Lagrangian क्षेत्र सिद्धांत शास्त्रीय क्षेत्र सिद्धांत में औपचारिकता है। यह Lagrangian यांत्रिकी का क्षेत्र-सैद्धांतिक अनुरूप है। Lagrangian यांत्रिकी का उपयोग स्वतंत्रता की डिग्री (भौतिकी और रसायन विज्ञान) की सीमित संख्या के साथ असतत कणों की प्रणाली की गति का विश्लेषण करने के लिए किया जाता है। Lagrangian क्षेत्र सिद्धांत निरंतरता और क्षेत्रों पर लागू होता है, जिसमें स्वतंत्रता की डिग्री की अनंत संख्या होती है।
क्षेत्रों पर Lagrangian औपचारिकता के विकास के लिए प्रेरणा, और अधिक सामान्यतः, शास्त्रीय क्षेत्र सिद्धांत के लिए, क्वांटम क्षेत्र सिद्धांत के लिए स्वच्छ गणितीय आधार प्रदान करना है, जो औपचारिक कठिनाइयों से कुख्यात है जो इसे गणितीय सिद्धांत के रूप में अस्वीकार्य बनाता है। यहां प्रस्तुत लैग्रैंगियन उनके क्वांटम समकक्षों के समान हैं, लेकिन, क्षेत्रों को शास्त्रीय क्षेत्रों के रूप में मानने के अतिरिक्त, परिमाणित होने के अतिरिक्त, परिभाषाएं प्रदान कर सकते हैं और आंशिक अंतर समीकरणों के गणित के पारंपरिक औपचारिक दृष्टिकोण के साथ संगत गुणों के साथ समाधान प्राप्त कर सकते हैं। यह सोबोलेव रिक्त स्थान जैसे अच्छी तरह से चित्रित गुणों वाले रिक्त स्थान पर समाधान तैयार करने में सक्षम बनाता है। यह विभिन्न प्रमेयों को प्रदान करने में सक्षम बनाता है, अस्तित्व के प्रमाण से औपचारिक श्रृंखला के समान अभिसरण से लेकर संभावित सिद्धांत की सामान्य सेटिंग्स तक। इसके अलावा, रीमैनियन कई गुना और फाइबर बंडलों के सामान्यीकरण द्वारा अंतर्दृष्टि और स्पष्टता प्राप्त की जाती है, जिससे ज्यामितीय संरचना को स्पष्ट रूप से समझा जा सकता है और गति के संबंधित समीकरणों से अलग किया जा सकता है। ज्यामितीय संरचना के स्पष्ट दृष्टिकोण ने बदले में ज्यामिति से अत्यधिक अमूर्त प्रमेयों को अंतर्दृष्टि प्राप्त करने के लिए उपयोग करने की अनुमति दी है, जिसमें चेर्न-गॉस-बोनट प्रमेय और रिमेंन-रोच प्रमेय से अतियाह-सिंगर इंडेक्स प्रमेय और चेर्न-साइमन्स सिद्धांत सम्मिलित हैं। .
क्षेत्र सिद्धांत में, स्वतंत्र चर को अंतरिक्ष समय में घटना से बदल दिया जाता है (x, y, z, t), या अधिक सामान्यतः अभी भी रिमेंनियन मैनिफोल्ड पर बिंदु एस द्वारा। निर्भर चर को स्पेसटाइम में उस बिंदु पर फ़ील्ड के मान से बदल दिया जाता है ताकि गति के समीकरणक्रिया (भौतिकी) सिद्धांत के माध्यम से प्राप्त किए जा सकें, जिसे इस प्रकार लिखा गया है:
जहां कार्रवाई, , आश्रित चरों का कार्यात्मक (गणित) है , उनके डेरिवेटिव और एस ही
जहां कोष्ठक निरूपित करते हैं ;
और एस = {एसα} समय चर सहित प्रणालीके n स्वतंत्र चर के सेट (गणित) को दर्शाता है, और इसे α = 1, 2, 3, ..., n द्वारा अनुक्रमित किया जाता है। सुलेख टाइपफेस, , कई गुना पर घनत्व को निरूपित करने के लिए प्रयोग किया जाता है, और फ़ील्ड फ़ंक्शन का वॉल्यूम रूप है, यानी फ़ील्ड फ़ंक्शन के डोमेन का माप।
