गुरुत्वाकर्षण बाध्यकारी ऊर्जा

From Vigyanwiki
Revision as of 12:59, 29 March 2023 by alpha>Indicwiki (Created page with "{{Short description|Minimum energy to remove a system from a gravitationally bound state}} File:Spot the cluster.jpg|thumb|300px|[[गैलेक्सी क्लस्...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
गैलेक्सी क्लस्टर ब्रह्मांड में गुरुत्वाकर्षण से बंधी सबसे बड़ी ज्ञात संरचनाएं हैं।[1]

एक प्रणाली की गुरुत्वाकर्षण बाध्यकारी ऊर्जा न्यूनतम ऊर्जा है जिसे सिस्टम को गुरुत्वाकर्षण बाध्य स्थिति में रहने के क्रम में जोड़ा जाना चाहिए। गुरुत्वाकर्षण से बंधी हुई प्रणाली में कम (अर्थात्, अधिक नकारात्मक) गुरुत्वाकर्षण ऊर्जा होती है, जब ये पूरी तरह से अलग हो जाते हैं, तो इसके भागों की ऊर्जाओं के योग की तुलना में - यह वह है जो सिस्टम विक्षनरी रखता है: न्यूनतम कुल क्षमता के अनुसार एकत्रीकरण ऊर्जा सिद्धांत।

एकसमान घनत्व के गोलाकार पिंड के लिए गुरुत्वीय बंधन ऊर्जा U सूत्र द्वारा दी जाती है[2][3]

जहाँ G गुरुत्वाकर्षण स्थिरांक है, M गोले का द्रव्यमान है, और R इसकी त्रिज्या है।

यह मानते हुए कि पृथ्वी एकसमान घनत्व का एक गोला है (जो कि नहीं है, लेकिन परिमाण का क्रम प्राप्त करने के लिए काफी करीब है) एम = के साथ 5.97×1024 kg और आर = 6.37×106 m, तो यू = 2.24×1032 J. यह लगभग सूर्य के कुल ऊर्जा उत्पादन के एक सप्ताह के बराबर है। यह है 37.5 MJ/kg, सतह पर प्रति किलोग्राम संभावित ऊर्जा के निरपेक्ष मूल्य का 60%।

भूकंपीय यात्रा के समय (एडम्स-विलियमसन समीकरण देखें) से अनुमानित घनत्व की वास्तविक गहराई-निर्भरता, प्रारंभिक संदर्भ पृथ्वी मॉडल (प्रेम) में दी गई है।[4] इसका उपयोग करके, पृथ्वी की वास्तविक गुरुत्वाकर्षण बाध्यकारी ऊर्जा की गणना यू = के रूप में संख्यात्मक एकीकरण की जा सकती है 2.49×1032 J.

वायरल प्रमेय के अनुसार, हाइड्रोस्टेटिक संतुलन को बनाए रखने के लिए एक तारे की गुरुत्वाकर्षण बंधन ऊर्जा इसकी आंतरिक ऊष्मा से लगभग दोगुनी होती है।[2] चूंकि एक तारे में गैस सापेक्षता का अधिक सिद्धांत बन जाती है, हाइड्रोस्टेटिक संतुलन के लिए आवश्यक गुरुत्वाकर्षण बंधन ऊर्जा शून्य तक पहुंच जाती है और तारा अस्थिर हो जाता है (अत्यधिक गड़बड़ी के प्रति संवेदनशील), जो उच्च-द्रव्यमान तारे के मामले में सुपरनोवा को जन्म दे सकता है। मजबूत विकिरण दबाव या न्यूट्रॉन स्टार के मामले में ब्लैक होल तक।

एक समान गोले के लिए व्युत्पत्ति

त्रिज्या के साथ एक गोले की गुरुत्वाकर्षण बंधन ऊर्जा यह कल्पना करके पाया जाता है कि गोलाकार गोले को क्रमिक रूप से अनंत तक ले जाकर अलग किया जाता है, सबसे पहले, और उसके लिए आवश्यक कुल ऊर्जा का पता लगाना।

एक निरंतर घनत्व मानते हुए , एक खोल और उसके अंदर के गोले का द्रव्यमान है:

और
एक खोल के लिए आवश्यक ऊर्जा गुरुत्वाकर्षण संभावित ऊर्जा का ऋणात्मक है:
सभी गोले उपज पर एकीकरण:
तब से एक समान घनत्व वाली वस्तुओं के लिए इसके आयतन से विभाजित पूरे के द्रव्यमान के बराबर है, इसलिए

