लुक-एंड-से अनुक्रम

From Vigyanwiki
रेखाएं 23 (लाल), 1 (नीला), 13 (बैंगनी), 312 (हरा) के शुरुआती बिंदुओं के साथ लुक-एंड-सीक्वेंस में अंकों की संख्या में वृद्धि दर्शाती हैं। ये रेखाएँ (जब एक लघुगणकीय पैमाने में प्रदर्शित की जाती हैं) सीधी रेखाओं की ओर प्रवृत्त होती हैं जिनकी ढलानें कॉनवे के स्थिरांक के साथ मेल खाती हैं।

गणित में, देखने-और-कहने का क्रम निम्न प्रकार से प्रारम्भ होने वाला पूर्णांक क्रम है:

1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, 31131211131221, ... (sequence A005150 in the OEIS).

पिछले इकाई से अनुक्रम का एक इकाई उत्पन्न करने के लिए, पिछले इकाई के अंकों को पढ़ें, उसी अंक के समूहों में अंकों की संख्या की गणना करें। उदाहरण के लिए:

  • 1 को एक 1 या 11 के रूप में पढ़ा जाता है।
  • 11 को दो 1 या 21 के रूप में पढ़ा जाता है।
  • 21 को एक 2, एक 1 या 1211 के रूप में पढ़ा जाता है।
  • 1211 को एक 1, एक 2, दो 1s या 111221 के रूप में पढ़ा जाता है।
  • 111221 को तीन 1s, दो 2s, एक 1 या 312211 के रूप में पढ़ा जाता है।

जॉन हॉर्टन कॉनवे द्वारा लुक-एंड-सीक्वेंस का विश्लेषण किया गया था[1] एक पार्टी में उनके एक छात्र द्वारा उनका परिचय कराने के बाद।[2][3] लुक-एंड-से सीक्वेंस का विचार प्रवाह-लंबाई संकेतन के समान है।

यदि 0 से 9 तक किसी भी अंक d से प्रारंभ किया जाता है तो d अनुक्रम के अंतिम अंक के रूप में अनिश्चित काल तक बना रहेगा। 1 के अतिरिक्त किसी भी d के लिए, क्रम इस प्रकार प्रारम्भ होता है:

d, ​​1d, 111d, 311d, 13211d, 111312211d, 31131122211d, …

इलन वर्दी ने इस अनुक्रम को d = 3 से प्रारम्भ होने वाला 'कॉनवे अनुक्रम' कहा है। (sequence A006715 in the OEIS). (d = 2 के लिए, देखें OEISA006751)[4]


मूल गुण

कॉनवे बहुपद की जड़ें जटिल तल में प्लॉट की गई हैं। कॉनवे स्थिरांक को ग्रीक वर्णमाला लैम्ब्डा (λ) से चिह्नित किया गया है।

विकास

क्रम अनिश्चित काल तक बढ़ता है। वास्तव में, एक अलग पूर्णांक बीज संख्या के साथ प्रारम्भ होने से परिभाषित कोई भी संस्करण (अंततः) भी अध: पतन (गणित) अनुक्रम: 22, 22, 22, 22, ... को छोड़कर अनिश्चित काल तक बढ़ेगा, (sequence A010861 in the OEIS)[5]


अंक उपस्थिति सीमा

1, 2, और 3 के अतिरिक्त कोई भी अंक अनुक्रम में प्रकट नहीं होता है, जब तक कि बीज संख्या में ऐसा अंक न हो या एक ही अंक के तीन से अधिक का प्रवाह न हो।[5]


ब्रह्माण्ड संबंधी क्षय

कॉनवे के ब्रह्माण्ड संबंधी प्रमेय का दावा है कि प्रत्येक अनुक्रम अंततः परमाणु तत्वों के अनुक्रम में विभाजित (क्षय) करता है, जो परिमित अनुवर्ती हैं जो फिर कभी अपने पड़ोसियों के साथ बातचीत नहीं करते हैं। केवल 1, 2, और 3 अंक वाले 92 तत्व हैं, जिन्हें जॉन कॉनवे ने यूरेनियम तक प्राकृतिक रूप से पाए जाने वाले 92 रासायनिक तत्वों के नाम पर रखा है, जो अनुक्रम को ऑडियोएक्टिव कहते हैं। 1, 2, और 3 के अतिरिक्त प्रत्येक अंक के लिए दो ट्रांसयूरानिक तत्व (Np और Pu) भी हैं।[5][6] नीचे ऐसे सभी तत्वों की तालिका दी गई है:

सभी "परमाणु तत्व" (जहां एक Ek को Np और Pu को छोड़कर Ek+1 के व्युत्पन्न में सम्मिलित किया गया है)[1]
परमाणु क्रमांक (n) तत्व का नाम (Ek) अनुक्रम अपक्षय [5] बहुलता
1 H 22 H 91790.383216
2 He 13112221133211322112211213322112 Hf.Pa.H.Ca.Li 3237.2968588
3 Li 312211322212221121123222112 He 4220.0665982
4 Be 111312211312113221133211322112211213322112 Ge.Ca.Li 2263.8860325
5 B 1321132122211322212221121123222112 Be 2951.1503716
6 C 3113112211322112211213322112 B 3847.0525419
7 N 111312212221121123222112 C 5014.9302464
8 O 132112211213322112 N 6537.3490750
9 F 31121123222112 O 8521.9396539
10 Ne 111213322112 F 11109.006696
11 Na 123222112 Ne 14481.448773
12 Mg 3113322112 Pm.Na 18850.441228
13 Al 1113222112 Mg 24573.006696
14 Si 1322112 Al 32032.812960
15 P 311311222112 Ho.Si 14895.886658
16 S 1113122112 P 19417.939250
17 Cl 132112 S 25312.784218
18 Ar 3112 Cl 32997.170122
19 K 1112 Ar 43014.360913
20 Ca 12 K 56072.543129
21 Sc 3113112221133112 Ho.Pa.H.Ca.Co 9302.0974443
22 Ti 11131221131112 Sc 12126.002783
23 V 13211312 Ti 15807.181592
24 Cr 31132 V 20605.882611
25 Mn 111311222112 Cr.Si 26861.360180
26 Fe 13122112 Mn 35015.858546
27 Co 32112 Fe 45645.877256
28 Ni 11133112 Zn.Co 13871.123200
29 Cu 131112 Ni 18082.082203
30 Zn 312 Cu 23571.391336
31 Ga 13221133122211332 Eu.Ca.Ac.H.Ca.Zn 1447.8905642
32 Ge 31131122211311122113222 Ho.Ga 1887.4372276
33 As 11131221131211322113322112 Ge.Na 27.246216076
34 Se 13211321222113222112 As 35.517547944
35 Br 3113112211322112 Se 46.299868152
36 Kr 11131221222112 Br 60.355455682
37 Rb 1321122112 Kr 78.678000089
38 Sr 3112112 Rb 102.56285249
39 Y 1112133 Sr.U 133.69860315
40 Zr 12322211331222113112211 Y.H.Ca.Tc 174.28645997
41 Nb 1113122113322113111221131221 Er.Zr 227.19586752
42 Mo 13211322211312113211 Nb 296.16736852
43 Tc 311322113212221 Mo 386.07704943
44 Ru 132211331222113112211 Eu.Ca.Tc 328.99480576
45 Rh 311311222113111221131221 Ho.Ru 428.87015041
46 Pd 111312211312113211 Rh 559.06537946
47 Ag 132113212221 Pd 728.78492056
48 Cd 3113112211 Ag 950.02745646
49 In 11131221 Cd 1238.4341972
50 Sn 13211 In 1614.3946687
51 Sb 3112221 Pm.Sn 2104.4881933
52 Te 1322113312211 Eu.Ca.Sb 2743.3629718
53 I 311311222113111221 Ho.Te 3576.1856107
54 Xe 11131221131211 I 4661.8342720
55 Cs 13211321 Xe 6077.0611889
56 Ba 311311 Cs 7921.9188284
57 La 11131 Ba 10326.833312
58 Ce 1321133112 La.H.Ca.Co 13461.825166
59 Pr 31131112 Ce 17548.529287
60 Nd 111312 Pr 22875.863883
61 Pm 132 Nd 29820.456167
62 Sm 311332 Pm.Ca.Zn 15408.115182
63 Eu 1113222 Sm 20085.668709
64 Gd 13221133112 Eu.Ca.Co 21662.972821
65 Tb 3113112221131112 Ho.Gd 28239.358949
66 Dy 111312211312 Tb 36812.186418
67 Ho 1321132 Dy 47987.529438
68 Er 311311222 Ho.Pm 1098.5955997
69 Tm 11131221133112 Er.Ca.Co 1204.9083841
70 Yb 1321131112 Tm 1570.6911808
71 Lu 311312 Yb 2047.5173200
72 Hf 11132 Lu 2669.0970363
73 Ta 13112221133211322112211213322113 Hf.Pa.H.Ca.W 242.07736666
74 W 312211322212221121123222113 Ta 315.56655252
75 Re 111312211312113221133211322112211213322113 Ge.Ca.W 169.28801808
76 Os 1321132122211322212221121123222113 Re 220.68001229
77 Ir 3113112211322112211213322113 Os 287.67344775
78 Pt 111312212221121123222113 Ir 375.00456738
79 Au 132112211213322113 Pt 488.84742982
80 Hg 31121123222113 Au 637.25039755
81 Tl 111213322113 Hg 830.70513293
82 Pb 123222113 Tl 1082.8883285
83 Bi 3113322113 Pm.Pb 1411.6286100
84 Po 1113222113 Bi 1840.1669683
85 At 1322113 Po 2398.7998311
86 Rn 311311222113 Ho.At 3127.0209328
87 Fr 1113122113 Rn 4076.3134078
88 Ra 132113 Fr 5313.7894999
89 Ac 3113 Ra 6926.9352045
90 Th 1113 Ac 7581.9047125
91 Pa 13 Th 9883.5986392
92 U 3 Pa 102.56285249
Transuranic elements
93 Np 1311222113321132211221121332211n[note 1] Hf.Pa.H.Ca.Pu 0
94 Pu 31221132221222112112322211n[note 1] Np 0