गणितीय योगों में, फाइबर बंडल पर फ़ंक्शन के रूप में लैग्रैन्जियन को व्यक्त करना आम है, जिसमें फाइबर बंडल पर geodesic ्स को निर्दिष्ट करने के रूप में यूलर-लग्रेंज समीकरणों की व्याख्या की जा सकती है। अब्राहम और मार्सडेन की पाठ्यपुस्तक[1] आधुनिक ज्यामितीय विचारों के संदर्भ में शास्त्रीय यांत्रिकी का पहला व्यापक विवरण प्रदान किया, यानी स्पर्शरेखा कई गुना, सहानुभूतिपूर्ण कई गुना और संपर्क ज्यामिति के संदर्भ में। बिलीकर की पाठ्यपुस्तक[2] गेज अपरिवर्तनीय फाइबर बंडलों के संदर्भ में भौतिकी में क्षेत्र सिद्धांतों की व्यापक प्रस्तुति प्रदान की। इस तरह के फॉर्मूलेशन बहुत पहले ज्ञात या संदिग्ध थे। जोस्ट[3] ज्यामितीय प्रस्तुति के साथ जारी है, हैमिल्टनियन और लैग्रैंगियन रूपों के मध्य संबंध को स्पष्ट करते हुए, पहले सिद्धांतों से स्पिन कई गुना का वर्णन करते हुए, आदि। वर्तमान शोध कठोरता (गणित) पर केंद्रित है। टेंसर बीजगणित द्वारा वेक्टर रिक्त स्थान। यह शोध क्वांटम समूहों की अफिन लाइ बीजगणित के रूप में सफलता की समझ से प्रेरित है (झूठ समूह अर्थ में कठोर हैं, क्योंकि वे अपने झूठ बीजगणित द्वारा निर्धारित किए जाते हैं। जब टेन्सर बीजगणित पर सुधार किया जाता है, तो वे फ्लॉपी हो जाते हैं, स्वतंत्रता की अनंत डिग्री होती है ; उदाहरण के लिए वीरासोरो बीजगणित देखें।)
परिभाषाएँ
Lagrangian क्षेत्र सिद्धांत में, सामान्यीकृत निर्देशांक के समारोह के रूप में Lagrangian को Lagrangian घनत्व द्वारा प्रतिस्थापित किया जाता है, प्रणाली में क्षेत्रों का कार्य और उनके डेरिवेटिव, और संभवतः अंतरिक्ष और समय खुद को निर्देशित करता है। फील्ड थ्योरी में, स्वतंत्र चर टी को स्पेसटाइम में घटना से बदल दिया जाता है (x, y, z, t) या इससे भी अधिक सामान्यतः कई गुना पर बिंदु एस द्वारा।
प्रायः, Lagrangian घनत्व को केवल Lagrangian के रूप में संदर्भित किया जाता है।
अदिश क्षेत्र
अदिश क्षेत्र के लिए , Lagrangian घनत्व रूप लेगा:[nb 1][4]
कई अदिश क्षेत्रों के लिए
गणितीय योगों में, स्केलर फ़ील्ड अनुभाग (फाइबर बंडल) पर समन्वयित चार्ट के रूप में समझा जाता है, और फ़ील्ड के डेरिवेटिव्स को जेट बंडल के खंड (फाइबर बंडल) समझा जाता है।
उपरोक्त को सदिश क्षेत्रों, टेंसर क्षेत्रों और स्पिनर क्षेत्रों के लिए सामान्यीकृत किया जा सकता है। भौतिकी में, फर्मियन का वर्णन स्पिनर फ़ील्ड्स द्वारा किया जाता है। बोसॉन का वर्णन टेन्सर फ़ील्ड द्वारा किया जाता है, जिसमें विशेष मामलों के रूप में स्केलर और वेक्टर फ़ील्ड सम्मिलित हैं।
उदाहरण के लिए, यदि हैं वास्तविक संख्या-मूल्यवान अदिश क्षेत्र, , तो क्षेत्र कई गुना है . यदि फ़ील्ड वास्तविक वेक्टर फ़ील्ड है, तो फ़ील्ड मैनिफोल्ड समरूप है .
क्रिया
Lagrangian के समय अभिन्न को क्रिया (भौतिकी) कहा जाता है जिसे निरूपित किया जाता है S. फील्ड थ्योरी में लैग्रैंगियन के मध्य कभी-कभी अंतर किया जाता है L, जिसका समय अभिन्न क्रिया है
और Lagrangian घनत्व , जो क्रिया प्राप्त करने के लिए सभी स्पेसटाइम को एकीकृत करता है:
Lagrangian घनत्व का स्थानिक आयतन अभिन्न अंग Lagrangian है; 3डी में,
क्रिया को प्रायः कार्य कार्यात्मक (गणित) के रूप में संदर्भित किया जाता है, जिसमें यह फ़ील्ड (और उनके डेरिवेटिव) का कार्य है।
मात्रा रूप
गुरुत्वाकर्षण की उपस्थिति में या सामान्य घुमावदार निर्देशांक का उपयोग करते समय, लैग्रैंगियन घनत्व का कारक सम्मिलित होगा . यह सुनिश्चित करता है कि क्रिया सामान्य समन्वय परिवर्तनों के तहत अपरिवर्तनीय है। गणितीय साहित्य में, स्पेसटाइम को रीमैनियन मैनिफोल्ड के रूप में लिया जाता है और अभिन्न तब मात्रा रूप बन जाता है
यहां ही कील उत्पाद है और निर्धारक का वर्गमूल है मीट्रिक टेंसर का पर . फ्लैट स्पेसटाइम (उदाहरण के लिए, मिन्कोव्स्की स्पेसटाइम) के लिए, यूनिट वॉल्यूम है, यानी। और इसलिए फ्लैट स्पेसटाइम में क्षेत्र सिद्धांत पर चर्चा करते समय इसे सामान्यतःछोड़ दिया जाता है। इसी तरह, कील-उत्पाद प्रतीकों का उपयोग बहुभिन्नरूपी कलन में आयतन की सामान्य अवधारणा पर कोई अतिरिक्त अंतर्दृष्टि प्रदान नहीं करता है, और इसलिए इन्हें इसी तरह हटा दिया जाता है। कुछ पुरानी पाठ्यपुस्तकें, उदाहरण के लिए, लांडौ और लाइफशिट्ज लिखती हैं वॉल्यूम फॉर्म के लिए, चूंकि हस्ताक्षर (+−−−) या (−+++) के साथ मीट्रिक टेन्सर के लिए माइनस साइन उपयुक्त है (चूंकि निर्धारक नकारात्मक है, किसी भी मामले में)। सामान्य रीमैनियन मैनिफोल्ड्स पर क्षेत्र सिद्धांत पर चर्चा करते समय, वॉल्यूम फॉर्म सामान्यतःसंक्षिप्त संकेतन में लिखा जाता है कहाँ हॉज स्टार है। वह है,
इसलिए
बार-बार नहीं, उपरोक्त संकेतन को पूरी तरह से अनावश्यक माना जाता है, और
प्रायः देखा जाता है। भ्रमित न हों: आयतन रूप उपरोक्त अभिन्न में निहित रूप से मौजूद है, भले ही वह स्पष्ट रूप से न लिखा गया हो।
यूलर–लैग्रेंज समीकरण
यूलर-लैग्रेंज समीकरण क्षेत्र के जियोडेसिक प्रवाह का वर्णन करते हैं समय के कार्य के रूप में। के संबंध में कार्यात्मक व्युत्पन्न लेना , प्राप्त करता है
सीमा शर्तों के संबंध में हल करने पर, यूलर-लैग्रेंज समीकरण प्राप्त होता है:
उदाहरण
लैग्रैंजियन्स के संदर्भ में खेतों पर बड़ी संख्या में भौतिक प्रणालियां तैयार की गई हैं। नीचे फील्ड थ्योरी पर भौतिकी की पाठ्यपुस्तकों में पाए जाने वाले कुछ सबसे सामान्य नमूने हैं।
न्यूटोनियन गुरुत्वाकर्षण
न्यूटोनियन गुरुत्वाकर्षण के लिए Lagrangian घनत्व है:
कहाँ Φगुरुत्वाकर्षण क्षमता है, ρ द्रव्यमान घनत्व है, और {{math|G}एम में3·किग्रा−1·से−2 गुरुत्वीय स्थिरांक है। घनत्व J·m की इकाइयाँ हैं−3. यहाँ परस्पर क्रिया शब्द में निरंतर द्रव्यमान घनत्व ρ किलोग्राम·मी में सम्मिलित है−3. यह आवश्यक है क्योंकि किसी क्षेत्र के लिए बिंदु स्रोत का उपयोग करने से गणितीय कठिनाइयाँ उत्पन्न होंगी।
