एर्गोडिसिटी
गणित में, एर्गोडिसिटी इस विचार को व्यक्त करती है कि गतिमान प्रणाली का एक बिंदु, या तोगतिशील प्रणाली या स्टोकेस्टिक प्रक्रिया, अंततः उस स्थान के सभी हिस्सों का दौरा करेगी जहां प्रणाली एक समान और यादृच्छिक अर्थ में चलता है। इसका तात्पर्य यह है कि प्रणाली के औसत आचरण को "विशिष्ट" बिंदु की प्रक्षेपवक्र(गतिकी) से घटाया जा सकता है। समतुल्य रूप से, प्रक्रिया से यादृच्छिक नमूनों का पर्याप्त रूप से बड़ा संग्रह पूरी प्रक्रिया के औसत सांख्यिकीय गुणों का प्रतिनिधित्व कर सकता है। एर्गोडिसिटी प्रणाली की विशेषता है; यह एक कथन है कि प्रणाली को छोटे घटकों में घटाया या विभाजित नहीं किया जा सकता है। एर्गोडिक सिद्धांत एर्गोडिसिटी रखने वाली प्रणालियों का अध्ययन है।
एर्गोडिक प्रणाली भौतिकी और ज्यामिति में प्रणाली की विस्तृत श्रृंखला में होते हैं। मोटे तौर पर इसे सामान्य परिघटना के कारण समझा जा सकता है: कणों की गति, यानी अतिशयोक्तिपूर्ण मैनिफोल्ड पर जियोडेसिक्स अलग-अलग होते हैं; जब वह कई गुना कॉम्पैक्ट होता है, जो कि परिमित आकार का होता है, तो वे पॉइनकेयर पुनरावृत्ति की परिक्रमा करते हैं, अंततः पूरे स्थान को भर देती है।
एर्गोडिक प्रणाली सामान्य ज्ञान, यादृच्छिकता की हर दिन की धारणाओं को पकड़ते हैं, जैसे कि धुएं से भरे कमरे को भरने के लिए धुआं आ सकता है, या कि धातु का ब्लॉक अंततः एक ही तापमान में आ सकता है, या जो उत्क्षेप करता है सिक्का आधे समय में हेड और टेल आ सकता है। एर्गोडिसिटी की तुलना में मजबूत अवधारणा मिश्रण (गणित) की है, जिसका उद्देश्य गणितीय रूप से मिश्रण की सामान्य-ज्ञान की धारणाओं का वर्णन करना है, जैसे कि मिश्रण पेय या खाना पकाने की सामग्री को मिलाना है।
एर्गोडिसिटी का उचित गणितीय सूत्रीकरण माप सिद्धांत और गतिशील प्रणालियों की औपचारिक परिभाषाओं पर और विशेष रूप से माप-संरक्षण गतिशील प्रणाली की धारणा पर स्थापित किया गया है। एर्गोडिसिटी की उत्पत्ति सांख्यिकीय भौतिकी में है, जहां लुडविग बोल्ट्जमैन ने एर्गोडिक परिकल्पना तैयार की थी।
अनौपचारिक व्याख्या
एर्गोडिसिटी भौतिकी और गणित में व्यापक सेटिंग्स में होती है। इन सभी सेटिंग्स को एक सामान्य गणितीय विवरण द्वारा एकीकृत किया जाता है, जो कि माप-संरक्षण गतिशील प्रणाली का है। समतुल्य रूप से, प्रसम्भाव्य प्रक्रम के संदर्भ में एर्गोडिसिटी को समझा जा सकता है। प्रभावशाली रूप से भिन्न संकेतन और भाषा का उपयोग करने के बावजूद वे एक ही हैं।
माप-संरक्षण गतिशील प्रणाली
एर्गोडिसिटी की गणितीय परिभाषा का उद्देश्य यादृच्छिकता के बारे में हर दिन सामान्य विचारों को पकड़ना है। इसमें उन प्रणालियों के बारे में विचार शामिल हैं जो इस तरह से आगे बढ़ते हैं (अंततः) सभी जगह भरते हैं, जैसे विसरण और ब्राउनियन गति, साथ ही मिश्रण की सामान्य ज्ञान धारणाएं, जैसे मिश्रण पेंट, पेय, खाना पकाने की सामग्री, औद्योगिक प्रक्रिया मिश्रण, धुएँ से भरे कमरे में धुँआ, शनि वलय में धूल इत्यादि। ठोस गणितीय आधार प्रदान करने के लिए, एर्गोडिक प्रणाली का विवरण माप-संरक्षण गतिशील प्रणाली की परिभाषा से शुरू होता है। इसे इस प्रकार लिखा जाता है
सेट को भरे जाने वाले कुल स्थान के रूप में समझा जाता है: मिक्सिंग बाउल, धुएँ से भरा कमरा, आदि। माप (गणित) स्थान की प्राकृतिक वॉल्यूम और इसके उप-स्थान को परिभाषित करने के लिए समझा जाता है। उपस्थानों के संग्रह को निरूपित किया जाता है , और किसी दिए गए उपसमुच्चय का आकार है; आकार इसकी वॉल्यूम है। सरलता से, कोई कल्पना कर सकता है का घात समुच्चय होना ; यह काफी काम नहीं करता है, क्योंकि स्थान के सभी उपसमुच्चय में वॉल्यूम नहीं होती है (प्रसिद्ध रूप से, बनच-तर्स्की विरोधाभास)। इस प्रकार, परंपरागत रूप से, मापने योग्य उपसमुच्चय होते हैं—वह उपसमुच्चय जिनमें वॉल्यूम होता है। इसे हमेशा बोरेल सेट के रूप में लिया जाता है - उपसमुच्चय का संग्रह जिसे प्रतिच्छेदन, समुच्च और खुले सेटों के सेट पूरक द्वारा बनाया जाता है; इन्हें हमेशा मापने योग्य माना जा सकता है।
प्रणाली का समय विकास मैप (गणित) द्वारा वर्णित है . कुछ उपसमुच्चय दिया , इसका मैप सामान्य रूप से एक विकृत संस्करण होगा - इसे स्क्वैश या स्ट्रेच जाता है, मोड़ा या टुकड़ों में काटा जाता है। गणितीय उदाहरणों में बेकर का मैप और हर्सशू मैप शामिल है, दोनों रोटी बनाने से प्रेरित हैं। सेट के समान वॉल्यूम होनी चाहिए ; स्क्वैशिंग/स्ट्रेचिंग से स्थान का वॉल्यूम नहीं बदलता है, केवल इसका वितरण होता है। ऐसी प्रणाली "माप-संरक्षण" (क्षेत्र-संरक्षण, वॉल्यूम-संरक्षण) है।
औपचारिक कठिनाई तब उत्पन्न होती है जब कोई मैप के अंतर्गत उनके आकार को संरक्षित करने की आवश्यकता के साथ सेट की वॉल्यूम को समेटने का प्रयास करता है। समस्या उत्पन्न होती है, क्योंकि सामान्य तौर पर, किसी फलन के प्रांत में कई अलग-अलग बिंदु इसकी सीमा में एक ही बिंदु पर मैप कर सकते हैं; अर्थात् साथ हो सकता है इससे भी बदतर, एक बिंदु कोई आकार नहीं है। व्युत्क्रम मैप के साथ काम करके इन कठिनाइयों से बचा जा सकता है ; यह किसी दिए गए उपसमुच्चय को मैप करेगा उन भाग के लिए जो इसे बनाने के लिए इकट्ठे किए गए थे: ये भाग हैं , इसमें यह महत्वपूर्ण विशेषता है कि चीजें कहां से आई हैं इसका ट्रैक न खोएं। अधिक दृढ़ता से, इसमें महत्वपूर्ण विशेषता है कि कोई भी (माप-संरक्षण) मैप किसी मैप का विपरीत है , वॉल्यूम-संरक्षण मैप की उचित परिभाषा वह है जिसके लिए क्योंकि सभी टुकड़ों-भागों का वर्णन से आया है।
