स्यूडोटेंसर

From Vigyanwiki
Revision as of 12:55, 29 March 2023 by alpha>Indicwiki (Created page with "{{Short description|Type of physical quantity}} {{Use American English|date=March 2019}}भौतिक विज्ञान और गणित में, एक स्...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

भौतिक विज्ञान और गणित में, एक स्यूडोटेन्सर आमतौर पर एक मात्रा है जो एक अभिविन्यास-संरक्षण समन्वय परिवर्तन (उदाहरण के लिए एक उचित रोटेशन) के तहत एक टेंसर की तरह रूपांतरित होता है, लेकिन इसके अतिरिक्त एक अभिविन्यास-उलटने वाले समन्वय परिवर्तन (जैसे, एक अनुचित रोटेशन) के तहत संकेत बदलता है, जो एक परिवर्तन है जिसे परावर्तन (गणित) के बाद एक उचित घुमाव के रूप में व्यक्त किया जा सकता है। यह एक pseudovector का सामान्यीकरण है। टेन्सर या स्यूडोटेन्सर चिह्न का मूल्यांकन करने के लिए, इसे कुछ सदिशों के साथ टेन्सर संकुचन होना चाहिए, जितना कि इसका टेन्सर (आंतरिक परिभाषा)#टेंसर रैंक है, उस स्थान से संबंधित है जहाँ टेन्सर निर्देशांक को अप्रभावित रखते हुए रोटेशन किया जाता है (अलग से) आधार परिवर्तन के मामले में कोई क्या करता है)। अनुचित रोटेशन के तहत एक ही रैंक के एक स्यूडोटेन्सर और एक उचित टेन्सर के अलग-अलग चिह्न होंगे जो रैंक पर समानता (गणित) होने पर निर्भर करता है। कभी-कभी कुल्हाड़ियों के व्युत्क्रमण का उपयोग स्यूडोटेन्सर के व्यवहार को देखने के लिए एक अनुचित घुमाव के उदाहरण के रूप में किया जाता है, लेकिन यह केवल तभी काम करता है जब सदिश अंतरिक्ष आयाम विषम हों अन्यथा व्युत्क्रम एक अतिरिक्त प्रतिबिंब के बिना एक उचित घुमाव है।

स्यूडोटेन्सर (और इसी तरह स्यूडोवेक्टर के लिए) के लिए एक दूसरा अर्थ है, जो सामान्य सापेक्षता तक सीमित है। टेन्सर सख्त परिवर्तन कानूनों का पालन करते हैं, लेकिन इस अर्थ में स्यूडोटेनर्स इतने विवश नहीं हैं। नतीजतन, एक स्यूडोटेन्सर का रूप, सामान्य रूप से, संदर्भ के फ्रेम के रूप में बदल जाएगा। स्यूडोटेन्सर्स वाला एक समीकरण जो एक फ्रेम में होल्ड करता है, जरूरी नहीं कि वह एक अलग फ्रेम में हो। यह सीमित प्रासंगिकता के स्यूडोटेनर्स बनाता है क्योंकि जिन समीकरणों में वे प्रकट होते हैं वे सहप्रसरण नहीं होते हैं और रूप में सदिशों के प्रतिप्रसरण होते हैं।

परिभाषा

दो अलग-अलग गणितीय वस्तुओं को अलग-अलग संदर्भों में स्यूडोटेन्सर कहा जाता है।

पहला संदर्भ अनिवार्य रूप से एक अतिरिक्त संकेत कारक द्वारा गुणा किया गया एक टेंसर है, जैसे कि स्यूडोटेन्सर प्रतिबिंब के तहत साइन बदलता है जब एक सामान्य टेन्सर नहीं होता है। एक परिभाषा के अनुसार, प्रकार का एक स्यूडोटेन्सर P एक ज्यामितीय वस्तु है जिसके घटकों को मनमाना आधार पर गणना की जाती है सूचकांक और परिवर्तन नियम का पालन करें