इस Lagrangian को इस रूप में लिखा जा सकता है , साथ गतिज शब्द प्रदान करना, और अंतःक्रिया संभावित शब्द। समय के साथ परिवर्तनों से निपटने के लिए इसे कैसे संशोधित किया जा सकता है, इसके लिए नॉर्डस्ट्रॉम के गुरुत्वाकर्षण के सिद्धांत को भी देखें। स्केलर फील्ड थ्योरी के अगले उदाहरण में इस फॉर्म को दोहराया गया है।
के संबंध में अभिन्न की भिन्नता Φ है:
भागों द्वारा एकीकृत करने के बाद, कुल अभिन्न को छोड़कर, और विभाजित करके δΦ सूत्र बन जाता है:
जो इसके बराबर है:
जो गुरुत्वाकर्षण के लिए गॉस के नियम का उत्पादन करता है।
क्षमता में गतिमान अदिश क्षेत्र के लिए Lagrangian रूप में लिखा जा सकता है
यह कोई दुर्घटना नहीं है कि स्केलर सिद्धांत अंडरग्रेजुएट टेक्स्टबुक Lagrangian जैसा दिखता है मुक्त बिंदु कण के गतिज शब्द के रूप में लिखा गया है . स्केलर सिद्धांत क्षमता में गतिमान कण का क्षेत्र-सिद्धांत सामान्यीकरण है। जब मैक्सिकन टोपी क्षमता है, परिणामी क्षेत्रों को हिग्स फील्ड कहा जाता है।
सिग्मा मॉडल स्केलर बिंदु कण की गति का वर्णन करता है जो रिमेंनियन मैनिफोल्ड पर जाने के लिए विवश है, जैसे कि वृत्त या गोला। यह स्केलर और वेक्टर फ़ील्ड्स के मामले को सामान्यीकृत करता है, अर्थात, फ्लैट मैनिफोल्ड पर जाने के लिए विवश फ़ील्ड्स। Lagrangian सामान्यतःतीन समकक्ष रूपों में से में लिखा जाता है:
और , झूठ समूह एसयू (एन)। इस समूह को किसी भी लाइ समूह द्वारा प्रतिस्थापित किया जा सकता है, या अधिक सामान्य रूप से, सममित स्थान द्वारा। निशान छुपाने में बस हत्या का रूप है; मारक रूप कई गुना क्षेत्र पर द्विघात रूप प्रदान करता है, लैग्रैंगियन तब इस फॉर्म का पुलबैक है। वैकल्पिक रूप से, Lagrangian को मौरर-कार्टन फॉर्म के आधार स्पेसटाइम के पुलबैक के रूप में भी देखा जा सकता है।
सामान्यतः, सिग्मा मॉडल सामयिक सॉलिटॉन समाधान प्रदर्शित करते हैं। इनमें से सबसे प्रसिद्ध और अच्छी तरह से अध्ययन किया गया स्किर्मियन है, जो समय की कसौटी पर खरा उतरने वाले न्यूक्लियॉन के मॉडल के रूप में कार्य करता है।
बिंदु कण, आवेशित कण पर विचार करें, जो विद्युत चुम्बकीय क्षेत्र के साथ परस्पर क्रिया करता है। बातचीत की शर्तें
A·s·m में सतत चार्ज घनत्व ρ वाले शब्दों द्वारा प्रतिस्थापित किया जाता है-3 और करंट डेंसिटी में हूँ-2</सुप>. विद्युत चुम्बकीय क्षेत्र के लिए परिणामी Lagrangian घनत्व है:
इसे लेकर अलग-अलग ϕ, हम पाते हैं
जिससे गॉस का नियम प्राप्त होता है।
इसके अतिरिक्त के संबंध में भिन्न , हम पाते हैं
जिससे एम्पीयर का नियम प्राप्त होता है।
टेन्सर संकेतन का उपयोग करके, हम यह सब अधिक सघन रूप से लिख सकते हैं। शब्द वास्तव में दो चार-सदिशों का आंतरिक उत्पाद है। हम चार्ज घनत्व को वर्तमान चार-वेक्टर में और क्षमता को संभावित 4-वेक्टर में पैकेज करते हैं। ये दो नए वैक्टर हैं
इसके बाद हम इंटरेक्शन शब्द को इस रूप में लिख सकते हैं
इसके अतिरिक्त, हम ई और बी क्षेत्रों को विद्युत चुम्बकीय टेंसर के रूप में जाना जाता है .