अब प्रणाली के समय के विकास का अध्ययन करने में रुचि रखता है। अगर सेट अंत में सभी को भरने के लिए आता है लंबे समय तक (यानी, अगर सभी के पास पहुंचता है बड़े के लिए ), प्रणाली को एर्गोडिक प्रणाली कहा जाता है। अगर हर सेट इस तरह से आचरण करता है, प्रणाली संरक्षी निकाय है, जो क्षयी तंत्र के विपरीत रखी जाती है, जहां कुछ उपसमुच्चय अस्थिर सेट, कभी वापस नहीं किया जाता है। एक उदाहरण नीचे की ओर बहता हुआ पानी होगा: एक बार जब यह नीचे चला जाता है, तो यह फिर कभी ऊपर नहीं आता है। हालाँकि, इस नदी के तल पर बनने वाली झील अच्छी तरह से मिश्रित हो सकती है। एर्गोडिक अपघटन प्रमेय कहता है कि प्रत्येक एर्गोडिक प्रणाली को दो भागों में विभाजित किया जा सकता है: रूढ़िवादी भाग और विघटनकारी भाग।
एर्गोडिसिटी की तुलना में मिक्सिंग एक मजबूत कथन है। मिश्रण इस एर्गोडिक विशेषता को किन्हीं दो सेटों के बीच रखने के लिए कहता है , और न केवल कुछ सेट के बीच और . अर्थात् कोई दो समुच्चय दिए गए हैं , यदि कोई पूर्णांक है तो प्रणाली को (सांस्थितिक रूप से) मिश्रण कहा जाता है ऐसा कि, सभी के लिए और , एक के पास है . यहाँ, सेट सर्वनिष्ठ को दर्शाता है और रिक्त समुच्चय है। मिश्रण की अन्य धारणाओं में मजबूत और कमजोर मिश्रण शामिल हैं, जो इस धारणा का वर्णन करते हैं कि मिश्रित पदार्थ हर जगह समान अनुपात में मिलते हैं। यह गैर-तुच्छ हो सकता है, जैसा कि चिपचिपे, चिपचिपे पदार्थों को मिलाने के व्यावहारिक अनुभव से पता चलता है।
एर्गोडिक प्रक्रियाएं
उपरोक्त चर्चा वॉल्यूम के भौतिक अर्थ की अपील करती है। वॉल्यूम को शाब्दिक रूप से 3D स्थान का कुछ भाग होना आवश्यक नहीं है; यह कुछ अमूर्त वॉल्यूम हो सकता है। यह आम तौर पर सांख्यिकीय प्रणालियों में होता है, जहां संभाव्यता द्वारा वॉल्यूम (माप) दी जाती है। कुल वॉल्यूम प्रायिकता एक से मेल खाती है। यह पत्राचार काम करता है क्योंकि संभाव्यता सिद्धांत के सिद्धांत माप सिद्धांत के समान हैं; ये संभाव्यता स्वयंसिद्ध हैं।
वॉल्यूम का विचार बहुत सार हो सकता है। उदाहरण के लिए, सभी संभव कॉइन-फ्लिप्स के सेट पर विचार करें: हेड्स और टेल्स के अनंत अनुक्रमों का सेट है। इस स्थान को 1 का वॉल्यूम निर्दिष्ट करते हुए, यह स्पष्ट है कि ऐसे सभी अनुक्रमों में से आधे हेड्स से शुरू होते हैं, और आधे टेल्स से शुरू होते हैं। कोई इस वॉल्यूम को अन्य तरीकों से स्लाइस कर सकता है: कोई कह सकता है कि "मुझे पहले की परवाह नहीं है कॉइन-फ्लिप्स; लेकिन मैं चाहता हूँ उनमें से वें हेड्स होने के लिए, और उसके बाद जो आता है उसके बारे में मुझे परवाह नहीं है। इसे सेट के रूप में लिखा जा सकता है जहाँ "परवाह मत करो" और हेड्स है। इस स्थान का वॉल्यूम फिर से आधा है।
उपरोक्त माप-संरक्षण गतिशील प्रणाली को पूरी तरह से बनाने के लिए पर्याप्त है। या के सेट में होने वाला वें स्थान को सिलेंडर सेट कहा जाता है। सिलेंडर सेट के सभी संभावित प्रतिच्छेदन, यूनियनों और पूरकों का सेट तब बोरेल सेट बनाता है ऊपर परिभाषित है। औपचारिक शब्दों में, सिलेंडर सेट स्थान (गणित) पर टोपोलॉजी (संरचना) के लिए आधार (टोपोलॉजी) बनाते हैं। सभी संभावित अनंत-लंबाई वाले कॉइन-फ्लिप्स है। पैमाना सभी सामान्य ज्ञान गुण हैं जिनकी कोई आशा कर सकता है: एक सिलेंडर का माप जिसके साथ सेट किया गया है में वें स्थान, और में 'वें स्थान स्पष्ट रूप से 1/4 है, और इसी तरह आगे भी हैं। ये सामान्य ज्ञान गुण सेट-पूरक और सेट-यूनियन के लिए बने रहते हैं: इसके अलावा सब कुछ और स्थानों में और स्पष्ट रूप से 3/4 की वॉल्यूम है। सभी एक साथ, सिग्मा-एडिटिव माप के स्वयंसिद्धों का निर्माण करते हैं; माप-संरक्षण गतिशील प्रणालियाँ हमेशा सिग्मा-योगात्मक माप का उपयोग करती हैं। कॉइन-फ्लिप्स के लिए, इस माप को बर्नौली माप कहा जाता है।
कॉइन-फ्लिप प्रक्रिया के लिए, टाइम-इवोल्यूशन ऑपरेटर शिफ्ट ऑपरेटर है जो कहता है कि "पहले कॉइन-फ्लिप फेंक दो, और बाकी को रखो"। औपचारिक रूप से, यदि कॉइन-फ्लिप का एक क्रम है, फिर . माप स्पष्ट रूप से शिफ्ट-इनवेरिएंट है: जब तक हम किसी सेट के बारे में बात कर रहे हैं जहां पहला कॉइन-फ्लिप ध्यान न दें मान है, फिर वॉल्यूम है नहीं बदलता है: पहले कॉइन-फ्लिप के बारे में बात करने से बचने के लिए, इसे परिभाषित करना आसान है पहली स्थिति में "परवाह न करें" मान डालने के रूप में: . इस परिभाषा के साथ, स्पष्ट रूप से वह है बिना किसी बाध्यता के । यह फिर से क्यों का उदाहरण है औपचारिक परिभाषाओं में प्रयोग किया जाता है।
उपरोक्त विकास यादृच्छिक प्रक्रिया, बर्नौली प्रक्रिया लेता है, और इसे माप-संरक्षण गतिशील प्रणाली में परिवर्तित करता है वही रूपांतरण (तुल्यता, समरूपता) किसी भी स्टोकेस्टिक प्रक्रिया पर लागू किया जा सकता है। इस प्रकार, एर्गोडिसिटी की अनौपचारिक परिभाषा यह है कि अनुक्रम एर्गोडिक है अगर यह सभी का दौरा करता है ; इस तरह के क्रम प्रक्रिया के लिए विशिष्ट हैं। दूसरा यह है कि इसके सांख्यिकीय गुणों को प्रक्रिया के एकल, पर्याप्त रूप से लंबे, यादृच्छिक नमूने से घटाया जा सकता है (इस प्रकार समान रूप से सभी का नमूना लेना)। ), या यह कि किसी प्रक्रिया से यादृच्छिक नमूनों का कोई भी संग्रह पूरी प्रक्रिया के औसत सांख्यिकीय गुणों का प्रतिनिधित्व करता है (अर्थात, समान रूप से नमूने लिए गए नमूने) के प्रतिनिधि हैं एक पूरे के रूप में।) वर्तमान उदाहरण में, कॉइन-फ्लिप का एक क्रम, जहाँ आधे हेड्स हैं, और आधे टेल्स हैं, विशिष्ट क्रम है।