लंबाई में वृद्धि

शब्द अंततः प्रति पीढ़ी लगभग 30% की लंबाई में बढ़ते हैं। विशेष रूप से, यदि एलn अनुक्रम के n-वें इकाई के अंकों की संख्या को दर्शाता है, फिर अनुपात की सीमा (गणित) मौजूद है और इसके द्वारा दिया गया है

जहां λ = 1.303577269034... (sequence A014715 in the OEIS) डिग्री 71 की एक बीजगणितीय संख्या है।[5]यह तथ्य कॉनवे द्वारा सिद्ध किया गया था, और निरंतर λ को कॉनवे के गणितीय स्थिरांक के रूप में जाना जाता है। वही परिणाम 22 के अतिरिक्त किसी भी बीज से प्रारम्भ होने वाले अनुक्रम के प्रत्येक प्रकार के लिए भी होता है।

कॉनवे स्थिरांक एक बहुपद मूल के रूप में

कॉनवे स्थिरांक निम्नलिखित बहुपद का अद्वितीय धनात्मक वास्तविक मूल है (sequence A137275 in the OEIS):

कॉनवे के मूल यूरेका लेख में यह बहुपद सही ढंग से दिया गया था,[1]लेकिन कवर और गोपीनाथ द्वारा संपादित पुस्तक में पुनर्मुद्रित संस्करण में[1]शब्द गलत तरीके से सामने एक ऋण चिह्न के साथ मुद्रित किया गया था।[7]


लोकप्रियता

क्रिप्टोग्राफर रॉबर्ट मॉरिस (क्रिप्टोग्राफर) के बाद लुक-एंड-से अनुक्रम को मॉरिस नंबर अनुक्रम के रूप में भी जाना जाता है, और पहेली अनुक्रम 1, 11, 21, 1211, 111221 में अगली संख्या क्या है? क्लिफर्ड स्टोल की किताब द कोयल्स एग में मॉरिस के वर्णन से इसे कभी-कभी कोयल के अंडे के रूप में संदर्भित किया जाता है।[8][9]


रूपांतर

देखने और कहने के क्रम को उत्पन्न करने के लिए उपयोग किए जाने वाले नियम पर कई संभावित भिन्नताएं हैं। उदाहरण के लिए, मटर पैटर्न बनाने के लिए पिछले शब्द को पढ़ता है और प्रत्येक अंक के सभी उदाहरणों को उनकी पहली उपस्थिति के क्रम में सूचीबद्ध करता है, न कि केवल एक लगातार ब्लॉक में होने वाले। तो बीज 1 से प्रारम्भ करते हुए, मटर का पैटर्न 1, 11 (एक 1), 21 (दो 1), 1211 (एक 2 और एक 1), 3112 (तीन 1 और एक 2), 132112 (एक 3, दो 1) आगे बढ़ता है। और एक 2), 311322 (तीन 1s, एक 3 और दो 2s), आदि। मटर पैटर्न का यह संस्करण अंततः दो परमाणु शर्तों 23322114 और 32232114 के साथ एक चक्र बनाता है।