हम इस टेंसर को इस प्रकार परिभाषित करते हैं
हम जिस शब्द की तलाश कर रहे हैं वह निकला
हमने ईएमएफ टेंसर पर सूचकांक बढ़ाने के लिए मिन्कोव्स्की मीट्रिक का उपयोग किया है। इस अंकन में मैक्सवेल के समीकरण हैं
जहां ε लेवी-Civita टेंसर है। तो विशेष आपेक्षिकता में विद्युत चुम्बकत्व के लिए लैग्रेंज घनत्व लोरेंत्ज़ सदिशों और टेंसरों के संदर्भ में लिखा गया है
इस संकेतन में यह स्पष्ट है कि शास्त्रीय विद्युत चुंबकत्व लोरेंत्ज़-अपरिवर्तनीय सिद्धांत है। तुल्यता सिद्धांत द्वारा, विद्युत चुंबकत्व की धारणा को घुमावदार दिक्-काल तक विस्तारित करना सरल हो जाता है।[5][6]
विद्युत चुंबकत्व और यांग-मिल्स समीकरण
विभेदक रूपों का उपयोग करते हुए, (छद्म-) रीमैनियन मैनिफोल्ड पर वैक्यूम में इलेक्ट्रोमैग्नेटिक एक्शन एस लिखा जा सकता है (प्राकृतिक इकाइयों का उपयोग करके, c = ε0 = 1) जैसा
यहाँ, A विद्युत चुम्बकीय क्षमता 1-रूप के लिए है, J वर्तमान 1-रूप है, F फील्ड स्ट्रेंथ 2-फॉर्म है और स्टार हॉज स्टार ऑपरेटर को दर्शाता है। यह ठीक वैसा ही Lagrangian है जैसा ऊपर के खंड में है, सिवाय इसके कि यहाँ उपचार समन्वय-मुक्त है; इंटीग्रैंड को आधार में विस्तारित करने से समान, लंबी अभिव्यक्ति प्राप्त होती है। ध्यान दें कि रूपों के साथ, अतिरिक्त एकीकरण उपाय आवश्यक नहीं है क्योंकि प्रपत्रों में अंतर्निहित अंतरों का समन्वय होता है।
ये विद्युत चुम्बकीय क्षमता के लिए मैक्सवेल के समीकरण हैं। स्थानापन्न F = dA तुरंत खेतों के लिए समीकरण देता है,
A फ़ील्ड को U(1)-फाइबर बंडल पर affine कनेक्शन के रूप में समझा जा सकता है। अर्थात्, क्लासिकल विद्युतगतिकी, इसके सभी प्रभाव और समीकरण, मिन्कोवस्की स्पेसटाइम पर वृत्त बंडल के रूप में पूरी तरह से समझे जा सकते हैं।
यांग-मिल्स समीकरणों को ठीक उसी रूप में लिखा जा सकता है जैसा ऊपर दिया गया है, विद्युत चुंबकत्व के लाई समूह यू (1) को मनमाने ढंग से लाई समूह द्वारा प्रतिस्थापित करके। मानक मॉडल में, इसे पारंपरिक रूप से लिया जाता है हालांकि सामान्य मामला सामान्य हित का है। सभी मामलों में, किसी भी मात्रा का प्रदर्शन करने की कोई आवश्यकता नहीं है। यद्यपि यांग-मिल्स समीकरण ऐतिहासिक रूप से क्वांटम क्षेत्र सिद्धांत में निहित हैं, उपरोक्त समीकरण विशुद्ध रूप से शास्त्रीय हैं।[2][3]
चेर्न-सिमंस कार्यात्मक
उपरोक्त के समान ही, क्रिया को आयाम में कम माना जा सकता है, अर्थात संपर्क ज्यामिति सेटिंग में। यह चेर्न-साइमन्स फॉर्म देता है | चेर्न-साइमन्स कार्यात्मक। के रूप में लिखा गया है
भौतिक विज्ञान में चेर्न-सिमंस सिद्धांत का गहराई से अन्वेषण किया गया था, खिलौना मॉडल के रूप में ज्यामितीय घटनाओं की विस्तृत श्रृंखला के लिए जो भव्य एकीकृत सिद्धांत में खोजने की उम्मीद कर सकता है।
गिन्ज़बर्ग-लैंडौ सिद्धांत के लिए लैग्रैन्जियन घनत्व स्केलर क्षेत्र सिद्धांत के लिए लैग्रैंगियन को यांग-मिल्स क्रिया के लिए लैग्रैन्जियन के साथ जोड़ता है। इसे इस प्रकार लिखा जा सकता है:[7]
