- व्युत्पन्न (सामान्यीकरण)
- उत्पाद अभिन्न
- रिक्की कैलकुलस भेदभाव
टिप्पणियाँ
- ↑ 1.0 1.1 1.2 1.3 1.4 Thomas P., Minka (December 28, 2000). "सांख्यिकी के लिए उपयोगी पुराना और नया मैट्रिक्स बीजगणित". MIT Media Lab note (1997; revised 12/00). Retrieved 5 February 2016.
- ↑ Felippa, Carlos A. "Appendix D, Linear Algebra: Determinants, Inverses, Rank" (PDF). ASEN 5007: Introduction To Finite Element Methods. Boulder, Colorado: University of Colorado. Retrieved 5 February 2016. Uses the Hessian (transpose to Jacobian) definition of vector and matrix derivatives.
- ↑ 3.0 3.1 3.2 Here, refers to a column vector of all 0's, of size n, where n is the length of x.
- ↑ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 Petersen, Kaare Brandt; Pedersen, Michael Syskind. The Matrix Cookbook (PDF). Archived from the original on 2 March 2010. Retrieved 5 February 2016. This book uses a mixed layout, i.e. by Y in by X in
- ↑ 5.0 5.1 Here, refers to a matrix of all 0's, of the same shape as X.
- ↑ Duchi, John C. "Properties of the Trace and Matrix Derivatives" (PDF). Stanford University. Retrieved 5 February 2016.
- ↑ See Determinant#Derivative for the derivation.
- ↑ The constant a disappears in the result. This is intentional. In general,
- ↑ Giles, Michael B. (2008). "An extended collection of matrix derivative results for forward and reverse mode algorithmic differentiation" (PDF). S2CID 17431500. Archived from the original (PDF) on 2020-02-27.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Unpublished memo by S Adler (IAS)
- ↑ Fang & Zhang (1990)
- ↑ Pan & Fang (2007)
- ↑ Kollo & von Rosen (2005)
- ↑ Magnus & Neudecker (2019)
- ↑ Liu et al. (2022)
संदर्भ
- Fang, Kai-Tai; Zhang, Yao-Ting (1990). Generalized multivariate analysis. Science Press (Beijing) and Springer-Verlag (Berlin). ISBN 3540176519. 9783540176510.
- Kollo, Tõnu; von Rosen, Dietrich (2005). Advanced multivariate statistics with matrices. Dordrecht: Springer. ISBN 978-1-4020-3418-3.
- Pan, Jianxin; Fang, Kaitai (2007). Growth curve models and statistical diagnostics. Beijing: Science Press. ISBN 9780387950532.
- Magnus, Jan; Neudecker, Heinz (2019). Matrix differential calculus with applications in statistics and econometrics. New York: John Wiley. ISBN 9781119541202.
- Liu, Shuangzhe; Leiva, Victor; Zhuang, Dan; Ma, Tiefeng; Figueroa-Zúñiga, Jorge I. (March 2022). "Matrix differential calculus with applications in the multivariate linear model and its diagnostics". Journal of Multivariate Analysis (in English). 188: 104849. doi:10.1016/j.jmva.2021.104849..
अग्रिम पठन
- Abadir, Karim M., 1964- (2005). Matrix algebra. Magnus, Jan R. Cambridge: Cambridge University Press. ISBN 978-0-511-64796-3. OCLC 569411497.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Lax, Peter D. (2007). "9. Calculus of Vector- and Matrix-Valued Functions". Linear algebra and its applications (2nd ed.). Hoboken, N.J.: Wiley-Interscience. ISBN 978-0-471-75156-4.
- Magnus, Jan R. (October 2010). "On the concept of matrix derivative". Journal of Multivariate Analysis (in English). 101 (9): 2200–2206. doi:10.1016/j.jmva.2010.05.005.. Note that this Wikipedia article has been nearly completely revised from the version criticized in this article.
बाहरी संबंध
सॉफ्टवेयर
- MatrixCalculus.org, सांकेतिक रूप से आव्यूह कैलकुलस एक्सप्रेशंस के मूल्यांकन के लिए वेबसाइट
- NCAlgebra, ओपन-सोर्स मेथेमेटिका पैकेज जिसमें कुछ आव्यूह कैलकुलस कार्यक्षमता है
- SymPy अपने आव्यूह एक्सप्रेशन मॉड्यूल में प्रतीकात्मक आव्यूह डेरिवेटिव का समर्थन करता है, साथ ही इसके में प्रतीकात्मक टेंसर डेरिवेटिव। संगठन/नवीनतम/मॉड्यूल/टेंसर/array_expressions.html सरणी अभिव्यक्ति मॉड्यूल।
जानकारी
- आव्यूह संदर्भ मैनुअल, माइक ब्रुक्स, इंपीरियल कॉलेज लंदन।
- आव्यूह विभेदीकरण (और कुछ अन्य सामग्री), रैंडल जे. बार्न्स, सिविल इंजीनियरिंग विभाग, मिनेसोटा विश्वविद्यालय।
- आव्यूह कैलकुलस पर नोट्स, पॉल एल. फैकलर, उत्तरी कैरोलिना स्टेट यूनिवर्सिटी ।
- आव्यूह डिफरेंशियल कैलकुलस (स्लाइड प्रस्तुति), झांग ले, एडिनबर्ग विश्वविद्यालय।
- वेक्टर और आव्यूह विभेदन का परिचय (आव्यूह विभेदन पर नोट्स, इकोनोमेट्रिक्स के संदर्भ में), हीनो बोह्न नीलसन।
- ए नोट ऑन डिफरेंशियेटिंग आव्यूह (नोट्स ऑन आव्यूह डिफरेंशिएशन), पावेल कोवल, म्यूनिख पर्सनल रेपेक आर्काइव से।
- वेक्टर/आव्यूह कैलकुलस आव्यूह विभेदन पर अधिक नोट्स।
- आव्यूह आइडेंटिटीज (आव्यूह डिफरेंशिएशन पर नोट्स), सैम रोविस।
श्रेणी:मैट्रिक्स सिद्धांत श्रेणी:रैखिक बीजगणित श्रेणी:बहुपरिवर्तनीय कलन