स्पेसटाइम समरूपता

From Vigyanwiki
Revision as of 11:16, 7 April 2023 by alpha>Suman

स्पेसटाइम समरूपताएं स्पेसटाइम की विशेषताएं हैं जिन्हें किसी प्रकार की समरूपता के प्रदर्शन के रूप में वर्णित किया जा सकता है। कई समस्याओं के समाधान को सरल बनाने में भौतिकी में सममिति की भूमिका महत्वपूर्ण है। सामान्य सापेक्षता के आइंस्टीन के क्षेत्र समीकरणों के त्रुटिहीन समाधान के अध्ययन में स्पेसटाइम समरूपता का उपयोग किया जाता है। स्पेसटाइम समरूपता को आंतरिक समरूपता से अलग किया जाता है।

शारीरिक प्रेरणा

शारीरिक समस्याओं की अधिकांश जांच की जाती है और उन विशेषताओं को ध्यान में रखकर समाधान किया जाता है जिनमें कुछ प्रकार की समरूपता होती है। उदाहरण के लिए, श्वार्ज़स्चिल्ड समाधान में, श्वार्ज़स्चिल्ड समाधान प्राप्त करने और इस समरूपता के भौतिक परिणामों को कम करने में गोलाकार रूप से सममित स्पेसटाइम (जैसे गोलाकार रूप से स्पंदन करने वाले स्टार में गुरुत्वाकर्षण विकिरण का अस्तित्व) की भूमिका महत्वपूर्ण है। ब्रह्माण्ड संबंधी समस्याओं में, समरूपता ब्रह्माण्ड संबंधी सिद्धांत में एक भूमिका निभाती है, जो उन ब्रह्मांडों के प्रकार को प्रतिबंधित करती है जो बड़े पैमाने पर टिप्पणियों (उदाहरण के लिए फ्रीडमैन-लेमेट्रे-रॉबर्टसन-वाकर मीट्रिक। फ्रीडमैन-लेमेट्रे-रॉबर्टसन-वॉकर (एफएलआरडब्ल्यू) मीट्रिक) के अनुरूप है। समरूपता को सामान्यतः संपत्ति के संरक्षण के कुछ रूपों की आवश्यकता होती है, जिनमें से सबसे महत्वपूर्ण सामान्य सापेक्षता में निम्नलिखित सम्मिलित हैं:

  • स्पेस-टाइम के भूभौतिकीय संरक्षण
  • मीट्रिक टेंसर को संरक्षित करना
  • वक्रता टेन्सर का संरक्षण

इन और अन्य समरूपताओं पर अधिक विस्तार से चर्चा की जाएगी। यह संरक्षण संपत्ति जो सामान्यतः समरूपता के पास होती है (ऊपर उल्लिखित) का उपयोग इन समरूपताओं की उपयोगी परिभाषा को प्रेरित करने के लिए किया जा सकता है।

गणितीय परिभाषा

हॉल (2004) द्वारा सामान्य सापेक्षता में समरूपता की एक कठोर परिभाषा दी गई है। इस दृष्टिकोण में, विचार (चिकनी) सदिश क्षेत्रों का उपयोग करना है, जिनके स्थानीय भिन्नताएं स्पेसटाइम की कुछ संपत्ति को संरक्षित करती हैं। (ध्यान दें कि किसी को अपनी सोच पर जोर देना चाहिए यह एक भिन्नता है - एक अंतर तत्व पर एक परिवर्तन। निहितार्थ यह है कि वस्तुओं का व्यवहार सीमा तक स्पष्ट रूप से सममित नहीं हो सकता है।) डिफियोमोर्फिज्म की इस संरक्षित संपत्ति को निम्नानुसार त्रुटिहीन बनाया गया है।स्पेसटाइम M पर एक चिकनी सदिश क्षेत्र X को M पर एक चिकनी टेंसर T (या T X के अनुसार अपरिवर्तनीय है) को संरक्षित करने के लिए कहा जाता है, यदि प्रत्येक चिकनी स्थानीय प्रवाह भिन्नता ϕt X के साथ जुड़ा हुआ है टेंसर T और ϕ
t
(T)
ϕt के डोमेन पर बराबर हैं। यह कथन अधिक प्रयोग करने योग्य स्थिति के बराबर है कि सदिश क्षेत्र के तहत टेन्सर का लाइ डेरिवेटिव लुप्त हो जाता है:

M पर। इसका परिणाम यह है कि, M पर किन्हीं दो बिंदुओं p और q को देखते हुए, p के चारों ओर एक समन्वय प्रणाली में T के निर्देशांक q के चारों ओर एक समन्वय प्रणाली में T के निर्देशांक के बराबर हैं। स्पेसटाइम पर एक समरूपता एक चिकनी सदिश क्षेत्र है जिसका स्थानीय प्रवाह भिन्नताएं स्पेसटाइम की कुछ (सामान्यतः ज्यामितीय) विशेषता को संरक्षित करती हैं। (ज्यामितीय) सुविधा विशिष्ट टेंसरों (जैसे मीट्रिक, या ऊर्जा-संवेग टेंसर) या स्पेसटाइम के अन्य पसमाधानुओं जैसे कि इसकी जियोडेसिक संरचना को संदर्भित कर सकती है। सदिश क्षेत्रों को कभी-कभी समरेखण, सममिति सदिश क्षेत्र या केवल सममिति के रूप में संदर्भित किया जाता है। M पर सभी सममिति सदिश क्षेत्रों का सेट लाइ ब्रैकेट ऑपरेशन के तहत एक लाइ बीजगणित बनाता है जैसा कि पहचान से देखा जा सकता है:
दाईं ओर शब्द सामान्यतः संकेतन के दुरुपयोग के साथ लिखा जा रहा है, जैसे


किल्लिंग समरूपता

एक किलिंग सदिश फ़ील्ड समरूपता के सबसे महत्वपूर्ण प्रकारों में से एक है और इसे एक स्मूथ सदिश फ़ील्ड के रूप में परिभाषित किया गया है X जो मीट्रिक टेंसर को सुरक्षित रखता है g:

इसे सामान्यतः विस्तारित रूप में लिखा जाता है:
किलिंग सदिश क्षेत्र व्यापक अनुप्रयोग पाते हैं (शास्त्रीय यांत्रिकी सहित) और संरक्षण कानूनों से संबंधित हैं।

होमोथेटिक समरूपता

एक सदिश क्षेत्र वह है जो संतुष्ट करता है:

कहाँ c एक वास्तविक स्थिरांक है। समरूप सदिश क्षेत्र सामान्य सापेक्षता में गुरुत्वीय विलक्षणता के अध्ययन में अनुप्रयोग पाते हैं।

सजातीय समरूपता

एक सजातीय सदिश क्षेत्र वह है जो निम्नलिखित को संतुष्ट करता है:

एक सजातीय सदिश फ़ील्ड geodesic ्स को संरक्षित करता है और सजातीय पैरामीटर को संरक्षित करता है।

उपरोक्त तीन सदिश फ़ील्ड प्रकार प्रक्षेपी सदिश क्षेत्र के विशेष मामले हैं जो आवश्यक रूप से एफाइन पैरामीटर को संरक्षित किए बिना जियोडेसिक्स को संरक्षित करते हैं।

अनुरूप समरूपता

एक अनुरूप सदिश क्षेत्र वह है जो निम्नलिखित को संतुष्ट करता है:

कहाँ ϕ एक सहज वास्तविक-मूल्यवान कार्य है M.

वक्रता समरूपता

एक वक्रता संरेखन एक सदिश क्षेत्र है जो रीमैन टेंसर को संरक्षित करता है:

कहाँ Rabcd रीमैन टेंसर के घटक हैं। सभी चिकने फंक्शन कर्वेचर कॉलिनेशन का सेट (गणित) लेट ब्रैकेट ऑपरेशन के तहत एक लाइ बीजगणित बनाता है (यदि स्मूदनेस कंडीशन को गिरा दिया जाता है, तो सभी वक्रता कॉलिनेशन के सेट को लाइ बीजगणित बनाने की आवश्यकता नहीं है)। लाइ बीजगणित द्वारा निरूपित किया जाता है CC(M) और अनंत-आयामी हो सकता है। प्रत्येक सजातीय सदिश क्षेत्र एक वक्रता संरेखन है।

पदार्थ समरूपता

समरूपता का एक कम प्रसिद्ध रूप सदिश क्षेत्रों से संबंधित है जो ऊर्जा-संवेग टेंसर को संरक्षित करता है। इन्हें विभिन्न प्रकार से द्रव्य संरेखन या द्रव्य समरूपता के रूप में संदर्भित किया जाता है और इनके द्वारा परिभाषित किया जाता है:

, कहाँ T सहसंयोजक ऊर्जा-संवेग टेंसर है। ज्यामिति और भौतिकी के बीच के घनिष्ठ संबंध को सदिश क्षेत्र के रूप में यहाँ रेखांकित किया जा सकता है X की प्रवाह रेखाओं के साथ कुछ भौतिक मात्राओं को संरक्षित करने के रूप में माना जाता है X, यह किन्ही दो प्रेक्षकों के लिए सत्य है। इसके संबंध में, यह दिखाया जा सकता है कि प्रत्येक किलिंग सदिश क्षेत्र एक मामला है (आइंस्टीन क्षेत्र समीकरणों द्वारा, ब्रह्माण्ड संबंधी स्थिरांक के साथ या बिना)। इस प्रकार, ईएफई का एक समाधान दिया गया है, एक सदिश क्षेत्र जो मीट्रिक को संरक्षित करता है, आवश्यक रूप से इसी ऊर्जा-संवेग टेंसर को संरक्षित करता है। जब ऊर्जा-संवेग टेन्सर एक आदर्श द्रव का प्रतिनिधित्व करता है, तो प्रत्येक किलिंग सदिश क्षेत्र ऊर्जा घनत्व, दबाव और द्रव प्रवाह सदिश क्षेत्र को संरक्षित करता है। जब ऊर्जा-संवेग टेंसर एक विद्युत चुम्बकीय क्षेत्र का प्रतिनिधित्व करता है, तो एक किलिंग सदिश फ़ील्ड आवश्यक रूप से विद्युत और चुंबकीय क्षेत्र को संरक्षित नहीं करता है।

स्थानीय और वैश्विक समरूपता

अनुप्रयोग

जैसा कि इस लेख की शुरुआत में उल्लेख किया गया है, इन समरूपताओं का मुख्य अनुप्रयोग सामान्य सापेक्षता में होता है, जहां आइंस्टीन के समीकरणों के समाधानों को स्पेस-टाइम पर कुछ निश्चित समरूपताओं को लागू करके वर्गीकृत किया जा सकता है।

स्पेसटाइम वर्गीकरण

EFE के वर्गीकरण समाधान सामान्य सापेक्षता अनुसंधान के एक बड़े हिस्से का गठन करते हैं। स्पेस-टाइम को वर्गीकृत करने के लिए विभिन्न दृष्टिकोण, जिसमें ऊर्जा-संवेग टेन्सर के सेग्रे वर्गीकरण या वेइल टेंसर के पेट्रोव वर्गीकरण का उपयोग सम्मिलित है, का अध्ययन कई शोधकर्ताओं द्वारा किया गया है, विशेष रूप से स्टेफनी एट अल। (2003)। वे समरूपता सदिश क्षेत्रों (विशेष रूप से किलिंग और होमोथेटिक समरूपता) का उपयोग करके स्पेसटाइम को वर्गीकृत करते हैं। उदाहरण के लिए, स्पेसटाइम को वर्गीकृत करने के लिए किलिंग सदिश फ़ील्ड्स का उपयोग किया जा सकता है, क्योंकि ग्लोबल, स्मूथ किलिंग सदिश फ़ील्ड्स की संख्या की एक सीमा होती है जो एक स्पेसटाइम में हो सकती है (चार-आयामी स्पेसटाइम्स के लिए अधिकतम दस)। सामान्यतया, स्पेस-टाइम पर सममिति सदिश क्षेत्रों के बीजगणित का आयाम जितना अधिक होता है, स्पेस-टाइम में उतनी ही अधिक समरूपता स्वीकार की जाती है। उदाहरण के लिए, श्वार्ज़स्चिल्ड समाधान में आयाम चार (तीन स्थानिक घूर्णी सदिश क्षेत्र और एक टाइम अनुवाद) का किलिंग बीजगणित है, जबकि फ्रीडमैन-लेमेट्रे-रॉबर्टसन-वॉकर मीट्रिक (आइंस्टीन के स्थिर ब्रह्मांड उपकेस को छोड़कर) में आयाम छह का एक हत्या बीजगणित है। (तीन अनुवाद और तीन घुमाव)। आइंस्टीन स्टैटिक मेट्रिक में डायमेंशन सात (पिछले छह प्लस एक टाइम ट्रांसलेशन) का किलिंग बीजगणित है।

एक निश्चित समरूपता सदिश क्षेत्र को स्वीकार करने वाले स्पेसटाइम की धारणा स्पेसटाइम पर प्रतिबंध लगा सकती है।

सममित स्पेसटाइम्स की सूची

विकिपीडिया में निम्नलिखित स्पेसटाइम्स के अपने अलग लेख हैं:

यह भी देखें

संदर्भ

  • Hall, Graham (2004). Symmetries and Curvature Structure in General Relativity (World Scientific Lecture Notes in Physics). Singapore: World Scientific. ISBN 981-02-1051-5.. See Section 10.1 for a definition of symmetries.
  • Stephani, Hans; Kramer, Dietrich; MacCallum, Malcolm; Hoenselaers, Cornelius; Herlt, Eduard (2003). Exact Solutions of Einstein's Field Equations. Cambridge: Cambridge University Press. ISBN 0-521-46136-7.
  • Schutz, Bernard (1980). Geometrical Methods of Mathematical Physics. Cambridge: Cambridge University Press. ISBN 0-521-29887-3.. See Chapter 3 for properties of the Lie derivative and Section 3.10 for a definition of invariance.