कहाँ फाइबर के साथ वेक्टर बंडल का खंड (फाइबर बंडल) है . h> सुपरकंडक्टर में ऑर्डर पैरामीटर से मेल खाता है; समान रूप से, यह हिग्स फील्ड से मेल खाता है, यह ध्यान देने के बाद कि दूसरा शब्द प्रसिद्ध मैक्सिकन हैट पोटेंशिअल है सोम्ब्रेरो टोपी क्षमता। फील्ड (गैर-एबेलियन) गेज फील्ड है, यानी यांग-मिल्स फील्ड और इसकी क्षेत्र-शक्ति है। गिन्ज़बर्ग-लैंडौ कार्यात्मक के लिए यूलर-लग्रेंज समीकरण यांग-मिल्स समीकरण हैं
और
कहाँ हॉज स्टार ऑपरेटर है, यानी पूरी तरह से एंटीसिमेट्रिक टेंसर। ये समीकरण यांग-मिल्स-हिग्स समीकरणों से निकटता से संबंधित हैं। और निकट से संबंधित Lagrangian Seiberg-Witten सिद्धांत में पाया जाता है।
कहाँ डिराक स्पिनर है, इसका डायराक आसन्न है, और के लिए फेनमैन स्लैश नोटेशन है . शास्त्रीय सिद्धांत में डायराक स्पिनरों पर ध्यान केंद्रित करने की कोई विशेष आवश्यकता नहीं है। वेइल स्पिनर अधिक सामान्य आधार प्रदान करते हैं; वे स्पेसटाइम के क्लिफर्ड बीजगणित से सीधे निर्मित किए जा सकते हैं; निर्माण किसी भी आयाम में काम करता है,[3]और डिराक स्पिनर विशेष मामले के रूप में दिखाई देते हैं। वेइल स्पिनरों के पास अतिरिक्त लाभ है कि वे रिमेंनियन मैनिफोल्ड पर मीट्रिक के लिए विएलबीन में उपयोग किए जा सकते हैं; यह स्पिन संरचना की अवधारणा को सक्षम बनाता है, जो मोटे तौर पर बोल रहा है, घुमावदार स्पेसटाइम में लगातार स्पिनरों को तैयार करने का तरीका है।
क्वांटम इलेक्ट्रोडायनामिक्स के लिए लैग्रैन्जियन घनत्व डायराक क्षेत्र के लिए लैग्रैन्जियन को गेज-इनवेरिएंट तरीके से इलेक्ट्रोडायनामिक्स के लिए लैग्रैन्जियन के साथ जोड़ता है। यह है:
कहाँ इलेक्ट्रोमैग्नेटिक टेंसर है, डी गेज सहसंयोजक व्युत्पन्न है, और के लिए फेनमैन स्लैश संकेतन है साथ कहाँ विद्युत चुम्बकीय चार-क्षमता है। यद्यपि क्वांटम शब्द उपरोक्त में प्रकट होता है, यह ऐतिहासिक कलाकृति है। डिराक क्षेत्र की परिभाषा के लिए किसी भी परिमाणीकरण की आवश्यकता नहीं है, इसे क्लिफोर्ड बीजगणित से पहले सिद्धांतों से निर्मित एंटी-कम्यूटिंग वेइल स्पिनरों के विशुद्ध रूप से शास्त्रीय क्षेत्र के रूप में लिखा जा सकता है।[3]ब्लीकर में फुल गेज-इनवेरिएंट क्लासिकल फॉर्मूलेशन दिया गया है।[2]
क्वांटम क्रोमोडायनामिक्स के लिए लैग्रैजियन घनत्व या से अधिक बड़े पैमाने पर डायराक स्पिनरों के लिए लैग्रैन्जियन को यांग-मिल्स एक्शन के लिए लैग्रैन्जियन के साथ जोड़ता है, जो गेज क्षेत्र की गतिशीलता का वर्णन करता है; संयुक्त Lagrangian गेज अपरिवर्तनीय है। इसे इस प्रकार लिखा जा सकता है:[9]
जहाँ D, QCD गेज सहपरिवर्ती व्युत्पन्न#क्वांटम क्रोमोडायनामिक्स है, n = 1, 2, ...6 क्वार्क प्रकार की गणना करता है, और ग्लूऑन फील्ड स्ट्रेंथ टेंसर है। उपरोक्त इलेक्ट्रोडायनामिक्स मामले के लिए, उपरोक्त शब्द क्वांटम की उपस्थिति केवल इसके ऐतिहासिक विकास को स्वीकार करती है। Lagrangian और इसके गेज इनवेरियन को पूरी तरह शास्त्रीय फैशन में तैयार और इलाज किया जा सकता है।[2][3]
पदार्थ क्षेत्रों की उपस्थिति में सामान्य सापेक्षता के लिए लैग्रेंज घनत्व है