मटर पैटर्न के अन्य संस्करण भी संभव हैं; उदाहरण के लिए, अंकों को पढ़ने के बजाय जैसे वे पहली बार दिखाई देते हैं, बल्कि उन्हें आरोही क्रम में पढ़ सकते हैं। इस स्थिति में, 21 के बाद का पद 1112 (एक 1, एक 2) होगा और 3112 के बाद का पद 211213 (दो 1, एक 2 और एक 3) होगा।

ये क्रम देखने-और-कहने के क्रम से कई उल्लेखनीय तरीकों से भिन्न हैं। विशेष रूप से, कॉनवे अनुक्रमों के विपरीत, मटर पैटर्न का एक दिया गया पद विशिष्ट रूप से पूर्ववर्ती शब्द को परिभाषित नहीं करता है। इसके अतिरिक्त, किसी भी बीज के लिए मटर का पैटर्न बंधी हुई लंबाई की शर्तें पैदा करता है: यह सीमा आमतौर पर अधिक नहीं होगी 2 × Radix + 2 digits (दशमलव के लिए 22 अंक: radix = 10) और केवल अधिक हो सकता है 3 × Radix digits (दशमलव मूलांक के लिए 30 अंक) लंबे, पतित, प्रारंभिक बीजों (100 इकाइयों का क्रम, आदि) के लिए लंबाई में। इन चरम मामलों के लिए, दशमलव अनुक्रम के अलग-अलग तत्व तुरंत फॉर्म के क्रमपरिवर्तन में व्यवस्थित हो जाते हैं a0 b1 c2 d3 e4 f5 g6 h7 i8 j9 यहाँ कहाँ पत्र aj पूर्ववर्ती अनुक्रम तत्व से अंकों की संख्या के लिए प्लेसहोल्डर हैं।

चूंकि अनुक्रम अनंत है, और प्रत्येक तत्व की लंबाई सीमित है, इसे कबूतर सिद्धांत के कारण अंततः दोहराना होगा। नतीजतन, मटर पैटर्न अनुक्रम हमेशा अंततः आवधिक अनुक्रम होते हैं।

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 n can be any digit 4 or above.


संदर्भ

  1. 1.0 1.1 1.2 1.3 Conway, J. H. (January 1986). "The Weird and Wonderful Chemistry of Audioactive Decay" (PDF). Eureka. 46: 5–16. Reprinted as Conway, J. H. (1987). "The Weird and Wonderful Chemistry of Audioactive Decay". In Cover, Thomas M.; Gopinath, B. (eds.). Open Problems in Communication and Computation. Springer-Verlag. pp. 173–188. ISBN 0-387-96621-8.
  2. Roberts, Siobhan (2015). Genius at Play: The Curious Mind of John Horton Conway. Bloomsbury. ISBN 978-1-62040-593-2.
  3. Look-and-Say Numbers (feat John Conway) - Numberphile on YouTube
  4. Conway Sequence, MathWorld, accessed on line February 4, 2011.
  5. 5.0 5.1 5.2 5.3 5.4 Martin, Oscar (2006). "Look-and-Say Biochemistry: Exponential RNA and Multistranded DNA" (PDF). American Mathematical Monthly. Mathematical association of America. 113 (4): 289–307. doi:10.2307/27641915. ISSN 0002-9890. JSTOR 27641915. Archived from the original (PDF) on 2006-12-24. Retrieved January 6, 2010.
  6. Ekhad, S. B., Zeilberger, D.: Proof of Conway's lost cosmological theorem, Electronic Research Announcements of the American Mathematical Society, August 21, 1997, Vol. 5, pp. 78–82. Retrieved July 4, 2011.
  7. Vardi, Ilan (1991). Computational Recreations in Mathematica. Addison-Wesley. ISBN 0-201-52989-0.
  8. Robert Morris Sequence
  9. FAQ about Morris Number Sequence


बाहरी संबंध