आधार परिवर्तन के तहत।[1][2][3] यहाँ क्रमशः नए और पुराने ठिकानों में स्यूडोटेन्सर के घटक हैं, सदिश सूचकांकों के सहप्रसरण और प्रतिप्रसरण के लिए संक्रमण मैट्रिक्स है, सहप्रसरण सूचकांकों के लिए संक्रमण मैट्रिक्स है, और यह परिवर्तन नियम केवल कारक की उपस्थिति से सामान्य टेन्सर के नियम से भिन्न होता है दूसरा संदर्भ जहां स्यूडोटेन्सर शब्द का प्रयोग किया गया है वह सामान्य सापेक्षता है। उस सिद्धांत में, एक ऊर्जा-संवेग टेन्सर द्वारा गुरुत्वाकर्षण क्षेत्र की ऊर्जा और संवेग का वर्णन नहीं किया जा सकता है। इसके बजाय, कोई ऐसी वस्तुओं का परिचय देता है जो प्रतिबंधित समन्वय परिवर्तनों के संबंध में केवल टेंसर के रूप में व्यवहार करती हैं। कड़ाई से बोलते हुए, ऐसी वस्तुएं टेन्सर बिल्कुल नहीं होती हैं। ऐसे स्यूडोटेन्सर का एक प्रसिद्ध उदाहरण लैंडौ-लिफ्शिट्ज़ स्यूडोटेन्सर है।

उदाहरण

समायोज्य कई गुना पर गैर-ओरिएंटेबल मैनिफोल्ड्स, गैर-ओरिएंटेबिलिटी के कारण विश्व स्तर पर एक वॉल्यूम फॉर्म को परिभाषित नहीं कर सकता है, लेकिन एक वॉल्यूम तत्व को परिभाषित कर सकता है, जो औपचारिक रूप से कई गुना घनत्व है, और इसे छद्म-वॉल्यूम फॉर्म भी कहा जा सकता है , अतिरिक्त साइन ट्विस्ट के कारण (साइन बंडल के साथ टेंसरिंग)। आयतन तत्व पहली परिभाषा के अनुसार एक स्यूडोटेन्सर घनत्व है।

जैकबियन मैट्रिक्स और निर्धारक के निर्धारक के पूर्ण मूल्य के कारक के समावेश के माध्यम से बहु-आयामी एकीकरण में प्रतिस्थापन द्वारा एकीकरण प्राप्त किया जा सकता है। निरपेक्ष मूल्य का उपयोग एकीकरण (मात्रा) तत्व को सकारात्मक रखने के सम्मेलन की भरपाई के लिए अनुचित समन्वय परिवर्तनों के लिए एक संकेत परिवर्तन का परिचय देता है; इस प्रकार, पहली परिभाषा के अनुसार एक एकीकृत एक स्यूडोटेन्सर घनत्व का एक उदाहरण है।

मैनिफोल्ड पर एक affine कनेक्शन के क्रिस्टोफेल प्रतीकों को वेक्टर क्षेत्र के समन्वय अभिव्यक्ति के आंशिक डेरिवेटिव के लिए सुधार शर्तों के रूप में माना जा सकता है ताकि निर्देशांक के संबंध में इसे वेक्टर क्षेत्र के सहसंयोजक व्युत्पन्न के रूप में प्रस्तुत किया जा सके। जबकि एफ़िन कनेक्शन स्वयं निर्देशांक की पसंद पर निर्भर नहीं करता है, इसके क्रिस्टोफ़ेल प्रतीक करते हैं, जिससे उन्हें दूसरी परिभाषा के अनुसार एक स्यूडोटेन्सर मात्रा बना दिया जाता है।

यह भी देखें

संदर्भ

  1. Sharipov, R.A. (1996). Course of Differential Geometry, Ufa:Bashkir State University, Russia, p. 34, eq. 6.15. ISBN 5-7477-0129-0, arXiv:math/0412421v1
  2. Lawden, Derek F. (1982). An Introduction to Tensor Calculus, Relativity and Cosmology. Chichester:John Wiley & Sons Ltd., p. 29, eq. 13.1. ISBN 0-471-10082-X
  3. Borisenko, A. I. and Tarapov, I. E. (1968). Vector and Tensor Analysis with Applications, New York:Dover Publications, Inc., p. 124, eq. 3.34. ISBN 0-486-63833-2


बाहरी संबंध