कहाँ ब्रह्माण्ड संबंधी स्थिरांक है, वक्रता अदिश राशि है, जो मीट्रिक टेन्सर के साथ अनुबंधित रिक्की टेंसर है, और रिक्की टेन्सर क्रोनकर डेल्टा के साथ अनुबंधित रीमैन टेंसर है। का अभिन्न अंग आइंस्टीन-हिल्बर्ट क्रिया के रूप में जाना जाता है। रीमैन टेंसर ज्वारीय बल टेंसर है, और क्रिस्टोफेल प्रतीकों और क्रिस्टोफेल प्रतीकों के डेरिवेटिव्स से बना है, जो स्पेसटाइम पर मीट्रिक कनेक्शन को परिभाषित करता है। गुरुत्वाकर्षण क्षेत्र को ऐतिहासिक रूप से मीट्रिक टेन्सर के रूप में वर्णित किया गया था; आधुनिक दृष्टिकोण यह है कि संबंध अधिक मौलिक है। यह इस समझ के कारण है कि कोई गैर-शून्य मरोड़ वाले टेंसर के साथ कनेक्शन लिख सकता है। ये ज्यामिति में सा बदलाव किए बिना मीट्रिक को बदल देते हैं। जहां तक गुरुत्वाकर्षण की वास्तविक दिशा का सवाल है (उदाहरण के लिए पृथ्वी की सतह पर, यह नीचे की ओर इशारा करता है), यह रीमैन टेन्सर से आता है: यह वह चीज है जो गुरुत्वाकर्षण बल क्षेत्र का वर्णन करती है जो गतिमान पिंड महसूस करते हैं और प्रतिक्रिया करते हैं। (यह अंतिम कथन योग्य होना चाहिए: कोई बल क्षेत्र नहीं है; गतिमान पिंड कनेक्शन द्वारा वर्णित कई गुना पर geodesics का अनुसरण करते हैं। वे समानांतर परिवहन में चलते हैं।)
सामान्य सापेक्षता के लिए Lagrangian को ऐसे रूप में भी लिखा जा सकता है जो इसे स्पष्ट रूप से यांग-मिल्स समीकरणों के समान बनाता है। इसे आइंस्टीन-यांग-मिल्स क्रिया सिद्धांत कहा जाता है। यह इस बात पर ध्यान देकर किया जाता है कि अधिकांश डिफरेंशियल ज्योमेट्री बंडलों पर एफ़िन कनेक्शन और मनमाने ढंग से लेट ग्रुप के साथ ठीक काम करती है। फिर, उस समरूपता समूह के लिए SO(3,1) में प्लगिंग, यानी फ्रेम क्षेत्र के लिए, उपरोक्त समीकरण प्राप्त करता है।[2][3]
इस Lagrangian को Euler-Lagrange समीकरण में प्रतिस्थापित करना और मेट्रिक टेन्सर लेना क्षेत्र के रूप में, हम आइंस्टीन क्षेत्र समीकरण प्राप्त करते हैं
ऊर्जा संवेग टेन्सर है और इसके द्वारा परिभाषित किया गया है
कहाँ मैट्रिक्स के रूप में माने जाने पर मीट्रिक टेंसर का निर्धारक होता है। सामान्यतः, सामान्य सापेक्षता में लैग्रेंज घनत्व की क्रिया का समाकलन माप है . यह अभिन्न समन्वय को स्वतंत्र बनाता है, क्योंकि मीट्रिक निर्धारक की जड़ जैकबियन निर्धारक के बराबर होती है। माइनस साइन मेट्रिक सिग्नेचर का परिणाम है (निर्धारक अपने आप में नेगेटिव है)।[5] यह पहले चर्चा किए गए वॉल्यूम फॉर्म का उदाहरण है, जो नॉन-फ्लैट स्पेसटाइम में प्रकट होता है।
सामान्य सापेक्षता में विद्युत चुंबकत्व के लैग्रेंज घनत्व में ऊपर से आइंस्टीन-हिल्बर्ट क्रिया भी सम्मिलित है। शुद्ध विद्युत चुम्बकीय Lagrangian वास्तव में Lagrangian मामला है . Lagrangian है
यह Lagrangian उपरोक्त फ्लैट Lagrangian में Minkowski मीट्रिक को अधिक सामान्य (संभवतः घुमावदार) मीट्रिक के साथ बदलकर प्राप्त किया जाता है . हम इस lagrangian का उपयोग करके EM फ़ील्ड की उपस्थिति में आइंस्टीन फील्ड समीकरण उत्पन्न कर सकते हैं। ऊर्जा-संवेग टेंसर है