बरनौली प्रक्रिया के बारे में कई महत्वपूर्ण बातें बताई जानी हैं। यदि कोई टेल्स के लिए 0 और हेड्स के लिए 1 लिखता है, तो उसे बाइनरी अंकों के सभी अनंत स्ट्रिग का सेट मिलता है। ये वास्तविक संख्याओं के आधार-दो विस्तार के अनुरूप हैं। स्पष्ट रूप से, एक क्रम दिया , संगत वास्तविक संख्या है
वर्णन है कि बर्नौली प्रक्रिया एर्गोडिक है, वर्णन के बराबर है कि वास्तविक संख्याएं समान रूप से वितरित की जाती हैं। ऐसे सभी स्ट्रिंग्स के सेट को विभिन्न तरीकों से लिखा जा सकता है: यह सेट कैंटर सेट है, जिसे कभी-कभी कैंटर फलन के साथ भ्रम से बचने के लिए कैंटर स्पेस कहा जाता है
अंत में ये सब एक ही बात हैं।
कैंटर सेट गणित की कई शाखाओं में महत्वपूर्ण भूमिका निभाता है। मनोरंजक गणित में, यह पीरियड-डबलिंग फ्रैक्टल्स को रेखांकित करता है; गणितीय विश्लेषण में, यह विभिन्न प्रकार के प्रमेयों में प्रकट होता है। स्टोचैस्टिक प्रक्रियाओं के लिए महत्वपूर्ण वॉल्ड अपघटन है, जिसमें कहा गया है कि किसी भी स्थिर प्रक्रिया को असंबद्ध प्रक्रियाओं की जोड़ी में विघटित किया जा सकता है, निर्धारक और दूसरा चलती औसत प्रक्रिया है।
ऑर्नस्टीन समरूपता प्रमेय में कहा गया है कि प्रत्येक स्थिर स्टोकास्टिक प्रक्रिया बर्नौली योजना (एक एन-पक्षीय (और संभवतः अनुचित) पासा के साथ एक बर्नौली प्रक्रिया) के बराबर है। अन्य परिणामों में शामिल है कि प्रत्येक गैर-विघटनकारी एर्गोडिक प्रणाली मार्कोव ओडोमीटर के बराबर है, जिसे कभी-कभी "एडिंग मशीन" कहा जाता है क्योंकि यह प्राथमिक-विद्यालय जोड़ की तरह दिखता है, यानी आधार-N अंक अनुक्रम लेना, जोड़ना और कैरी बिट्स का प्रचार करना है तुल्यता का प्रमाण बहुत सारगर्भित है; परिणाम को समझना नहीं है: प्रत्येक समय कदम पर जोड़कर, ओडोमीटर की हर संभव स्थिति का दौरा किया जाता है, जब तक कि यह रोल्स नहीं है, और फिर से शुरू होता है। इसी तरह, एर्गोडिक प्रणाली प्रत्येक स्थिति का दौरा करते हैं, समान रूप से, अगले पर चलते हुए, जब तक कि वे सभी का दौरा नहीं किया जाता हैं।
प्रणाली जो N अक्षरों के अनुक्रम (अनंत) उत्पन्न करते हैं, प्रतीकात्मक गतिकी के माध्यम से अध्ययन किए जाते हैं। महत्वपूर्ण विशेष मामलों में परिमित प्रकार और सोफिक प्रणाली के सबशिफ्ट शामिल हैं।
इतिहास और व्युत्पत्ति
एर्गोडिक शब्द आमतौर पर ग्रीक भाषा के शब्दों से लिया गया माना जाता है ἔργον (एर्गन: काम ) और ὁδός (होडोस: पाथ, वे), जैसा कि लुडविग बोल्ट्जमैन द्वारा चुना गया था जब वह सांख्यिकीय यांत्रिकी में एक समस्या पर काम कर रहे थे।[1] साथ ही यह भी दावा किया जाता है कि यह एर्गोमोनोड की व्युत्पत्ति है, जिसे 1884 से अपेक्षाकृत अस्पष्ट पेपर में बोल्ट्जमैन द्वारा गढ़ा गया था। व्युत्पत्ति अन्य तरीकों से भी विवादित प्रतीत होती है।[2]
एर्गोडिसिटी का विचार ऊष्मप्रवैगिकी के क्षेत्र में उत्पन्न हुआ था, जहां गैस के अणुओं की अलग-अलग अवस्थाओं को गैस के तापमान और उसके समय के विकास के रूप में संबंधित करना आवश्यक था। ऐसा करने के लिए, यह बताना आवश्यक था कि गैसों के साथ अच्छी तरह से मिश्रण करने का वास्तव में क्या मतलब है, ताकि गणितीय कठोरता के साथ उष्मागतिक साम्य को परिभाषित किया जा सकता था। एक बार सिद्धांत भौतिकी में अच्छी तरह से विकसित हो जाने के बाद, इसे तेजी से औपचारिक रूप दिया गया और विस्तारित किया गया, जिससे कि एर्गोडिक सिद्धांत लंबे समय तक अपने आप में गणित का स्वतंत्र क्षेत्र रहा। उस प्रगति के हिस्से के रूप में, विभिन्न क्षेत्रों में अवधारणा की एक से अधिक अलग-अलग परिभाषाएँ और अवधारणा की व्याख्याओं की बहुलता सह-अस्तित्व में हैं।
उदाहरण के लिए, चिरसम्मत भौतिकी में इस शब्द का तात्पर्य है कि प्रणाली ऊष्मप्रवैगिकी की एर्गोडिक परिकल्पना को संतुष्ट करती है,[3] प्रासंगिक स्थिति स्थान स्थिति और गति स्थान है।
गतिशील प्रणालियों के सिद्धांत में स्थिति स्थान को आमतौर पर अधिक सामान्य चरण स्थान माना जाता है। दूसरी ओर कोडिंग सिद्धांत में स्थिति स्थान अक्सर कम सहवर्ती संरचना के साथ, समय और स्थिति दोनों में असतत होता है। उन सभी क्षेत्रों में समय औसत और सामुदायिक औसत के विचार अतिरिक्त सामान भी ले सकते हैं - जैसा कि कई संभावित उष्मागतिक रूप से प्रासंगिक विभाजन फलन (सांख्यिकीय यांत्रिकी) के मामले में भौतिकी में सामुदायिक औसत को परिभाषित करने के लिए उपयोग किया जाता है। इस प्रकार अवधारणा के माप सिद्धांत औपचारिकता भी एकीकृत अनुशासन के रूप में कार्य करता है। 1913 में मिशेल प्लांचरेल ने पूरी तरह से यांत्रिक प्रणाली के लिए एर्गोडिसिटी के लिए सख्त असंभवता साबित कर दी थी।
भौतिकी और ज्यामिति में एर्गोडिसिटी
भौतिकी और ज्यामिति में एर्गोडिसिटी की समीक्षा इस प्रकार है। सभी मामलों में, एर्गोडिसिटी की धारणा ठीक वैसी ही है जैसी कि डायनेमिक प्रणाली के लिए; आउटलुक, नोटेशन, सोचने की शैली और उन पत्रिकाओं को छोड़कर जहां परिणाम प्रकाशित होते हैं, कोई अंतर नहीं है।
भौतिक प्रणालियों को तीन श्रेणियों में विभाजित किया जा सकता है: चिरसम्मत यांत्रिकी, जो चलती भागों की सीमित संख्या वाली मशीनों का वर्णन करती है, क्वांटम यांत्रिकी, जो परमाणुओं की संरचना का वर्णन करती है, और सांख्यिकीय यांत्रिकी, जो गैसों, तरल पदार्थों, ठोस पदार्थों का वर्णन करती है; इसमें संघनित पदार्थ भौतिकी शामिल है। इन्हें नीचे प्रस्तुत किया गया है।
