बिंदुवार
गणित में, क्वालीफायर बिंदुवार उपयोग यह इंगित करने के लिए किया जाता है, कि प्रत्येक मान पर विचार करके निश्चित संपत्ति परिभाषित की जाती है किसी फ़ंक्शन का बिंदुवार अवधारणाओं का महत्वपूर्ण वर्ग संचालन होता है, अर्थात्, परिभाषा के कार्य के डोमेन में प्रत्येक बिंदु के लिए भिन्न-भिन्न मानों को कार्य करने के लिए संचालन को प्रारम्भ करके कार्यों पर परिभाषित संचालन संबंधों के महत्वपूर्ण सिद्धांत को बिंदुवार भी परिभाषित किया जा सकता है।
बिंदुवार संचालन
औपचारिक परिभाषा
बाइनरी संचालन o: Y × Y → Y उपसमुच्चय पर Y किसी संचालन O: (X→Y) × (X→Y) → (X→Y) से सभी कार्यों के मंच X → Y के लिए बिंदुवार उठाया जा सकता है। X से Y इस प्रकार है। दो फ़ंक्शन f1: X → Y और f2: X → Y दिए गए हैं। फ़ंक्शन O(f1, f2): X → Y द्वारा परिभाषित करें।
सामान्यतः, o और O को प्रतीक द्वारा निरूपित किया जाता है। समान परिभाषा का उपयोग यूनरी ऑपरेशंस o के लिए और अन्य एरीटी के संचालन के लिए किया जाता है।
उदाहरण
बिंदुवार गुणनफल और अदिश (गणित) भी देखें।
कार्यों पर एक संचालन का एक उदाहरण जो बिंदुवार नहीं है, कनवल्शन है।
गुण
प्वाइंटवाइज ऑपरेशंस को कोडोमेन पर संबंधित ऑपरेशंस से संबद्धता , क्रमविनिमेयता और वितरण जैसे गुण मिलते हैं। अगर कुछ बीजगणितीय संरचना है, सभी कार्यों का सेट के वाहक सेट के लिए एक समान तरीके से एक ही प्रकार की बीजगणितीय संरचना में परिवर्तित किया जा सकता है।
घटकवार संचालन
घटकवार संचालन सामान्यतः वैक्टर पर परिभाषित होते हैं, जहां वेक्टर सेट के तत्व होते हैं कुछ प्राकृतिक संख्या के लिए और कुछ क्षेत्र (गणित) . अगर हम निरूपित करते हैं किसी भी सदिश का -वाँ घटक जैसा , तो घटकवार जोड़ है .
मेट्रिसेस पर कंपोनेंट वाइज ऑपरेशंस को परिभाषित किया जा सकता है। मैट्रिक्स जोड़, जहां एक घटकवार संचालन है जबकि मैट्रिक्स गुणन नहीं है।
एक Tuple#Tuples कार्यों के रूप में एक फ़ंक्शन के रूप में माना जा सकता है, और एक वेक्टर एक टपल है। इसलिए, कोई भी वेक्टर फ़ंक्शन से मेल खाता है ऐसा है कि , और सदिशों पर कोई भी घटकवार संक्रिया उन सदिशों के संगत फलनों पर बिंदुवार प्रचालन है।
बिंदुवार संबंध
आदेश सिद्धांत में कार्यों पर एक बिंदुवार आंशिक क्रम को परिभाषित करना आम है। ए, बी आंशिक रूप से आदेशित सेट के साथ, कार्यों ए → बी का सेट एफ ≤ जी द्वारा आदेश दिया जा सकता है अगर और केवल अगर (∀x ∈ ए) एफ (एक्स) ≤ जी (एक्स)। पॉइंटवाइज ऑर्डर भी अंतर्निहित पॉसेट्स के कुछ गुण प्राप्त करते हैं। उदाहरण के लिए यदि A और B निरंतर जालक हैं, तो फलनों का समुच्चय A → B बिंदुवार क्रम में है।[1] कार्यों पर बिंदुवार क्रम का उपयोग करके अन्य महत्वपूर्ण धारणाओं को संक्षिप्त रूप से परिभाषित किया जा सकता है, उदाहरण के लिए:[2]
- पॉसेट पी पर एक बंद करने वाला ऑपरेटर सी एक मोनोटोनिक फ़ंक्शन है और अतिरिक्त संपत्ति के साथ पी (यानी एक प्रक्षेपण (आदेश)ऑर्डर)) पर आदर्श आत्म-नक्शा है जो आईडीA ≤ c, जहाँ id पहचान फलन है।
- इसी प्रकार, प्रोजेक्शन ऑपरेटर के को कर्नेल ऑपरेटर कहा जाता है यदि और केवल अगर के ≤ आईडीA.
असीमित बिंदुवार संबंध का एक उदाहरण कार्यों का बिंदुवार अभिसरण है - कार्यों का अनुक्रम
टिप्पणियाँ
संदर्भ
For order theory examples:
- T. S. Blyth, Lattices and Ordered Algebraic Structures, Springer, 2005, ISBN 1-85233-905-5.
- G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott: Continuous Lattices and Domains, Cambridge University Press, 2003.
This article incorporates material from Pointwise on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.