यह दिखाया जा सकता है कि यह ऊर्जा संवेग टेंसर ट्रेसलेस है, अर्थात
यदि हम आइंस्टीन फील्ड समीकरणों के दोनों पक्षों का पता लगाते हैं, तो हम प्राप्त करते हैं
तो ऊर्जा संवेग टेन्सर की ट्रेसलेसनेस का अर्थ है कि विद्युत चुम्बकीय क्षेत्र में वक्रता स्केलर गायब हो जाता है। आइंस्टीन समीकरण तब हैं
इसके अतिरिक्त, मैक्सवेल के समीकरण हैं
कहाँ सहपरिवर्ती व्युत्पन्न है। मुक्त स्थान के लिए, हम वर्तमान टेन्सर को शून्य के बराबर सेट कर सकते हैं, . आइंस्टीन और मैक्सवेल दोनों के समीकरणों को मुक्त स्थान में गोलाकार रूप से सममित द्रव्यमान वितरण के आसपास हल करने से रीस्नर-नॉर्डस्ट्रॉम ब्लैक होल की ओर जाता है। रीसनर-नॉर्डस्ट्रॉम ने ब्लैक होल को परिभाषित लाइन तत्व (प्राकृतिक इकाइयों में लिखा और चार्ज के साथ) के साथ चार्ज किया Q):[5]
कलुजा-क्लेन सिद्धांत द्वारा विद्युत चुम्बकीय और गुरुत्वाकर्षण Lagrangians (पांचवें आयाम का उपयोग करके) को एकजुट करने का संभावित तरीका दिया गया है।[2]प्रभावी रूप से, कोई पहले दिए गए यांग-मिल्स समीकरणों के समान ही एफ़िन बंडल बनाता है, और फिर 4-आयामी और 1-आयामी भागों पर अलग-अलग कार्रवाई पर विचार करता है। इस तरह के हॉफ फिब्रेशन, जैसे तथ्य यह है कि 7-गोले को 4-गोले और 3-गोले के उत्पाद के रूप में लिखा जा सकता है, या यह कि 11-गोला 4-गोले और 7-गोले का उत्पाद है, शुरुआती उत्साह के लिए जिम्मेदार है कि हर चीज का सिद्धांत मिल गया था। दुर्भाग्य से, 7-गोला इतना बड़ा साबित नहीं हुआ कि सभी मानक मॉडल को घेर सके, इन आशाओं को धराशायी कर दिया।
अतिरिक्त उदाहरण
BF मॉडल Lagrangian, पृष्ठभूमि क्षेत्र के लिए संक्षिप्त, फ्लैट स्पेसटाइम मैनिफोल्ड पर लिखे जाने पर तुच्छ गतिकी के साथ प्रणाली का वर्णन करता है। स्थैतिक रूप से गैर-तुच्छ स्पेसटाइम पर, प्रणालीमें गैर-तुच्छ शास्त्रीय समाधान होंगे, जिन्हें सॉलिटन या पल के रूप में व्याख्या किया जा सकता है। सामयिक क्वांटम क्षेत्र सिद्धांत के लिए नींव बनाने वाले कई प्रकार के एक्सटेंशन मौजूद हैं।
↑It is a standard abuse of notation to abbreviate all the derivatives and coordinates in the Lagrangian density as follows:
see four-gradient. The μ is an index which takes values 0 (for the time coordinate), and 1, 2, 3 (for the spatial coordinates), so strictly only one derivative or coordinate would be present. In general, all the spatial and time derivatives will appear in the Lagrangian density, for example in Cartesian coordinates, the Lagrangian density has the full form:
Here we write the same thing, but using ∇ to abbreviate all spatial derivatives as a vector.
उद्धरण
↑Ralph Abraham and Jerrold E. Marsden, (1967) "Foundations of Mechanics"
↑ 2.02.12.22.32.42.5David Bleecker, (1981) "Gauge Theory and Variational Principles" Addison-Wesley
↑ 3.03.13.23.33.43.5Jurgen Jost, (1995) "Riemannian Geometry and Geometric Analysis", Springer