सांख्यिकीय यांत्रिकी में
यह खंड सांख्यिकीय यांत्रिकी में क्षुद्रता की समीक्षा करता है। भौतिकी में एर्गोडिसिटी की परिभाषाओं के लिए उपयुक्त सेटिंग के रूप में वॉल्यूम की उपरोक्त अमूर्त परिभाषा आवश्यक है। तरल, या गैस, या प्लाज्मा (भौतिकी), या परमाणुओं या कणों के अन्य संग्रह के एक कंटेनर पर विचार करें। कण-कण एक 3D स्थिति और एक 3D वेग है, और इस प्रकार छह संख्याओं द्वारा वर्णित किया गया है: छह-आयामी स्थान में एक बिंदु अगर वहाँ प्रणाली में इन कणों की, एक पूर्ण विवरण की आवश्यकता है नंबर। कोई भी एक प्रणाली केवल एक बिंदु है भौतिक प्रणाली सब कुछ नहीं है , बिल्कुल; अगर यह चौड़ाई, ऊंचाई और लंबाई का एक बॉक्स है तो एक बिंदु अंदर है न ही वेग अनंत हो सकते हैं: वे कुछ संभाव्यता माप द्वारा मापे जाते हैं, उदाहरण के लिए कैननिकल सामुदायिक | बोल्ट्जमैन-गिब्स एक गैस के लिए माप। कोई नहीं-कम, के लिए अवोगाद्रो संख्या के करीब, यह स्पष्ट रूप से एक बहुत बड़ी जगह है। इस स्थान को कैनोनिकल सामुदायिक कहा जाता है।
एक भौतिक प्रणाली को एर्गोडिक कहा जाता है यदि प्रणाली का कोई प्रतिनिधि बिंदु अंततः प्रणाली की संपूर्ण वॉल्यूम का दौरा करने के लिए आता है। उपरोक्त उदाहरण के लिए, इसका तात्पर्य है कि कोई भी परमाणु न केवल बॉक्स के प्रत्येक भाग पर जाता है समान संभावना के साथ, लेकिन यह ऐसा हर संभव वेग के साथ करता है, उस वेग के लिए बोल्ट्जमैन वितरण द्वारा दी गई संभावना के साथ (इसलिए, उस माप के संबंध में समान)। एर्गोडिक परिकल्पना में कहा गया है कि भौतिक प्रणालियां वास्तव में एर्गोडिक हैं। मल्टीपल टाइम स्केल काम कर रहे हैं: गैस और तरल पदार्थ कम समय के पैमाने पर एर्गोडिक प्रतीत होते हैं। एक ठोस में एर्गोडिसिटी को कंपन मोड या फोनन के संदर्भ में देखा जा सकता है, क्योंकि स्पष्ट रूप से एक ठोस में परमाणु स्थान का आदान-प्रदान नहीं करते हैं। चश्मा एर्गोडिक परिकल्पना के लिए एक चुनौती पेश करता है; समय के पैमाने को लाखों वर्षों में माना जाता है, लेकिन परिणाम विवादास्पद हैं। स्पिन चश्मा विशेष कठिनाइयाँ पेश करते हैं।
सांख्यिकीय भौतिकी में एर्गोडिसिटी के औपचारिक गणितीय प्रमाण प्राप्त करना कठिन है; गणितीय प्रमाण के बिना, अधिकांश उच्च-आयामी कई-निकाय प्रणालियों को एर्गोडिक माना जाता है। अपवादों में गतिशील बिलियर्ड्स शामिल हैं, जो एक आदर्श गैस या प्लाज्मा में परमाणुओं के बिलियर्ड बॉल-प्रकार के टकराव का मॉडल करते हैं। पहला हार्ड-स्फेयर एर्गोडिसिटी प्रमेय सिनाई के बिलियर्ड गेंद लिए था, जो दो गेंदों पर विचार करता है, उनमें से एक को मूल रूप से स्थिर माना जाता है। जैसे ही दूसरी गेंद टकराती है, वह दूर चली जाती है; आवधिक सीमा शर्तों को लागू करने के बाद, यह फिर से टकराने के लिए लौटता है। एकरूपता की अपील करके, दूसरी गेंद की इस वापसी को केवल कुछ अन्य परमाणु के रूप में लिया जा सकता है जो सीमा में आ गया है, और मूल पर परमाणु से टकराने के लिए आगे बढ़ रहा है (जिसे किसी अन्य परमाणु के रूप में लिया जा सकता है। ) यह मौजूद कुछ औपचारिक प्रमाणों में से एक है; कोई समकक्ष कथन नहीं है उदा। एक तरल में परमाणुओं के लिए, वैन डेर वाल्स बलों के माध्यम से बातचीत करना, भले ही यह विश्वास करना सामान्य ज्ञान होगा कि ऐसी प्रणालियां एर्गोडिक (और मिश्रण) हैं। हालाँकि, अधिक सटीक भौतिक तर्क दिए जा सकते हैं।
सरल गतिशील प्रणाली
काफी सरल गतिशील प्रणालियों की जांच करके एर्गोडिसिटी का औपचारिक अध्ययन किया जा सकता है। कुछ प्राथमिक यहां सूचीबद्ध हैं।
एक वृत्त का तर्कहीन घुमाव एर्गोडिक है: एक बिंदु की कक्षा (गतिकी) ऐसी है कि अंततः, सर्कल के हर दूसरे बिंदु का दौरा किया जाता है। इस तरह के घुमाव अंतराल विनिमय मैप का एक विशेष मामला है। किसी संख्या के अंकों का गैर-पूर्णांक आधार एर्गोडिक होता है: वास्तविक संख्या का बीटा विस्तार बेस-एन में नहीं, बल्कि बेस- में किया जाता है। कुछ के लिए बीटा विस्तार का परिलक्षित संस्करण तम्बू का मैप है; यूनिट अंतराल के कई अन्य एर्गोडिक मैप हैं। दो आयामों में जाने पर, अपरिमेय कोण वाले अंकगणितीय बिलियर्ड्स एर्गोडिक होते हैं। कोई एक सपाट आयत भी ले सकता है, इसे स्क्वैश कर सकता है, इसे काट सकता है और इसे फिर से जोड़ सकता है; यह पहले उल्लिखित बेकर का मैप है। इसके बिंदुओं को दो अक्षरों में द्वि-अनंत तार के सेट द्वारा वर्णित किया जा सकता है, जो कि बाएँ और दाएँ दोनों तक फैला हुआ है; इस प्रकार, यह बरनौली प्रक्रिया की दो प्रतियों जैसा दिखता है। यदि स्क्वैशिंग के दौरान कोई साइड में विकृत हो जाता है, तो उसे अर्नोल्ड का कैट मैप प्राप्त होता है। ज्यादातर मायनों में, बिल्ली का मैप किसी अन्य समान परिवर्तन का प्रोटोटाइप है।
चिरसम्मत यांत्रिकी और ज्यामिति में
सहानुभूति मैनिफोल्ड्स और रीमैनियन कई गुना ्स के अध्ययन में एर्गोडिसिटी एक व्यापक घटना है। सिंपलेक्टिक मैनिफोल्ड चिरसम्मत यांत्रिकी के लिए सामान्यीकृत सेटिंग प्रदान करते हैं, जहां एक यांत्रिक प्रणाली की गति को जियोडेसिक द्वारा वर्णित किया जाता है। रीमैनियन मैनिफोल्ड्स एक विशेष मामला है: रिमेंनियन मैनिफोल्ड का स्पर्शरेखा बंडल हमेशा एक सिम्प्लेक्टिक मैनिफोल्ड होता है। विशेष रूप से, रिमेंनियन मैनिफोल्ड पर जियोडेसिक्स हैमिल्टन-जैकोबी समीकरणों के समाधान द्वारा दिए गए हैं।
किसी भी अपरिमेय दिशा का अनुसरण करते हुए समतल टोरस की अनुवाद सतहों पर अनुवाद सतह#जियोडेसिक प्रवाह एर्गोडिक है; अनौपचारिक रूप से इसका मतलब यह है कि किसी भी बिंदु पर शुरू होने वाले वर्ग में एक सीधी रेखा खींचते समय, और पक्षों के संबंध में एक अपरिमेय कोण के साथ, यदि हर बार जब कोई एक पक्ष से मिलता है तो एक ही कोण के साथ विपरीत दिशा में शुरू होता है, रेखा होगी अंततः सकारात्मक माप के हर उपसमुच्चय को पूरा करें। आम तौर पर किसी भी सपाट सतह पर जियोडेसिक प्रवाह के लिए कई एर्गोडिक दिशाएं होती हैं।
गैर-समतल सतहों के लिए, किसी के पास यह है कि किसी भी नकारात्मक रूप से घुमावदार कॉम्पैक्ट रीमैन सतह का जियोडेसिक प्रवाह एर्गोडिक है। एक सतह इस मायने में सघन होती है कि उसका सतही क्षेत्रफल सीमित होता है। जियोडेसिक प्रवाह एक घुमावदार सतह पर एक सीधी रेखा में चलने के विचार का एक सामान्यीकरण है: ऐसी सीधी रेखाएं जियोडेसिक्स हैं। अध्ययन किए गए शुरुआती मामलों में से एक हैडमार्ड के बिलियर्ड्स हैं, जो बोल्ज़ा सतह पर भूगर्भ विज्ञान का वर्णन करता है, जो दो छेद वाले डोनट के समान है। एर्गोडिसिटी को अनौपचारिक रूप से प्रदर्शित किया जा सकता है, अगर किसी के पास दो छेद वाले डोनट का शार्पी और कुछ उचित उदाहरण है: कहीं से भी, किसी भी दिशा में, एक सीधी रेखा खींचने का प्रयास करता है; शासक इसके लिए उपयोगी होते हैं। यह पता लगाने में इतना समय नहीं लगता कि कोई शुरुआती बिंदु पर वापस नहीं आ रहा है। (बेशक, टेढ़ी-मेढ़ी ड्राइंग भी इसका कारण हो सकती है; इसीलिए हमारे पास सबूत हैं।)
ये परिणाम उच्च आयामों तक विस्तारित होते हैं। नकारात्मक रूप से घुमावदार कॉम्पैक्ट रीमैनियन मैनिफोल्ड्स के लिए जियोडेसिक प्रवाह एर्गोडिक है। इसके लिए एक उत्कृष्ट उदाहरण एनोसोव प्रवाह है, जो एक अतिशयोक्तिपूर्ण मैनिफोल्ड पर हॉरोसायकल है। इसे एक तरह का हॉफ फिब्रेशन देखा जा सकता है। इस तरह के प्रवाह आमतौर पर चिरसम्मत यांत्रिकी में होते हैं, जो परिमित-आयामी गतिमान मशीनरी के भौतिकी में अध्ययन है, उदा। डबल पेंडुलम और इतने पर। क्लासिकल यांत्रिकी का निर्माण सिम्पलेक्टिक मैनिफोल्ड्स पर किया गया है। ऐसी प्रणालियों पर प्रवाह को स्थिर कई गुना में विखंडित किया जा सकता है; एक सामान्य नियम के रूप में, जब यह संभव होता है, अराजक गति का परिणाम होता है। यह सामान्य है कि यह ध्यान देने से देखा जा सकता है कि एक रिमेंनियन मैनिफोल्ड का कॉटैंगेंट बंडल (हमेशा) एक सहानुभूतिपूर्ण मैनिफोल्ड है; इस कई गुना के लिए हैमिल्टन-जैकोबी समीकरणों के समाधान द्वारा जियोडेसिक प्रवाह दिया जाता है। विहित निर्देशांक के संदर्भ में कोटेन्जेंट मैनिफोल्ड पर, हैमिल्टनियन (फलन) या ऊर्जा द्वारा दिया जाता है
साथ (के व्युत्क्रम) मीट्रिक टेंसर और गति। गतिज ऊर्जा से समानता एक बिंदु कण की शायद ही आकस्मिक है; ऐसी चीजों को ऊर्जा कहने का सार यही है। इस अर्थ में, एर्गोडिक कक्षाओं के साथ अराजक आचरण ज्यामिति के बड़े इलाकों में अधिक या कम सामान्य घटना है।
एर्गोडिसिटी परिणाम अनुवाद सतहों, अतिशयोक्तिपूर्ण समूहों और सिस्टोलिक ज्यामिति में प्रदान किए गए हैं। तकनीकों में एर्गोडिक प्रवाह, हॉफ अपघटन और एर्गोडिक प्रवाह का अध्ययन शामिल है। एम्ब्रोस-काकुटानी-क्रेंगल-कुबो प्रमेय। प्रणाली का एक महत्वपूर्ण वर्ग Axiom A प्रणाली है।
वर्गीकरण और विरोधी वर्गीकरण दोनों के कई परिणाम प्राप्त हुए हैं। ऑर्नस्टीन समरूपता प्रमेय यहाँ भी लागू होता है; फिर से, यह बताता है कि इनमें से अधिकांश प्रणालियाँ कुछ बर्नौली योजना के लिए समरूप हैं। यह बड़े करीने से इन प्रणालियों को पिछले खंड में एक स्टोचैस्टिक प्रक्रिया के लिए दी गई एर्गोडिसिटी की परिभाषा से जोड़ता है। विरोधी वर्गीकरण के परिणाम बताते हैं कि असमान एर्गोडिक माप-संरक्षण गतिशील प्रणालियों की एक अनगिनत अनंत संख्या से अधिक हैं। यह शायद पूरी तरह से आश्चर्य की बात नहीं है, क्योंकि समान-लेकिन-भिन्न प्रणालियों के निर्माण के लिए कैंटर सेट में बिंदुओं का उपयोग किया जा सकता है। कुछ विरोधी वर्गीकरण परिणामों के संक्षिप्त सर्वेक्षण के लिए माप-संरक्षण गतिशील प्रणाली देखें।
क्वांटम यांत्रिकी में
क्वांटम यांत्रिकी के रूप में, एर्गोडोसिटी या अराजकता की कोई सार्वभौमिक क्वांटम परिभाषा नहीं है (क्वांटम अराजकता देखें)।[4] हालाँकि, एक क्वांटम एर्गोडिसिटी है, जिसमें कहा गया है कि एक ऑपरेटर की अपेक्षा का मूल्य अर्धसूत्रीय सीमा में संबंधित माइक्रोकैनोनिकल चिरसम्मत औसत में परिवर्तित हो जाता है। . फिर भी, प्रमेय का अर्थ यह नहीं है कि हैमिलियनियन के सभी ईजेनस्टेट्स जिनके चिरसम्मत समकक्ष अराजक हैं, विशेषताएं और यादृच्छिक हैं। उदाहरण के लिए, क्वांटम एर्गोडिसिटी प्रमेय गैर-एर्गोडिक राज्यों जैसे क्वांटम निशान के अस्तित्व को बाहर नहीं करता है। पारंपरिक निशान के अलावा,[5][6][7][8] दो अन्य प्रकार के क्वांटम स्कारिंग हैं, जो आगे क्वांटम अराजक प्रणालियों में कमजोर-क्षयहीनता को स्पष्ट करते हैं: गड़बड़ी-प्रेरित[9][10][11][12][13] और कई-शरीर क्वांटम निशान।[14]
असतत-समय प्रणालियों के लिए परिभाषा
औपचारिक परिभाषा
मान लीजिये मापने योग्य स्थान हो। अगर से मापने योग्य कार्य है खुद को और एक संभाव्यता माप पर तब हम कहते हैं है -एर्गोडिक या के लिए एक एर्गोडिक माप है अगर बरकरार रखता है और निम्नलिखित शर्त रखती है:
- किसी के लिए ऐसा है कि दोनों में से एक या .
दूसरे शब्दों में नहीं हैं -invariant उपसमुच्चय 0 को मापने के लिए (के संबंध में ). याद करें कि संरक्षण (या प्राणी -अपरिवर्तनीय माप) का अर्थ है सभी के लिए (यह भी देखें माप-संरक्षण गतिशील प्रणाली)।
ध्यान दें कि कुछ लेखक (उदाहरण के लिए, एंडरसन द्वारा अनंत एर्गोडिक सिद्धांत का परिचय, पृष्ठ 21) उस आवश्यकता को शिथिल करते हैं जो है -आवश्यकता के लिए अपरिवर्तनीय है कि माप-शून्य सेट के पुलबैक माप-शून्य हैं, यानी पुशफॉरवर्ड माप के संबंध में एकवचन है .
उदाहरण
सबसे सरल उदाहरण है जब एक परिमित समुच्चय है और गिनती का पैमाना। फिर का एक स्व-मैप बरकरार रखता है अगर और केवल अगर यह एक आक्षेप है, और अगर और केवल अगर यह एर्गोडिक है केवल एक कक्षा (गतिकी) है (अर्थात, प्रत्येक के लिए वहां मौजूद ऐसा है कि ). उदाहरण के लिए, यदि फिर चक्रीय क्रमचय एर्गोडिक है, लेकिन क्रमचय है नहीं है (इसमें दो अपरिवर्तनीय उपसमुच्चय हैं और ).
समतुल्य फॉर्मूलेशन
ऊपर दी गई परिभाषा निम्नलिखित तत्काल सुधारों को स्वीकार करती है:
- हरएक के लिए साथ अपने पास या (जहाँ सममित अंतर को दर्शाता है);
- हरएक के लिए सकारात्मक माप के साथ हमारे पास है ;
- हर दो सेट के लिए सकारात्मक माप का, मौजूद है ऐसा है कि ;
- हर मापने योग्य कार्य साथ पूर्ण माप के उपसमुच्चय पर स्थिर है।
महत्वपूर्ण रूप से अनुप्रयोगों के लिए, अंतिम लक्षण वर्णन में स्थिति केवल वर्ग-अभिन्न कार्यों तक ही सीमित हो सकती है:
- अगर और तब लगभग हर जगह स्थिर है।
अन्य उदाहरण
बरनौली शिफ्ट और सबशिफ्ट
मान लीजिये एक परिमित सेट हो और साथ उत्पाद माप (प्रत्येक कारक इसके गिनती के माप के साथ संपन्न किया जा रहा है)। फिर शिफ्ट स्पेस द्वारा परिभाषित है -ergodic.[15]
शिफ्ट मैप के लिए कई और एर्गोडिक माप हैं पर . आवधिक अनुक्रम सूक्ष्म रूप से समर्थित माप देते हैं। अधिक दिलचस्प बात यह है कि असीम रूप से समर्थित हैं जो कि परिमित प्रकार के सबशिफ्ट हैं।
अपरिमेय घुमाव
मान लीजिये यूनिट सर्कल हो , इसके लेबेस्गुए माप के साथ . किसी के लिए का घूर्णन कोण का द्वारा दिया गया है . अगर तब लेबेस्गुए माप के लिए एर्गोडिक नहीं है क्योंकि इसमें असीम रूप से कई परिमित कक्षाएँ हैं। वहीं दूसरी ओर अगर तब तर्कहीन है एर्गोडिक है।[16]
अर्नोल्ड की बिल्ली का मैप
मान लीजिये 2-टोरस हो। फिर कोई तत्व के स्व-मैप को परिभाषित करता है तब से . कब एक तथाकथित अर्नोल्ड की बिल्ली का मैप प्राप्त करता है, जो टोरस पर लेबेस्गु माप के लिए एर्गोडिक है।
एर्गोडिक प्रमेय
अगर किसी स्थान पर संभाव्यता माप है जो एक परिवर्तन के लिए एर्गोडिक है जी। बिरखॉफ के बिंदुवार एर्गोडिक प्रमेय में कहा गया है कि हर मापने योग्य कार्यों के लिए और के लिए -लगभग हर बिंदु की कक्षा पर समय औसत के स्थान औसत में परिवर्तित हो जाता है . औपचारिक रूप से इसका मतलब है
संबंधित गुण
घनी कक्षाएँ
एर्गोडिसिटी की परिभाषा का एक तात्कालिक परिणाम यह है कि एक टोपोलॉजिकल स्पेस पर , और अगर बोरेल सेट का σ-बीजगणित है, अगर है -फिर एर्गोडिक -लगभग हर कक्षा के समर्थन में सघन है .
यह एक तुल्यता नहीं है क्योंकि एक परिवर्तन के लिए जो विशिष्ट रूप से क्षुद्र नहीं है, लेकिन जिसके लिए पूर्ण समर्थन के साथ एक क्षुद्र माप है , किसी अन्य एर्गोडिक माप के लिए पैमाना के लिए एर्गोडिक नहीं है लेकिन इसकी कक्षाएँ समर्थन में सघन हैं। शिफ्ट-इनवेरिएंट माप के साथ स्पष्ट उदाहरणों का निर्माण किया जा सकता है।[17]
मिश्रण
परिवर्तन संभाव्यता माप स्थान का माप के लिए मिश्रण कहा जाता है अगर किसी मापने योग्य सेट के लिए निम्नलिखित धारण करता है:
मिश्रण की इस धारणा को कभी-कभी कमजोर मिश्रण के विपरीत मजबूत मिश्रण कहा जाता है, जिसका अर्थ है कि
उचित एर्गोडिसिटी
रूपान्तरण यदि इसमें पूर्ण माप की कक्षा नहीं है, तो इसे उचित रूप से एर्गोडिक कहा जाता है। असतत मामले में इसका मतलब है कि माप की परिमित कक्षा पर समर्थित नहीं है ।
निरंतर-समय गतिशील प्रणालियों के लिए परिभाषा
परिभाषा अनिवार्य रूप से निरंतर-समय की गतिशील प्रणालियों के लिए एक ही परिवर्तन के लिए समान है। मान लीजिये औसत दर्जे का स्थान हो और प्रत्येक के लिए , तो ऐसी व्यवस्था एक कुल द्वारा दी जाती है मापने योग्य कार्यों से खुद के लिए, ताकि किसी के लिए संबंध धारण करता है (आमतौर पर यह भी पूछा जाता है कि ऑर्बिट मैप से मापने योग्य भी है)। अगर पर एक प्रायिकता माप है हम ऐसा कहते हैं है -एर्गोडिक या के लिए एर्गोडिक माप है यदि प्रत्येक संरक्षित करता है और निम्नलिखित शर्त रखती है:
- किसी के लिए , अगर सभी के लिए अपने पास है फिर या तो
उदाहरण
जैसा कि असतत मामले में सबसे सरल उदाहरण सकर्मक क्रिया का है, उदाहरण के लिए दिए गए वृत्त पर क्रिया लेबेस्गुए माप के लिए एर्गोडिक है।
टोरस पर अपरिमेय ढाल के साथ प्रवाह द्वारा असीम रूप से कई कक्षाओं के साथ उदाहरण दिया गया है: चलो और . मान लीजिये ; तो अगर यह लेबेस्ग माप के लिए एर्गोडिक है।
एर्गोडिक प्रवाह
एर्गोडिक प्रवाह के और उदाहरण हैं:
- उत्तल यूक्लिडियन प्रांत में गतिशील बिलियर्ड्स;
- परिमित वॉल्यूम के ऋणात्मक रूप से घुमावदार रीमैनियन मैनिफोल्ड का जियोडेसिक प्रवाह एर्गोडिक है (सामान्यीकृत वॉल्यूम माप के लिए);
- परिमित वॉल्यूम के अतिशयोक्तिपूर्ण कई गुना पर चक्रीय प्रवाह एर्गोडिक है (सामान्यीकृत वॉल्यूम माप के लिए)
कॉम्पैक्ट मेट्रिक स्पेस में एर्गोडिसिटी
अगर एक कॉम्पैक्ट मीट्रिक स्थान है जो बोरेल सेट के σ-बीजगणित के साथ स्वाभाविक रूप से संपन्न है। टोपोलॉजी से आने वाली अतिरिक्त संरचना तब एर्गोडिक परिवर्तनों और माप के लिए अधिक विस्तृत सिद्धांत की अनुमति देती है।
कार्यात्मक विश्लेषण व्याख्या
बनच स्पेस के सिद्धांत का उपयोग करके एर्गोडिक माप की एक बहुत ही शक्तिशाली वैकल्पिक परिभाषा दी जा सकती है। रैडॉन पर माप करता है बनच स्पेस बनाते हैं जिसमें सेट होता है संभाव्यता माप पर उत्तल समुच्चय है। निरंतर परिवर्तन को देखते हुए का उपसमुच्चय का -अपरिवर्तनीय माप बंद उत्तल उपसमुच्चय है, और माप के लिए एर्गोडिक है अगर और केवल अगर यह इस उत्तल का चरम बिंदु है।[18]
एर्गोडिक माप का अस्तित्व
ऊपर की सेटिंग में यह बानाच-अलाग्लु प्रमेय से अनुसरण करता है कि इसमें हमेशा चरम बिंदु मौजूद होते हैं , इसलिए कॉम्पैक्ट मीट्रिक स्पेस का परिवर्तन हमेशा एर्गोडिक माप को स्वीकार करता है।
एर्गोडिक अपघटन
आम तौर पर अपरिवर्तनीय माप को एर्गोडिक नहीं होना चाहिए, लेकिन चॉकेट सिद्धांत के परिणामस्वरूप इसे हमेशा एर्गोडिक माप के सेट पर प्रायिकता माप के बायर्सेंटर के रूप में व्यक्त किया जा सकता है। इसे माप के एर्गोडिक अपघटन के रूप में जाना जाता है।[19]
उदाहरण
और के मामले में गिनती का माप एर्गोडिक नहीं है। एर्गोडिक माप के लिए एकसमान माप हैं उपसमुच्चय पर समर्थित और और हर -अपरिवर्तनीय संभाव्यता माप के रूप में लिखा जा सकता है कुछ के लिए . विशेष रूप से मतगणना माप का एर्गोडिक अपघटन है।
सतत प्रणाली
इस खंड में सब कुछ के निरंतर कार्यों के लिए शब्दशः स्थानांतरित करता है या कॉम्पैक्ट मीट्रिक स्पेस पर।
अद्वितीय एर्गोडिसिटी
रूपान्तरण को विशिष्ट रूप से एर्गोडिक कहा जाता है यदि कोई अद्वितीय बोरेल संभाव्यता माप है पर जिसके लिए एर्गोडिक है ।
ऊपर दिए गए उदाहरणों में, सर्कल के अपरिमेय घुमाव विशिष्ट रूप से एर्गोडिक हैं;[20] शिफ्ट मैप नहीं हैं।
संभाव्य व्याख्या: एर्गोडिक प्रक्रियाएं
अगर स्थान पर असतत-समय की स्टोकेस्टिक प्रक्रिया है , यह चरों के संयुक्त वितरण पर अगर एर्गोडिक कहा जाता है शिफ्ट मैप के तहत अपरिवर्तनीय है }। यह ऊपर चर्चा की गई धारणाओं का एक विशेष मामला है।
सबसे सरल मामला एक स्वतंत्र और समान रूप से वितरित प्रक्रिया का है जो ऊपर वर्णित शिफ्ट मैप से मेल खाता है। एक अन्य महत्वपूर्ण मामला मार्कोव श्रृंखला का है जिसकी चर्चा नीचे विस्तार से की गई है।
एक समान व्याख्या निरंतर-समय की प्रसम्भाव्य प्रक्रम के लिए होती है, हालांकि कार्य की औसत दर्जे की संरचना का निर्माण अधिक जटिल है।
मार्कोव श्रृंखला की एर्गोडिसिटी
मार्कोव श्रृंखला से जुड़ी गतिशील प्रणाली
मान लीजिये एक परिमित सेट हो। मार्कोव श्रृंखला आव्यूह द्वारा परिभाषित किया गया है , जहाँ से संक्रमण प्रायिकता है को , इसलिए प्रत्येक के लिए हमारे पास है , स्थिर प्रक्रिया के लिए संभाव्यता माप है पर ऐसा है कि ; वह है सभी के लिए .
इस डेटा का उपयोग करके हम प्रायिकता माप को परिभाषित कर सकते हैं सेट पर इसके गुणनफल σ-बीजगणित के साथ सिलिंडरों की माप इस प्रकार देकर:
एर्गोडिसिटी के लिए मानदंड
पैमाना हमेशा शिफ्ट मैप के लिए एर्गोडिक होता है, अगर संबंधित मार्कोव श्रृंखला इर्रेड्यूबल है (किसी भी स्थिति को किसी भी अन्य स्थिति से सकारात्मक संभावना के साथ सीमित चरणों में पहुँचा जा सकता है)।[21]
उपरोक्त परिकल्पनाओं का अर्थ है कि मार्कोव श्रृंखला के लिए अद्वितीय स्थिर माप है। आव्यूह के संदर्भ में इसके लिए पर्याप्त शर्त यह है कि 1आव्यूह का साधारण आइगेनवेल्यू हो और अन्य सभी आइगेनवेल्यू (में ) मापांक <1 के हैं।
ध्यान दें कि संभाव्यता सिद्धांत में मार्कोव श्रृंखला को एर्गोडिक कहा जाता है यदि इसके अलावा प्रत्येक स्थिति एपेरियोडिक है (ऐसे समय जहां वापसी की संभावना सकारात्मक है, एक पूर्णांक> 1 के गुणक नहीं हैं)। अपरिवर्तनीय माप के लिए यह आवश्यक नहीं है कि वह एर्गोडिक हो; इसलिए मार्कोव श्रृंखला और संबंधित शिफ्ट-इनवेरिएंट माप के लिए "एर्गोडिसिटी" की धारणाएं अलग हैं (श्रृंखला के लिए एक सख्ती से मजबूत है)।[22]
इसके अलावा मानदंड एक "अगर और केवल अगर" है यदि श्रृंखला में सभी संचार वर्ग आवर्तक हैं और हम सभी स्थिर माप पर विचार करते हैं।
उदाहरण
गिनती का पैमाना
अगर सभी के लिए तो स्थिर माप गिनती का माप है, माप है गिनती के माप का उत्पाद है। मार्कोव श्रृंखला एर्गोडिक है, इसलिए ऊपर से बदलाव का उदाहरण मानदण्ड का विशेष मामला है।
गैर-एर्गोडिक मार्कोव श्रृंखला
पुनरावर्ती संचार वर्गों के साथ मार्कोव श्रृंखला इरेड्यूसिबल नहीं हैं, एर्गोडिक नहीं हैं, और इसे तुरंत निम्नानुसार देखा जा सकता है। अगर दो अलग-अलग आवर्तक संचार वर्ग हैं, गैर-स्थिर स्थिर माप हैं पर समर्थन किया क्रमशः और उपसमुच्चय और अपरिवर्तनीय संभाव्यता माप के लिए शिफ्ट-इनवेरिएंट और माप 1.2 दोनों हैं, इसका एक बहुत ही सरल उदाहरण है श्रृंखला आव्यूह द्वारा दिया गया (दोनों स्थिति स्थिर हैं)।
आवधिक श्रृंखला
मार्कोव श्रृंखला आव्यूह द्वारा दिया गया अप्रासंगिक लेकिन आवधिक है। इस प्रकार यह संबंधित माप के बावजूद मार्कोव श्रृंखला के अर्थ में एर्गोडिक नहीं है पर शिफ्ट मैप के लिए एर्गोडिक है। हालाँकि, इस माप के लिए शिफ्ट मिश्रण नहीं है, जैसा कि सेट के लिए है
अपने पास लेकिन
सामान्यीकरण
एर्गोडिसिटी की परिभाषा समूह क्रियाओं के लिए भी समझ में आती है। चिरसम्मत सिद्धांत (उलटा परिवर्तन के लिए) के कार्यों से मेल खाता है या .
गैर-अबेलियन समूहों के लिए कॉम्पैक्ट मीट्रिक रिक्त स्थान पर भी अपरिवर्तनीय माप नहीं हो सकते हैं। हालांकि अगर कोई अपरिवर्तनीय माप को अर्ध-अपरिवर्तनीय माप से बदल देता है तो एर्गोडिसिटी की परिभाषा अपरिवर्तित रहती है।
महत्वपूर्ण उदाहरण इसकी फुरस्टनबर्ग सीमा पर अर्ध-सरल लाइ समूह (या एक जाली (असतत उपसमूह)) की कार्यहै।
मापने योग्य तुल्यता संबंध को एर्गोडिक कहा जाता है यदि सभी संतृप्त उपसमुच्चय या तो अशक्त या अशक्त हों।
टिप्पणियाँ
- ↑ Walters 1982, §0.1, p. 2
- ↑ Gallavotti, Giovanni (1995). "बोल्ट्जमैन और उसके बाद की एर्गोडिसिटी, पहनावा, अपरिवर्तनीयता". Journal of Statistical Physics. 78 (5–6): 1571–1589. arXiv:chao-dyn/9403004. Bibcode:1995JSP....78.1571G. doi:10.1007/BF02180143. S2CID 17605281.
- ↑ Feller, William (1 August 2008). प्रायिकता सिद्धांत और उसके आवेदन के लिए एक परिचय (2nd ed.). Wiley India Pvt. Limited. p. 271. ISBN 978-81-265-1806-7.
- ↑ Stöckmann, Hans-Jürgen (1999). Quantum Chaos: An Introduction. Cambridge: Cambridge University Press. doi:10.1017/cbo9780511524622. ISBN 978-0-521-02715-1.
- ↑ Heller, Eric J. (1984-10-15). "Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits". Physical Review Letters. 53 (16): 1515–1518. Bibcode:1984PhRvL..53.1515H. doi:10.1103/PhysRevLett.53.1515.
- ↑ Kaplan, L (1999-03-01). "क्वांटम अराजक तरंग कार्यों में निशान". Nonlinearity. 12 (2): R1–R40. doi:10.1088/0951-7715/12/2/009. ISSN 0951-7715. S2CID 250793219.
- ↑ Kaplan, L.; Heller, E.J. (April 1998). "ईजेनफंक्शन स्कार्स का रेखीय और अरैखिक सिद्धांत". Annals of Physics (in English). 264 (2): 171–206. arXiv:chao-dyn/9809011. Bibcode:1998AnPhy.264..171K. doi:10.1006/aphy.1997.5773. S2CID 120635994.
- ↑ Heller, Eric Johnson (2018). गतिकी और स्पेक्ट्रोस्कोपी के लिए अर्धशास्त्रीय तरीका (in English). Princeton: Princeton University Press. ISBN 978-1-4008-9029-3. OCLC 1034625177.
- ↑ Keski-Rahkonen, J.; Ruhanen, A.; Heller, E. J.; Räsänen, E. (2019-11-21). "क्वांटम लिसाजस निशान". Physical Review Letters. 123 (21): 214101. arXiv:1911.09729. Bibcode:2019PhRvL.123u4101K. doi:10.1103/PhysRevLett.123.214101. PMID 31809168. S2CID 208248295.
- ↑ Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa (2016-11-28). "स्थानीय अशुद्धियों द्वारा मजबूत क्वांटम स्कारिंग". Scientific Reports (in English). 6 (1): 37656. arXiv:1511.04198. Bibcode:2016NatSR...637656L. doi:10.1038/srep37656. ISSN 2045-2322. PMC 5124902. PMID 27892510.
- ↑ Keski-Rahkonen, J.; Luukko, P. J. J.; Kaplan, L.; Heller, E. J.; Räsänen, E. (2017-09-20). "सेमीकंडक्टर क्वांटम डॉट्स में नियंत्रित क्वांटम निशान". Physical Review B. 96 (9): 094204. arXiv:1710.00585. Bibcode:2017PhRvB..96i4204K. doi:10.1103/PhysRevB.96.094204. S2CID 119083672.
- ↑ Keski-Rahkonen, J; Luukko, P J J; Åberg, S; Räsänen, E (2019-01-21). "अव्यवस्थित क्वांटम कुओं में क्वांटम अराजकता पर निशान के प्रभाव". Journal of Physics: Condensed Matter (in English). 31 (10): 105301. arXiv:1806.02598. Bibcode:2019JPCM...31j5301K. doi:10.1088/1361-648x/aaf9fb. ISSN 0953-8984. PMID 30566927. S2CID 51693305.
- ↑ Keski-Rahkonen, Joonas (2020). अव्यवस्थित द्वि-आयामी नैनोस्ट्रक्चर में क्वांटम कैओस (in English). Tampere University. ISBN 978-952-03-1699-0.
- ↑ Turner, C. J.; Michailidis, A. A.; Abanin, D. A.; Serbyn, M.; Papić, Z. (July 2018). "क्वांटम कई-शरीर के निशान से कमजोर ergodicity टूटना". Nature Physics (in English). 14 (7): 745–749. Bibcode:2018NatPh..14..745T. doi:10.1038/s41567-018-0137-5. ISSN 1745-2481. S2CID 256706206.
- ↑ Walters 1982, p. 32.
- ↑ Walters 1982, p. 29.
- ↑ "सघन कक्षाओं के साथ एक माप-संरक्षण प्रणाली का उदाहरण जो कि एर्गोडिक नहीं है". MathOverflow. September 1, 2011. Retrieved May 16, 2020.
- ↑ Walters 1982, p. 152.
- ↑ Walters 1982, p. 153.
- ↑ Walters 1982, p. 159.
- ↑ Walters 1982, p. 42.
- ↑ ""एर्गोडिक" शब्द के विभिन्न उपयोग". MathOverflow. September 4, 2011. Retrieved May 16, 2020.
संदर्भ
- Walters, Peter (1982). An Introduction to Ergodic Theory. Springer. ISBN 0-387-95152-0.
- Brin, Michael; Garrett, Stuck (2002). Introduction to Dynamical Systems. Cambridge University Press. ISBN 0-521-80841-3.
बाहरी संबंध
- Karma Dajani and Sjoerd Dirksin, "A Simple Introduction to एर्गोडिक Theory"