चरण आकृति
अंतर समीकरण |
---|
दायरा |
वर्गीकरण |
समाधान |
लोग |
एक चरण चित्र चरण विमान में एक गतिशील प्रणाली के प्रक्षेपवक्रों का एक ज्यामितीय प्रतिनिधित्व है। प्रारंभिक स्थितियों के प्रत्येक सेट को एक अलग वक्र या बिंदु द्वारा दर्शाया जाता है।
डायनेमिक सिस्टम के अध्ययन में चरण चित्र एक अमूल्य उपकरण हैं। वे राज्य अंतरिक्ष में विशिष्ट प्रक्षेपवक्र के एक भूखंड (ग्राफिक्स) से युक्त होते हैं। इससे जानकारी का पता चलता है जैसे कि चुने गए पैरामीटर मान के लिए एक आकर्षित करने वाला, एक प्रतिकारक या सीमा चक्र मौजूद है या नहीं। जब दो अलग-अलग चरण चित्र एक ही गुणात्मक गतिशील व्यवहार का प्रतिनिधित्व करते हैं, तो निर्दिष्ट करके सिस्टम के व्यवहार को वर्गीकृत करने में टोपोलॉजिकल संयुग्मन की अवधारणा महत्वपूर्ण है। एक आकर्षित करने वाला एक स्थिर बिंदु है जिसे सिंक भी कहा जाता है। रिपेलर को एक अस्थिर बिंदु माना जाता है, जिसे स्रोत के रूप में भी जाना जाता है।
एक गतिशील प्रणाली का एक चरण चित्र ग्राफ एक राज्य स्थान में सिस्टम के प्रक्षेपवक्र (तीरों के साथ) और स्थिर स्थिर अवस्थाओं (डॉट्स के साथ) और अस्थिर स्थिर अवस्थाओं (मंडलियों के साथ) को दर्शाता है। अक्ष राज्य चर के हैं।
उदाहरण
- साधारण पेंडुलम, चित्र देखें (दाएं)।
- सरल हार्मोनिक थरथरानवाला जहां चरण चित्र मूल पर केंद्रित दीर्घवृत्त से बना होता है, जो एक निश्चित बिंदु है।
- वैन डेर पोल ऑसिलेटर चित्र देखें (नीचे दाएं)।
- कॉम्प्लेक्स_क्वाड्रैटिक_पोलिनोमियल#पैरामीटर_प्लेन|पैरामीटर प्लेन (सी-प्लेन) और मैंडेलब्रॉट सेट
साधारण अंतर समीकरणों के व्यवहार की कल्पना करना
एक चरण चित्र सामान्य अंतर समीकरणों (ओडीई) की प्रणाली के दिशात्मक व्यवहार का प्रतिनिधित्व करता है। चरण चित्र सिस्टम की स्थिरता का संकेत दे सकता है। [1]
Unstable | Most of the system's solutions tend towards ∞ over time |
Asymptotically stable | All of the system's solutions tend to 0 over time |
Neutrally stable | None of the system's solutions tend towards ∞ over time, but most solutions do not tend towards 0 either |
ODEs की एक प्रणाली का चरण चित्र व्यवहार eigenvalues या ट्रेस (रैखिक बीजगणित) और निर्धारक (ट्रेस = λ) द्वारा निर्धारित किया जा सकता है1 + एल2, निर्धारित = λ1 एक्स एल2) प्रणाली में।[1]
Eigenvalue, Trace, Determinant | Phase Portrait Shape |
---|---|
λ1 & λ2 are real and of opposite sign;
Determinant < 0 |
Saddle (unstable) |
λ1 & λ2 are real and of the same sign, and λ1 ≠ λ2;
0 < determinant < (trace2 / 4) |
Node (stable if trace < 0, unstable if trace > 0) |
λ1 & λ2 have both a real and imaginary component;
(trace2 / 4) < determinant |
Spiral (stable if trace < 0, unstable if trace > 0) |
यह भी देखें
- चरण स्थान
- चरण विमान
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Haynes Miller, and Arthur Mattuck. 18.03 Differential Equations. Spring 2010. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA. (Supplementary Notes 26 by Haynes Miller: https://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/readings/supp_notes/MIT18_03S10_chapter_26.pdf)
- Jordan, D. W.; Smith, P. (2007). Nonlinear Ordinary Differential Equations (fourth ed.). Oxford University Press. ISBN 978-0-19-920824-1. Chapter 1.
- Steven Strogatz (2001). Non-linear Dynamics and Chaos: With applications to Physics, Biology, Chemistry and Engineering. ISBN 9780738204536.
बाहरी संबंध
- Linear Phase Portraits, an MIT Mathlet.