हॉज सिद्धांत
गणित में, हॉज सिद्धांत, विलियम वालेंस डगलस हॉज के नाम पर | डब्ल्यू। वी. डी. हॉज, आंशिक अंतर समीकरणों का उपयोग करके एक चिकनी कई गुना M के कोहोलॉजी समूहों का अध्ययन करने की एक विधि है। प्रमुख अवलोकन यह है कि, M पर रिमेंनियन मीट्रिक दिए जाने पर, प्रत्येक कोहोलॉजी वर्ग का एक प्रतिनिधि (गणित) होता है, एक अंतर रूप जो मेट्रिक के लाप्लासियन ऑपरेटर के अंतर्गत गायब हो जाता है। ऐसे रूपों को हार्मोनिक कहा जाता है।
1930 के दशक में बीजगणितीय ज्यामिति का अध्ययन करने के लिए सिद्धांत को हॉज द्वारा विकसित किया गया था, और यह डॉ कहलमज गर्भाशय पर गेर्गेस डी रहम के काम पर बनाया गया था। इसके दो सेटिंग्स में प्रमुख अनुप्रयोग हैं: रीमैनियन कई गुना ्स और काहलर मैनिफोल्ड्स। हॉज की प्राथमिक प्रेरणा, जटिल प्रक्षेपी विविधता का अध्ययन, बाद के स्थितियों में सम्मिलित है। हॉज सिद्धांत बीजगणितीय ज्यामिति में एक महत्वपूर्ण उपकरण बन गया है, विशेष रूप से बीजगणितीय चक्रों के अध्ययन के संबंध में।
जबकि हॉज सिद्धांत वास्तविक और जटिल संख्याओं पर आंतरिक रूप से निर्भर है, इसे संख्या सिद्धांत में प्रश्नों पर प्रयुक्त किया जा सकता है। अंकगणितीय स्थितियों में, p-adic Hodge theory| p-एडिक हॉज सिद्धांत के उपकरणों ने शास्त्रीय हॉज सिद्धांत के वैकल्पिक प्रमाण, या अनुरूप परिणाम दिए हैं।
इतिहास
1920 के दशक में बीजगणितीय टोपोलॉजी का क्षेत्र अभी भी नवजात था। इसने अभी तक सह-समरूपता की धारणा विकसित नहीं की थी, और विभेदक रूपों और टोपोलॉजी के बीच की बातचीत को खराब विधियों से समझा गया था। 1928 में, एली कार्टन ने सुर लेस नोम्ब्रेस डे बेट्टी डेस एस्पेस डे ग्रुप्स क्लोस नामक एक नोट प्रकाशित किया जिसमें उन्होंने सुझाव दिया, लेकिन यह सिद्ध नहीं किया कि अंतर रूपों और टोपोलॉजी को जोड़ा जाना चाहिए। इसे पढ़ने के बाद, उस समय एक छात्र, जॉर्जेस डी राम प्रेरणा से तुरंत प्रभावित हुए। 1931 की अपनी थीसिस में, उन्होंने एक शानदार परिणाम सिद्ध किया जिसे अब डी राम की प्रमेय कहा जाता है। स्टोक्स के प्रमेय के अनुसार, किसी भी कॉम्पैक्ट स्मूथ मैनिफोल्ड M, एक बिलिनियर पेयरिंग के लिए, एकवचन समरूपता श्रृंखलाओं के साथ विभेदक रूपों का एकीकरण
जैसा कि मूल रूप से कहा गया है, डी राम के प्रमेय का दावा है कि यह एक आदर्श जोड़ी है, और इसलिए बाईं ओर प्रत्येक शब्द एक दूसरे के सदिश अंतरिक्ष दोहरे हैं। समकालीन भाषा में, डी राम के प्रमेय को अधिकांशतः बयान के रूप में अभिव्यक्त किया जाता है कि वास्तविक गुणांक के साथ एकवचन कोहोलॉजी डी राम कोहोलॉजी के लिए आइसोमॉर्फिक है:
डी राम का मूल कथन तब पोंकारे द्वैत का परिणाम है।[1]
अलग से, सोलोमन लेफशेट्ज़ के 1927 के एक पेपर ने बर्नहार्ड रीमैन के प्रमेयों को गलत सिद्ध करने के लिए सामयिक विधियों का प्रयोग किया।[2] आधुनिक भाषा में, यदि ω1 और ω2 एक बीजगणितीय वक्र C पर होलोमोर्फिक अंतर हैं, तो उनका वेज उत्पाद आवश्यक रूप से शून्य है क्योंकि C का केवल एक जटिल आयाम है; परिणामस्वरूप, उनके कोहोलॉजी वर्गों का कप उत्पाद शून्य है, और जब इसे स्पष्ट किया गया, तो इसने लेफशेट्ज़ को रीमैन संबंधों का एक नया प्रमाण दिया। इसके अतिरिक्त, यदि ω एक गैर-शून्य होलोमॉर्फिक अंतर है, तब एक धनात्मक आयतन रूप है, जिससे लेफ्शेट्ज़ रीमैन की असमानताओं को फिर से प्राप्त करने में सक्षम था। 1929 में, डब्ल्यू वी डी. हॉज ने लेफशेट्ज़ के पेपर के बारे में सीखा। उन्होंने तुरंत देखा कि इसी तरह के सिद्धांत बीजगणितीय सतहों पर प्रयुक्त होते हैं। अधिक सटीक रूप से, यदि ω बीजगणितीय सतह पर एक गैर-शून्य होलोमोर्फिक रूप है, तो सकारात्मक है, इसलिए का कप उत्पाद और गैर-शून्य होना चाहिए। यह इस प्रकार है कि ω स्वयं को एक गैर-शून्य कोहोलॉजी वर्ग का प्रतिनिधित्व करना चाहिए, इसलिए इसकी अवधि शून्य नहीं हो सकती। इससे सेवरी का एक प्रश्न हल हो गया।[3]
हॉज ने अनुभव किया कि ये तकनीकें उच्च आयामी किस्मों पर भी प्रयुक्त होनी चाहिए। उनके सहयोगी पीटर फ्रेजर ने उन्हें डी राम की थीसिस की सिफारिश की। डी राम की थीसिस को पढ़ने में, हॉज ने अनुभव किया कि एक रीमैन सतह पर एक होलोमोर्फिक 1-रूप के वास्तविक और काल्पनिक भाग कुछ अर्थों में एक दूसरे के लिए दोहरे थे। उन्हें संदेह था कि उच्च आयामों में समान द्वैत होना चाहिए; इस द्वंद्व को अब हॉज स्टार ऑपरेटर के रूप में जाना जाता है। उन्होंने आगे अनुमान लगाया कि प्रत्येक कोहोलॉजी वर्ग के पास संपत्ति के साथ एक विशिष्ट प्रतिनिधि होना चाहिए कि बाहरी डेरिवेटिव ऑपरेटर के अंतर्गत यह और इसकी दोहरी गायब हो जाती है; इन्हें अब हार्मोनिक रूप कहा जाता है। हॉज ने 1930 के अधिकांश समय को इस समस्या के लिए समर्पित किया। एक प्रमाण पर उनका सबसे पहला प्रकाशित प्रयास 1933 में सामने आया, लेकिन उन्होंने इसे चरम पर अपरिष्कृत माना। युग के सबसे शानदार गणितज्ञों में से एक हरमन वेइल ने खुद को यह निर्धारित करने में असमर्थ पाया कि हॉज का प्रमाण सही था या नहीं। 1936 में, हॉज ने एक नया प्रमाण प्रकाशित किया। जबकि हॉज ने नए प्रमाण को बहुत अच्छा माना, बोहेनब्लस्ट द्वारा एक गंभीर दोष की खोज की गई। स्वतंत्र रूप से, हरमन वेइल और कुनिहिको कोडैरा ने त्रुटि को सुधारने के लिए हॉज के प्रमाण को संशोधित किया। इसने हार्मोनिक रूपों और कोहोलॉजी वर्गों के बीच हॉज की मांग वाली समरूपता की स्थापना की।
<ब्लॉककोट>
पूर्व-निरीक्षण में यह स्पष्ट है कि अस्तित्व प्रमेय में तकनीकी कठिनाइयों के लिए वास्तव में किसी महत्वपूर्ण नए विचार की आवश्यकता नहीं थी, बल्कि शास्त्रीय विधियों का सावधानीपूर्वक विस्तार था। वास्तविक नवीनता, जो हॉज का प्रमुख योगदान था, हार्मोनिक इंटीग्रल की अवधारणा और बीजगणितीय ज्यामिति के लिए उनकी प्रासंगिकता थी। तकनीक पर अवधारणा की यह विजय हॉज के महान पूर्ववर्ती बर्नहार्ड रीमैन के काम में इसी तरह के एपिसोड की याद दिलाती है।
—माइकल अतियाह| एम. एफ अतियाह, विलियम वैलेंस डगलस हॉज, 17 जून 1903 - 7 जुलाई 1975, रॉयल सोसाइटी के फेलो के जीवनी संबंधी संस्मरण, वॉल्यूम। 22, 1976, पीपी। 169-192।
</ब्लॉककोट>
वास्तविक कई गुना के लिए हॉज सिद्धांत
डी राम कोहोलॉजी
हॉज थ्योरी डी राम कोहोलॉजी का संदर्भ देता है। माना M एक चिकनी कई गुना हो। एक गैर-ऋणात्मक पूर्णांक k के लिए, मान लीजिए Ωk(M) M पर डिग्री k के चिकने डिफरेंशियल फॉर्म का वास्तविक संख्या सदिश स्थान हो। डी राम कॉम्प्लेक्स अंतर ऑपरेटर ्स का अनुक्रम है
जहां dk पर बाहरी व्युत्पन्न को दर्शाता है Ωk(M) यह इस मायने में एक कोचेन कॉम्प्लेक्स है dk+1 ∘ dk = 0 (लिखा भी है d2 = 0). डी राम के प्रमेय का कहना है कि वास्तविक गुणांक वाले एम के एकवचन कोहोलॉजी की गणना डी राम परिसर द्वारा की जाती है:
हॉज थ्योरी में ऑपरेटर
M पर रिमेंनियन मीट्रिक g चुनें और याद रखें कि:
मीट्रिक प्रत्येक फाइबर पर एक आंतरिक उत्पाद उत्पन्न करता है विस्तार से (ग्रामियन मैट्रिक्स देखें) प्रत्येक कोटेजेंट फाइबर से जी द्वारा प्रेरित आंतरिक उत्पाद इसके लिए बाहरी उत्पाद: . h> आंतरिक उत्पाद को वॉल्यूम फॉर्म के संबंध में M के ऊपर दिए गए k- रूपों की जोड़ी के बिंदुवार आंतरिक उत्पाद के अभिन्न अंग के रूप में परिभाषित किया गया है। जी से जुड़ा हुआ है। स्पष्ट रूप से, कुछ दिया अपने पास
स्वाभाविक रूप से उपरोक्त आंतरिक उत्पाद एक आदर्श को प्रेरित करता है, जब वह मानदंड कुछ निश्चित k-फॉर्म पर परिमित होता है:
तब समाकलन M पर एक वास्तविक मूल्यवान, वर्ग समाकलनीय कार्य है, जिसका बिंदु-वार मानदंडों के माध्यम से दिए गए बिंदु पर मूल्यांकन किया जाता है,
इन आंतरिक उत्पादों के संबंध में d के संलग्न संकारक पर विचार करें:
तब रूपों पर लाप्लासियन द्वारा परिभाषित किया गया है
यह एक दूसरे क्रम का रेखीय अंतर संचालिका है, जो Rn पर कार्यों के लिए लाप्लासियन का सामान्यीकरण करता है एन. परिभाषा के अनुसार, M पर एक रूप 'हार्मोनिक' है यदि इसका लाप्लासियन शून्य है:
लाप्लासियन पहले गणितीय भौतिकी में दिखाई दिया। विशेष रूप से, विभेदक रूप # भौतिक विज्ञान में अनुप्रयोग | मैक्सवेल के समीकरण कहते हैं कि निर्वात में विद्युत चुम्बकीय क्षमता एक 1-रूप a है जिसका बाहरी व्युत्पन्न है dA = F, जहां F एक 2-रूप है जो विद्युत चुम्बकीय क्षेत्र का प्रतिनिधित्व करता है ΔA = 0 अंतरिक्ष-समय पर, आयाम 4 के मिन्कोवस्की अंतरिक्ष के रूप में देखा गया।
एक बंद कई गुना रीमैनियन कई गुना पर हर हार्मोनिक रूप α बंद और सटीक अंतर रूप है, जिसका अर्थ है dα = 0. परिणामस्वरूप, एक कैनोनिकल मैपिंग है . हॉज प्रमेय कहता है कि वेक्टर रिक्त स्थान का एक समरूपता है।[4] दूसरे शब्दों में, M पर प्रत्येक वास्तविक कोहोलॉजी वर्ग में एक अद्वितीय हार्मोनिक प्रतिनिधि होता है। ठोस रूप से, हार्मोनिक प्रतिनिधि न्यूनतम L2 का अद्वितीय बंद रूप है 2 मानदंड जो किसी दिए गए कोहोलