एकीकृत प्रणाली

From Vigyanwiki

गणित में, पूर्णता कुछ गतिशील प्रणालियों की एक संपत्ति है। जबकि कई अलग-अलग औपचारिक परिभाषाएँ हैं, अनौपचारिक रूप से बोलना, एक एकीकृत प्रणाली एक गतिशील प्रणाली है जिसमें पर्याप्त रूप से कई संरक्षित मात्राएँ, या पहले अभिन्न अंग हैं, जैसे कि इसके व्यवहार में इसके चरण स्थान की आयाम की तुलना में स्वतंत्रता (भौतिकी और रसायन विज्ञान) की बहुत कम डिग्री है। ; अर्थात्, इसका विकास इसके चरण स्थान के अन्दर एक सबमनीफोल्ड तक ही सीमित है।

तीन विशेषताओं को अधिकांशतः अभिन्न प्रणालियों की विशेषता के रूप में संदर्भित किया जाता है:[1]

  • संरक्षित मात्राओं के एक अधिकतम सेट का अस्तित्व ('पूर्ण पूर्णांकता' की सामान्य परिभाषित संपत्ति)
  • 'बीजगणितीय' अपरिवर्तनीयताओं का अस्तित्व, बीजगणितीय ज्यामिति में आधार (एक संपत्ति जिसे कभी-कभी 'बीजगणितीय पूर्णता' के रूप में जाना जाता है)
  • एक स्पष्ट कार्यात्मक रूप में समाधान का स्पष्ट निर्धारण (एक आंतरिक संपत्ति नहीं है, लेकिन जिसे अधिकांशतः 'सॉल्वैबिलिटी' कहा जाता है)

अधिक सामान्य गतिशील प्रणालियों से एकीकृत प्रणालियों को गुणात्मक चरित्र में बहुत भिन्न के रूप में देखा जा सकता है, जो अधिक सामान्यतः अराजकता सिद्धांत हैं। उत्तरार्द्ध में सामान्यतः कोई संरक्षित मात्रा नहीं होती है, और विषम रूप से अट्रैक्टिव होते हैं, क्योंकि प्रारंभिक स्थितियों में एक मनमाने ढंग से छोटे गड़बड़ी से पर्याप्त रूप से बड़े समय में उनके प्रक्षेपवक्र में मनमाने ढंग से बड़े विचलन हो सकते हैं।

भौतिकी में अध्ययन की गई कई प्रणालियाँ पूरी तरह से एकीकृत हैं, विशेष रूप से, हैमिल्टनियन प्रणाली के अर्थ में, बहु-आयामी हार्मोनिक ऑसिलेटर्स का प्रमुख उदाहरण है। एक अन्य मानक उदाहरण एक निश्चित केंद्र (जैसे, सूर्य) या दो के बारे में ग्रहों की गति है। अन्य प्रारंभिक उदाहरणों में द्रव्यमान के केंद्र (यूलर टॉप) के बारे में एक कठोर शरीर की गति और समरूपता के अक्ष में एक बिंदु के बारे में एक अक्षीय रूप से सममित कठोर शरीर की गति (लाग्रेंज शीर्ष) सम्मिलित है।

1965 में मार्टिन क्रुस्कल और नॉर्मन ज़बस्की द्वारा सोलिटोन की संख्यात्मक खोज के साथ एकीकृत प्रणालियों के आधुनिक सिद्धांत को पुनर्जीवित किया गया था, जिसके कारण 1967 में व्युत्क्रम प्रकीर्णन परिवर्तन विधि का मार्ग प्रशस्त हुआ। स्वतंत्रता की डिग्री, जैसे उथले पानी की लहरों के कुछ मॉडल (कॉर्टवेग-डी वीस समीकरण), ऑप्टिकल फाइबर में केर प्रभाव, नॉनलाइनियर श्रोडिंगर समीकरण द्वारा वर्णित, और टोडा जाली जैसे कुछ पूर्णांक कई-निकाय प्रणालियां।

हैमिल्टनियन प्रणालियों के विशेष स्थिति में, यदि पर्याप्त स्वतंत्र पोइसन हैं जो प्रवाह मापदंडों के लिए पहले इंटीग्रल को अपरिवर्तनीय स्तर के सेट (लैग्रैंगियन पत्तियों से सजाना की 'पत्तियां') पर एक समन्वय प्रणाली के रूप में सेवा करने में सक्षम होने के लिए प्रारंभ करते हैं, और यदि प्रवाह पूर्ण हैं और ऊर्जा स्तर सेट कॉम्पैक्ट है, इसका तात्पर्य लिउविल-अर्नोल्ड प्रमेय से है; अर्थात्, क्रिया-कोण चर का अस्तित्व। सामान्य गतिशील प्रणालियों में ऐसी कोई संरक्षित मात्रा नहीं होती है; स्वायत्त हैमिल्टनियन प्रणाली प्रणाली की स्थिति में, ऊर्जा सामान्यतः केवल एक ही होती है, और ऊर्जा स्तर सेट पर, प्रवाह सामान्यतः अराजक होते हैं।

इंटीग्रेबल प्रणाली्स को चिह्नित करने में एक प्रमुख घटक फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी) है, जो बताता है कि एक प्रणाली 'फ्रोबेनियस इंटीग्रेबल' है (अर्थात्, एक इंटीग्रेबल डिस्ट्रीब्यूशन द्वारा उत्पन्न होता है), यदि स्थानीय रूप से, इसमें अधिकतम इंटीग्रल मैनिफोल्ड्स द्वारा फोलिएशन होता है। लेकिन समग्रता, गतिशील प्रणालियों के अर्थ में, एक वैश्विक संपत्ति है, न कि एक स्थानीय संपत्ति, क्योंकि इसके लिए आवश्यक है कि पत्ते एक नियमित रूप से हों, जिसमें पत्तियां एम्बेडेड सबमनिफोल्ड हों।

समाकलित प्रणालियों के पास आवश्यक रूप से समाधान नहीं होते हैं, जिन्हें बंद रूप अभिव्यक्ति या विशेष कार्य के संदर्भ में व्यक्त किया जा सकता है; वर्तमान अर्थ में, इंटीग्रैबिलिटी चरण अंतरिक्ष में प्रणाली के समाधानों की ज्यामिति या टोपोलॉजी की संपत्ति है।

सामान्य गतिशील प्रणाली

अलग-अलग गतिशील प्रणालियों के संदर्भ में, अभिन्नता की धारणा अपरिवर्तनीय, नियमित पर्णसमूह के अस्तित्व को संदर्भित करती है; अर्थात्, जिनके पत्ते प्रवाह (गणित) के अनुसार अपरिवर्तनीय सबसे छोटे संभव आयाम के सबमनीफोल्ड एम्बेडेड हैं। इस प्रकार अपरिवर्तनीय पर्णसमूह की पत्तियों के आयाम के आधार पर, पूर्णता की डिग्री की एक चर धारणा है। हैमिल्टनियन यांत्रिकी के स्थिति में इस अवधारणा में एक परिशोधन है, जिसे लिओविले (नीचे देखें) के अर्थ में पूर्ण पूर्णता के रूप में जाना जाता है, जिसे इस संदर्भ में सबसे अधिक बार संदर्भित किया जाता है।

इंटीग्रेबिलिटी की धारणा का विस्तार लैटिस जैसी असतत प्रणालियों पर भी प्रयुक्त होता है। इस परिभाषा को विकास समीकरणों का वर्णन करने के लिए अनुकूलित किया जा सकता है जो या तो अंतर समीकरणों या परिमित अंतर की प्रणाली हैं।

अभिन्न और गैर-अभिन्न गतिशील प्रणालियों के बीच अंतर में नियमित गति के विरुद्ध अराजक गति का गुणात्मक निहितार्थ है और इसलिए यह एक आंतरिक संपत्ति है, न कि केवल एक प्रणाली को एक स्पष्ट रूप में स्पष्ट रूप से एकीकृत किया जा सकता है या नहीं।

हैमिल्टनियन प्रणाली और लिउविल इंटीग्रेबिलिटी

हैमिल्टन के समीकरणों की विशेष सेटिंग में, हमारे पास जोसेफ लिउविल के अर्थ में पूर्णता की धारणा है। (लिउविले-अर्नोल्ड प्रमेय देखें।) लिउविल इंटीग्रैबिलिटी का मतलब है कि इनवेरिएंट मैनिफोल्ड्स द्वारा फेज स्पेस का एक नियमित फोलिएशन उपस्थित है, जैसे कि हेमिल्टनियन वेक्टर फील्ड्स फोलिएशन के इनवेरिएंट्स से जुड़े हैं जो स्पर्शरेखा वितरण को फैलाते हैं। इसे बताने की एक और विधि यह है कि पोइसन आने वाले आक्रमणकारियों का एक अधिकतम सेट उपस्थित है (अर्थात्, चरण स्थान पर कार्य करता है जिसका पॉसॉन प्रणाली के हैमिल्टनियन के साथ ब्रैकेट करता है, और एक दूसरे के साथ, गायब हो जाते हैं)।