और अंत में, इसे हमारे परिणाम में प्लग करने से होता है

Gravitational binding energy

नकारात्मक द्रव्यमान घटक

दो पिंड, एक दूसरे से दूरी R पर रखे गए हैं और पारस्परिक रूप से गतिमान नहीं हैं, R के छोटे होने पर एक छोटे से छोटे तीसरे पिंड पर गुरुत्वाकर्षण बल लगाते हैं। इसे समान रूप से गोलाकार समाधानों के लिए समान रूप से सिस्टम के नकारात्मक द्रव्यमान घटक के रूप में देखा जा सकता है:

उदाहरण के लिए, यह तथ्य कि पृथ्वी अपने वर्तमान आकार की लागत का एक गुरुत्वाकर्षण-बाध्य क्षेत्र है {{val|2.49421|e=15|ul=kg}द्रव्यमान का } (लगभग एक चौथाई फोबोस (चंद्रमा) का द्रव्यमान - जूल में द्रव्यमान-ऊर्जा तुल्यता के लिए ऊपर देखें), और यदि इसके परमाणु मनमाने ढंग से बड़ी मात्रा में विरल थे, तो पृथ्वी अपने वर्तमान द्रव्यमान को और अधिक वजन देगी 2.49421×1015 kg किलोग्राम (और तीसरे पिंड पर इसका गुरुत्वाकर्षण खिंचाव तदनुसार मजबूत होगा)।

यह आसानी से प्रदर्शित किया जा सकता है कि यह नकारात्मक घटक कभी भी सिस्टम के सकारात्मक घटक से अधिक नहीं हो सकता। सिस्टम के द्रव्यमान से अधिक एक नकारात्मक बाध्यकारी ऊर्जा वास्तव में आवश्यक होगी कि सिस्टम का त्रिज्या इससे छोटा हो:

जो इससे छोटा है इसकी श्वार्जस्चिल्ड त्रिज्या:
और इसलिए किसी बाहरी पर्यवेक्षक को कभी दिखाई नहीं देता। हालाँकि यह केवल एक न्यूटोनियन सन्निकटन है और सामान्य सापेक्षता स्थितियों में अन्य कारकों को भी ध्यान में रखा जाना चाहिए।[5]


गैर-समान गोले

ग्रहों और तारों में उनकी कम घनत्व वाली सतहों से उनके अधिक सघन संकुचित कोर तक रेडियल घनत्व प्रवणता होती है। पतित पदार्थ की वस्तुएं (सफेद बौने; न्यूट्रॉन स्टार पल्सर) में रेडियल घनत्व ग्रेडिएंट्स और सापेक्ष सुधार होते हैं।

राज्य के न्यूट्रॉन स्टार सापेक्षतावादी समीकरणों में विभिन्न मॉडलों के लिए त्रिज्या बनाम द्रव्यमान का एक ग्राफ शामिल है।[6] किसी दिए गए न्यूट्रॉन तारे के द्रव्यमान के लिए सबसे संभावित रेडी मॉडल AP4 (सबसे छोटी त्रिज्या) और MS2 (सबसे बड़ी त्रिज्या) द्वारा ब्रैकेट किए गए हैं। बीई गुरुत्वाकर्षण बाध्यकारी ऊर्जा द्रव्यमान का अनुपात है जो त्रिज्या आर के साथ एम के देखे गए न्यूट्रॉन स्टार गुरुत्वाकर्षण द्रव्यमान के बराबर है,

वर्तमान मूल्यों को देखते हुए

  • [7]

और तारा द्रव्यमान M सौर द्रव्यमान के सापेक्ष व्यक्त किया गया,

तो एक न्यूट्रॉन तारे की आपेक्षिकीय भिन्नात्मक बंधन ऊर्जा है


यह भी देखें

संदर्भ

  1. "क्लस्टर स्पॉट करें". www.eso.org. Retrieved 31 July 2017.
  2. 2.0 2.1 Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)
  3. Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272
  4. Dziewonski, A. M.; Anderson, D. L. (1981). "प्रारंभिक संदर्भ पृथ्वी मॉडल". Physics of the Earth and Planetary Interiors. 25 (4): 297–356. Bibcode:1981PEPI...25..297D. doi:10.1016/0031-9201(81)90046-7.
  5. Katz, Joseph; Lynden-Bell, Donald; Bičák, Jiří (27 October 2006). "स्थिर अंतरिक्ष-समय में गुरुत्वाकर्षण ऊर्जा". Classical and Quantum Gravity. 23 (23): 7111–7128. arXiv:gr-qc/0610052. Bibcode:2006CQGra..23.7111K. doi:10.1088/0264-9381/23/23/030. S2CID 1375765.
  6. Neutron Star Masses and Radii Archived 2011-12-17 at the Wayback Machine, p. 9/20, bottom
  7. "2018 CODATA Value: Newtonian constant of gravitation". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.