बार्न्स जी-फ़ंक्शन कार्यात्मक समीकरण को संतुष्ट करता है
सामान्यीकरण जी(1)=1 के साथ। बार्न्स जी-फ़ंक्शन के कार्यात्मक समीकरण और यूलर गामा फ़ंक्शन के कार्यात्मक समीकरण के बीच समानता पर ध्यान दें:
कार्यात्मक समीकरण का तात्पर्य है कि G पूर्णांक तर्कों पर निम्नलिखित मान लेता है:
(विशेष रूप से, )
और इस तरह
कहाँ गामा फ़ंक्शन को दर्शाता है और K, K-फ़ंक्शन को दर्शाता है। कार्यात्मक समीकरण विशिष्ट रूप से जी फ़ंक्शन को परिभाषित करता है यदि उत्तलता की स्थिति,
जोड़ दिया गया है।[2] इसके अतिरिक्त, बार्न्स जी फ़ंक्शन दोहराव सूत्र को संतुष्ट करता है,[3]
लक्षण वर्णन
गामा फ़ंक्शन के लिए बोहर-मोलेरुप प्रमेय|बोहर-मोलेरुप प्रमेय के समान, स्थिरांक के लिए , हमारे पास है [4]
और के लिए
जैसा .
1/2 पर मान
परावर्तन सूत्र 1.0
जी-फ़ंक्शन के लिए अंतर समीकरण, गामा फ़ंक्शन के कार्यात्मक समीकरण के साथ, बार्न्स जी-फ़ंक्शन के लिए निम्नलिखित प्रतिबिंब सूत्र प्राप्त करने के लिए उपयोग किया जा सकता है (मूल रूप से हरमन किंकेलिन द्वारा सिद्ध):
दाहिनी ओर लॉगटैन्जेंट इंटीग्रल का मूल्यांकन क्लॉज़ेन फ़ंक्शन (क्रम 2 के) के संदर्भ में किया जा सकता है, जैसा कि नीचे दिखाया गया है:
इस परिणाम का प्रमाण कोटैंजेंट इंटीग्रल के निम्नलिखित मूल्यांकन पर निर्भर करता है: अंकन का परिचय लॉगकोटैंजेंट इंटीग्रल के लिए, और इस तथ्य का उपयोग करते हुए , भागों द्वारा एकीकरण देता है
अभिन्न प्रतिस्थापन करना देता है
क्लॉज़ेन फ़ंक्शन - दूसरे क्रम का - अभिन्न प्रतिनिधित्व है
हालाँकि, अंतराल के भीतर , एकीकृत के भीतर पूर्ण मूल्य चिह्न को छोड़ा जा सकता है, क्योंकि सीमा के भीतर इंटीग्रल में 'अर्ध-साइन' फ़ंक्शन सख्ती से सकारात्मक है, और सख्ती से गैर-शून्य है। लॉगटैन्जेंट इंटीग्रल के लिए उपरोक्त परिणाम के साथ इस परिभाषा की तुलना करने पर, निम्नलिखित संबंध स्पष्ट रूप से सामने आता है:
इस प्रकार, शब्दों की थोड़ी सी पुनर्व्यवस्था के बाद, प्रमाण पूरा हो गया है:
संबंध का उपयोग करना और प्रतिबिंब सूत्र को कारक से विभाजित करना समतुल्य रूप देता है:
संदर्भ: प्रतिबिंब सूत्र के समतुल्य रूप के लिए नीचे एडमचिक देखें, लेकिन अलग प्रमाण के साथ।
परावर्तन सूत्र 2.0
पिछले प्रतिबिंब सूत्र में z को (1/2) - z से बदलने पर, कुछ सरलीकरण के बाद, नीचे दिखाया गया समतुल्य सूत्र मिलता है (बर्नौली बहुपदों को शामिल करते हुए):
टेलर श्रृंखला विस्तार
टेलर के प्रमेय द्वारा, और बार्न्स फ़ंक्शन के लघुगणकीय व्युत्पन्न पर विचार करते हुए, निम्नलिखित श्रृंखला विस्तार प्राप्त किया जा सकता है:
यह सच है , इस प्रकार . इस संबंध से और ऊपर प्रस्तुत वीयरस्ट्रैस उत्पाद प्रपत्र से कोई यह दिखा सकता है
यह संबंध मनमाने ढंग से मान्य है , और . अगर , तो इसके बजाय नीचे दिया गया सूत्र मान्य है:
मनमाने ढंग से वास्तविक y के लिए।
स्पर्शोन्मुख विस्तार
G(z + 1) के लघुगणक में निम्नलिखित स्पर्शोन्मुख विस्तार है, जैसा कि बार्न्स द्वारा स्थापित किया गया है:
यहां ही बर्नौली संख्याएँ हैं और ग्लैशर-किंकलिन स्थिरांक है। (ध्यान दें कि बार्न्स के समय यह कुछ हद तक भ्रमित करने वाला था [6]बर्नौली संख्या के रूप में लिखा गया होगा , लेकिन यह परिपाटी अब प्रचलित नहीं है।) यह विस्तार इसके लिए मान्य है किसी भी ऐसे सेक्टर में जिसमें नकारात्मक वास्तविक अक्ष न हो बड़ा।
लॉगगामा इंटीग्रल से संबंध
पैरामीट्रिक लॉगगामा का मूल्यांकन बार्न्स जी-फ़ंक्शन के संदर्भ में किया जा सकता है (संदर्भ: यह परिणाम नीचे एडमचिक में पाया गया है, लेकिन बिना सबूत के बताया गया है):
प्रमाण कुछ हद तक अप्रत्यक्ष है, और इसमें पहले गामा फ़ंक्शन और बार्न्स जी-फ़ंक्शन के लघुगणकीय अंतर पर विचार करना शामिल है:
कहाँ
और यूलर-माशेरोनी स्थिरांक है।
बार्न्स फ़ंक्शन और गामा फ़ंक्शन के वीयरस्ट्रैस उत्पाद रूपों का लघुगणक लेने पर यह मिलता है:
शब्दों का थोड़ा सरलीकरण और पुनः क्रम लगाने से श्रृंखला का विस्तार होता है:
अंत में, गामा फ़ंक्शन के वीयरस्ट्रैस उत्पाद रूप का लघुगणक लें, और अंतराल पर एकीकृत करें प्राप्त करने के लिए:
दोनों मूल्यांकनों को बराबर करने से प्रमाण पूरा हो जाता है:
और तबसे तब,
संदर्भ
↑E. W. Barnes, "The theory of the G-function", Quarterly Journ. Pure and Appl. Math.31 (1900), 264–314.
↑M. F. Vignéras, L'équation fonctionelle de la fonction zêta de Selberg du groupe mudulaire SL, Astérisque 61, 235–249 (1979).