परिमित आयामों में, यदि चरण स्थान सहानुभूतिपूर्ण ज्यामिति है (अर्थात, पॉइसन बीजगणित के केंद्र में केवल स्थिरांक होते हैं), तो इसका आयाम भी होना चाहिए , और स्वतंत्र पोइसन आने वाले आक्रमणकारियों की अधिकतम संख्या (हैमिल्टनियन सहित) है। पर्णसमूह की पत्तियाँ सिम्प्लेक्टिक रूप के संबंध में लैग्रैंगियन सबमनीफोल्ड हैं और इस तरह के एक अधिकतम आइसोट्रोपिक फ़ॉलिएशन को लैग्रैंगियन सबमेनिफ़ोल्ड कहा जाता है। सभी स्वायत्त हैमिल्टनियन प्रणाली (अर्थात् जिनके लिए हैमिल्टनियन और पॉसॉन ब्रैकेट स्पष्ट रूप से समय-निर्भर नहीं हैं) में कम से कम एक अपरिवर्तनीय है; अर्थात्, हैमिल्टन ही, जिसका प्रवाह के साथ मूल्य ऊर्जा है। यदि ऊर्जा स्तर सेट कॉम्पैक्ट होते हैं, लैग्रैंगियन फोलिएशन की पत्तियां टोरी होती हैं, और इन पर प्राकृतिक रैखिक निर्देशांक को कोण चर कहा जाता है। विहित के चक्र -फ़ॉर्म को क्रिया चर कहा जाता है, और परिणामी विहित निर्देशांक को क्रिया-कोण चर कहा जाता है (नीचे देखें)।

लिउविले के अर्थ में, और आंशिक इंटीग्रेबिलिटी के साथ-साथ सुपरिन्टेग्रेबल हैमिल्टनियन प्रणाली और मैक्सिमल सुपरइंटीग्रेबिलिटी की धारणा के बीच पूर्ण इंटीग्रेबिलिटी के बीच भी अंतर है। अनिवार्य रूप से, ये भेद पर्णसमूह की पत्तियों के आकार के अनुरूप होते हैं। जब स्वतंत्र पोइसन आने वाले आक्रमणकारियों की संख्या अधिकतम से कम है (लेकिन, स्वायत्त प्रणालियों की स्थिति में, एक से अधिक), तो हम कहते हैं कि प्रणाली आंशिक रूप से पूर्णांक है। जब अधिक से अधिक कार्यात्मक रूप से स्वतंत्र आक्रमणकारी उपस्थित होते हैं, तो अधिकतम संख्या से परे जो कि पॉसॉन यात्रा कर सकते हैं, और इसलिए इनवेरिएंट फोलिएशन की पत्तियों का आयाम n से कम है, हम कहते हैं कि प्रणाली सुपरइंटीग्रेबल हैमिल्टनियन प्रणाली है। यदि एक आयामी पत्तियों (वक्र) के साथ नियमित रूप से पर्णसमूह होता है, तो इसे अधिकतम अधीक्षणीय कहा जाता है।

क्रिया-कोण चर

जब एक परिमित-आयामी हैमिल्टनियन प्रणाली लिउविल अर्थ में पूरी तरह से समाकलनीय है, और ऊर्जा स्तर सेट कॉम्पैक्ट होते हैं, प्रवाह पूर्ण होते हैं, और अपरिवर्तनीय फोलिएशन की पत्तियां टोरस्र्स होती हैं। वहाँ तब उपस्थित है, जैसा कि ऊपर उल्लेख किया गया है, क्रिया-कोण चर के रूप में ज्ञात चरण स्थान पर विहित निर्देशांक के विशेष सेट, जैसे कि अपरिवर्तनीय टोरी क्रिया (भौतिकी) चर के संयुक्त स्तर के सेट हैं। इस प्रकार ये हैमिल्टनियन प्रवाह (गति के स्थिरांक) के अपरिवर्तनीयों का एक पूरा सेट प्रदान करते हैं, और कोण चर टोरस पर प्राकृतिक आवधिक निर्देशांक हैं। इन विहित निर्देशांकों के संदर्भ में व्यक्त की गई अपरिवर्तनीय तोरी पर गति, कोण चर में रैखिक है।

हैमिल्टन-जैकोबी दृष्टिकोण

कैनोनिकल परिवर्तन सिद्धांत में, हैमिल्टन-जैकोबी विधि है, जिसमें हैमिल्टन-जैकोबी समीकरण से संबंधित हैमिल्टन-जैकोबी समीकरण का पूरा समाधान खोजने के द्वारा पहले हैमिल्टन के समीकरणों के समाधान की मांग की जाती है। मौलिक शब्दावली में, इसे पूरी तरह से अज्ञानी चर वाले निर्देशांक के एक विहित सेट में परिवर्तन का निर्धारण करने के रूप में वर्णित किया गया है; अर्थात्, वे जिनमें विहित स्थिति निर्देशांक के एक पूर्ण सेट पर हैमिल्टनियन की कोई निर्भरता नहीं है, और इसलिए संबंधित कैनोनिक रूप से संयुग्मित संवेग सभी संरक्षित मात्राएं हैं। कॉम्पैक्ट एनर्जी लेवल सेट की स्थिति में, यह क्रिया-कोण चर निर्धारित करने की दिशा में पहला कदम है। हैमिल्टन-जैकोबी समीकरणों के आंशिक अंतर समीकरणों के सामान्य सिद्धांत में हैमिल्टन-जैकोबी प्रकार, एक पूर्ण समाधान (अर्थात् एक जो एकीकरण के n स्वतंत्र स्थिरांक पर निर्भर करता है, जहां n विन्यास स्थान का आयाम है), बहुत सामान्य स्थितियों में उपस्थित है , लेकिन केवल स्थानीय अर्थों में। इसलिए, हैमिल्टन-जैकोबी समीकरण के पूर्ण समाधान का अस्तित्व किसी भी तरह से लिउविल अर्थों में पूर्ण पूर्णता का लक्षण वर्णन नहीं है। अधिकांश स्थिति जिन्हें स्पष्ट रूप से एकीकृत किया जा सकता है, उनमें चरों का पूर्ण पृथक्करण सम्मिलित है, जिसमें पृथक्करण स्थिरांक आवश्यक एकीकरण स्थिरांक का पूरा सेट प्रदान करते हैं। केवल जब इन स्थिरांकों की पुनर्व्याख्या की जा सकती है, पूर्ण चरण अंतरिक्ष सेटिंग के अन्दर, लैग्रैंगियन फोलिएशन की पत्तियों तक सीमित पोइसन कम्यूटिंग फलनों के पूर्ण सेट के मूल्यों के रूप में, प्रणाली को लिउविल अर्थों में पूरी तरह से एकीकृत माना जा सकता है।

सॉलिटन और व्युत्क्रम वर्णक्रमीय विधियाँ

1960 के दशक के उत्तरार्ध में मौलिक समाकलन प्रणालियों में रुचि का पुनरुत्थान खोज के साथ हुआ, जो सॉलिटॉन, जो दृढ़ता से स्थिर हैं, आंशिक विभेदक समीकरणों के स्थानीयकृत समाधान जैसे कि कोर्टेवेग-डी व्रीस समीकरण (जो 1-आयामी गैर-विघटनकारी द्रव गतिकी का वर्णन करता है) उथले घाटियों में), इन समीकरणों को अनंत-आयामी पूर्णांक हैमिल्टनियन प्रणालियों के रूप में देखकर समझा जा सकता है। उनका अध्ययन इस तरह की प्रणालियों को एकीकृत करने के लिए एक बहुत ही उपयोगी दृष्टिकोण की ओर जाता है, उलटा बिखरने वाला परिवर्तन और अधिक सामान्य उलटा वर्णक्रमीय विधियाँ (अधिकांशतः रिमेंन-हिल्बर्ट समस्याओं को कम करने योग्य), जो संबद्ध अभिन्न समीकरणों के समाधान के माध्यम से स्थानीय रेखीय विधियों जैसे फूरियर विश्लेषण से गैर-स्थानीय रेखीयकरण का सामान्यीकरण करते हैं।

इस पद्धति का मूल विचार एक रैखिक ऑपरेटर को प्रस्तुत करना है, जो चरण अंतरिक्ष में स्थिति से निर्धारित होता है और जो प्रणाली की गतिशीलता के अनुसार इस तरह से विकसित होता है कि इसका स्पेक्ट्रम (एक उपयुक्त सामान्यीकृत अर्थ में) अपरिवर्तनीय है विकास, सी.एफ. लक्स जोड़ी। यह, कुछ स्थितियों में, प्रणाली को पूरी तरह से एकीकृत करने के लिए पर्याप्त अपरिवर्तनीय, या गति के अभिन्न अंग प्रदान करता है। स्वतंत्रता की अनंत संख्या वाली प्रणालियों के स्थिति में, जैसे कि केडीवी समीकरण, यह लिउविल इंटीग्रेबिलिटी की संपत्ति को स्पष्ट बनाने के लिए पर्याप्त नहीं है। चूँकि, उपयुक्त रूप से परिभाषित सीमा शर्तों के लिए, वर्णक्रमीय परिवर्तन, वास्तव में, पूरी तरह से अनदेखा निर्देशांक के लिए एक परिवर्तन के रूप में व्याख्या किया जा सकता है, जिसमें संरक्षित मात्रा विहित निर्देशांकों के एक दोगुने अनंत सेट का आधा हिस्सा बनाती है, और इनमें प्रवाह रैखिक होता है। कुछ स्थितियों में, इसे क्रिया-कोण चर में परिवर्तन के रूप में भी देखा जा सकता है, चूँकि सामान्यतः स्थिति चर की केवल एक सीमित संख्या ही वास्तव में कोण निर्देशांक होती है, और बाकी गैर-कॉम्पैक्ट होते हैं।

हिरोटा बिलिनियर समीकरण और τ-फलनों

एक अन्य दृष्टिकोण जो एकीकृत प्रणालियों के आधुनिक सिद्धांत में उत्पन्न हुआ, में उत्पन्न हुआ रयोगो हिरोटा द्वारा प्रतिपादित एक गणनात्मक दृष्टिकोण,[2] जिसमें रिप्लेस करना सम्मिलित है निरंतर गुणांक की बिलिनियर प्रणाली के साथ मूल गैर-रैखिक गतिशील प्रणाली एक सहायक मात्रा के लिए समीकरण, जिसे बाद में के रूप में जाना जाने लगा ताऊ समारोह (पूर्णांक प्रणाली)|τ-फलन। इन्हें अब हिरोटा समीकरण कहा जाता है। चूँकि मूल रूप से बिना किसी स्पष्ट संबंध के केवल एक गणनात्मक उपकरण के रूप में दिखाई दे रहा है व्युत्क्रम प्रकीर्णन परिवर्तन दृष्टिकोण, या हैमिल्टनियन संरचना के लिए, फिर भी इसने एक बहुत ही सीधी विधि दी गयी है, जिससे समाधान के महत्वपूर्ण वर्ग जैसे सॉलिटॉन प्राप्त किए जा सकते हैं।

इसके बाद, मिकियो सातो द्वारा इसकी व्याख्या की गई[3] और उनके छात्र,[4][5] पहले की स्थिति में पीडीई के अभिन्न पदानुक्रम, जैसे कदोम्त्सेव-पेटविअश्विली समीकरण|कडोमत्सेव-पेटविअश्विली पदानुक्रम, लेकिन फिर एकीकृत पदानुक्रम के अधिक सामान्य वर्गों के लिए, एक प्रकार के सार्वभौमिक चरण अंतरिक्ष दृष्टिकोण के रूप में, जिसमें, सामान्यतः, आने वाली गतिशीलता को एक निश्चित (परिमित या अनंत) एबेलियन समूह क्रिया द्वारा निर्धारित (परिमित या अनंत) ग्रासमैनियन द्वारा निर्धारित किया गया था। . τ-फलन को निर्धारक के रूप में देखा गया था ग्रासमानियन के अन्दर समूह कक्षा के तत्वों से कुछ मूल के प्रक्षेपण ऑपरेटर की, और प्लकर एम्बेडिंग | प्लकर संबंधों को व्यक्त करने के रूप में हिरोटा समीकरण, विशेषताएँ उपयुक्त रूप से प्रोजेक्टिवाइज़ेशन में ग्रासमैनियन का प्लकर एम्बेडिंग परिभाषित (अनंत) बाहरी बीजगणित, जिसे फॉक स्पेस के रूप में देखा जाता है।

क्वांटम इंटीग्रेबल प्रणाली

क्वांटम इंटीग्रेबल प्रणाली की भी एक धारणा है।

क्वांटम सेटिंग में, फेज़ स्पेस पर फलनों को हिल्बर्ट अंतरिक्ष पर स्व-संयोजित ऑपरेटर द्वारा प्रतिस्थापित किया जाना चाहिए, और पोइसन कम्यूटिंग फलनों की धारणा को कम्यूटिंग ऑपरेटरों द्वारा प्रतिस्थापित किया जाना चाहिए। स्थानीयता संरक्षण कानूनों के सिद्धांत के लिए संरक्षण कानूनों की धारणा विशिष्ट होनी चाहिए।[6] प्रत्येक हैमिल्टनियन (क्वांटम यांत्रिकी) में प्रोजेक्टर द्वारा अपनी ऊर्जा आइजन स्टेट्स के लिए दी गई संरक्षित मात्रा का एक अनंत सेट है। चूँकि, यह किसी विशेष गतिशील संरचना का अर्थ नहीं है।

क्वांटम समाकलनीयता की व्याख्या करने के लिए, मुक्त कण सेटिंग पर विचार करना सहायक होता है। यहाँ सभी गतिकी एक-शरीर को कम करने योग्य हैं। एक क्वांटम प्रणाली को पूर्णांक कहा जाता है यदि गतिकी दो-निकाय कम करने योग्य हो। यांग-बैक्सटर समीकरण इस न्यूनीकरण का परिणाम है और उन पहचानों का पता लगाता है जो संरक्षित मात्राओं का एक अनंत सेट प्रदान करते हैं। इन सभी विचारों को क्वांटम व्युत्क्रम प्रकीर्णन विधि में सम्मिलित किया गया है जहां स्पष्ट समाधान प्राप्त करने के लिए बीजगणितीय बेथे दृष्टिकोण का उपयोग किया जा सकता है। क्वांटम इंटीग्रेबल मॉडल के उदाहरण लिब-लिनिगर मॉडल, हबर्ड मॉडल और हाइजेनबर्ग मॉडल (क्वांटम) पर कई भिन्नताएं हैं।[7] कुछ अन्य प्रकार की क्वांटम इंटीग्रेबिलिटी स्पष्ट रूप से समय-निर्भर क्वांटम समस्याओं में जानी जाती हैं, जैसे कि चालित टैविस-कमिंग्स मॉडल।[8]


बिल्कुल हल करने योग्य मॉडल

भौतिकी में, पूरी तरह से एकीकृत प्रणाली, विशेष रूप से अनंत-आयामी सेटिंग में, अधिकांशतः स्पष्ट रूप से हल करने योग्य मॉडल के रूप में संदर्भित होते हैं। यह हैमिल्टनियन अर्थ में पूर्णता और अधिक सामान्य गतिशील प्रणालियों के अर्थ के बीच अंतर को अस्पष्ट करता है।

सांख्यिकीय यांत्रिकी में स्पष्ट रूप से हल करने योग्य मॉडल भी हैं, जो मौलिक लोगों की तुलना में क्वांटम इंटीग्रेबल प्रणाली से अधिक निकटता से संबंधित हैं। दो निकटता से संबंधित विधियां: यांग-बैक्सटर समीकरणों और क्वांटम व्युत्क्रम स्कैटरिंग विधि के आधार पर, अपने आधुनिक अर्थों में, बेथे एनाट्ज़ दृष्टिकोण, व्युत्क्रम वर्णक्रमीय विधियों के क्वांटम एनालॉग प्रदान करता है। ये सांख्यिकीय यांत्रिकी में हल करने योग्य मॉडलों के अध्ययन में समान रूप से महत्वपूर्ण हैं।

अर्थ के रूप में स्पष्ट विलेयता की एक अभेद्य धारणा: कुछ पूर्व ज्ञात कार्यों के संदर्भ में समाधान स्पष्ट रूप से व्यक्त किए जा सकते हैं, कभी-कभी इसका उपयोग भी किया जाता है, चूँकि यह पूरी तरह से गणनात्मक विशेषता के अतिरिक्त प्रणाली की आंतरिक संपत्ति थी, जो हमारे पास होता है कुछ ज्ञात कार्य उपलब्ध हैं, जिनके संदर्भ में समाधान व्यक्त किए जा सकते हैं। इस धारणा का कोई आंतरिक अर्थ नहीं है, क्योंकि ज्ञात कार्यों का अर्थ अधिकांशतः इस तथ्य से स्पष्ट रूप से परिभाषित किया जाता है कि वे कुछ दिए गए समीकरणों को पूरा करते हैं, और ऐसे ज्ञात कार्यों की सूची निरंतर बढ़ रही है। चूँकि इस तरह के अभिन्नता के लक्षण वर्णन की कोई आंतरिक वैधता नहीं है, लेकिन यह अधिकांशतः उस तरह की नियमितता को दर्शाता है जिसकी अभिन्न प्रणालियों में अपेक्षा की जाती है।[citation needed]

कुछ जाने-माने इंटीग्रेबल प्रणाली्स की सूची

मौलिक यांत्रिक प्रणाली

एकीकृत जाली मॉडल

1 + 1 आयामों में एकीकृत प्रणाली

2 + 1 आयामों में एकीकृत पीडीई

  • डेवी-स्टीवर्टसन समीकरण
  • इशिमोरी समीकरण
  • कदोमत्सेव-पेटविअश्विली समीकरण
  • नोविकोव-वेसेलोव समीकरण
3 + 1 आयामों में एकीकृत पीडीई

स्पष्ट रूप से हल करने योग्य सांख्यिकीय जाली मॉडल

यह भी देखें

संबंधित क्षेत्र

कुछ प्रमुख योगदानकर्ता (1965 से)

संदर्भ


अग्रिम पठन


बाहरी संबंध


टिप्पणियाँ

  1. Hitchin, N.J.; Segal, G.B.; Ward, R.S. (2013) [1999]. Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces. Oxford University Press. ISBN 978-0-19-967677-4.
  2. Hirota, R. (1986). "द्विरेखीय रूप में सॉलिटॉन समीकरणों का अपचयन". Physica D: Nonlinear Phenomena. 18 (1–3): 161–170. Bibcode:1986PhyD...18..161H. doi:10.1016/0167-2789(86)90173-9.
  3. Sato, M. (1981). "अनंत आयामी ग्रासमैन मैनिफोल्ड्स पर डायनेमिक सिस्टम के रूप में सॉलिटॉन समीकरण" (PDF). Kokyuroku, RIMS, Kyoto University. 439: 30–46. hdl:2433/102800.
  4. Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T. (1981). "कदोमत्सेव-पेटवीश्विली समीकरण III के लिए ऑपरेटर दृष्टिकोण". Journal of the Physical Society of Japan. 50 (11): 3806–12. doi:10.1143/JPSJ.50.3806.
  5. Jimbo, M.; Miwa, T. (1983). "सॉलिटॉन और अनंत-आयामी झूठ बीजगणित". Publ. Res. Inst. Math. Sci. 19 (3): 943–1001. doi:10.2977/prims/1195182017.
  6. Calabrese, Pasquale; Essler, Fabian H L; Mussardo, Giuseppe (2016-06-27). "'क्वांटम इंटीग्रेबिलिटी इन आउट ऑफ इक्विलिब्रियम सिस्टम्स' का परिचय". Journal of Statistical Mechanics: Theory and Experiment. IOP Publishing. 2016 (6): 064001. Bibcode:2016JSMTE..06.4001C. doi:10.1088/1742-5468/2016/06/064001. ISSN 1742-5468. S2CID 124170507.
  7. Korepin, V.E.; Bogoliubov, N.M.; Izergin, A.G. (1997). क्वांटम व्युत्क्रम बिखरने की विधि और सहसंबंध कार्य. Cambridge University Press. ISBN 978-0-521-58646-7.
  8. Sinitsyn, N.A.; Li, F. (2016). "कैविटी QED में लैंडौ-जेनर ट्रांज़िशन का सॉल्वेबल मल्टीस्टेट मॉडल". Phys. Rev. A. 93 (6): 063859. arXiv:1602.03136. Bibcode:2016PhRvA..93f3859S. doi:10.1103/PhysRevA.93.063859. S2CID 119331736.
  9. Calogero, F. (2008). "कैलोगेरो-मोजर प्रणाली". Scholarpedia. 3 (8): 7216. Bibcode:2008SchpJ...3.7216C. doi:10.4249/scholarpedia.7216.
  10. Clarkson, Peter A.; Nijhoff, Frank W. (1999). Symmetries and Integrability of Difference Equations. London Mathematical Society. Vol. 255. Cambridge University Press. ISBN 978-0-521-59699-2.

[Category:Partial differential equatio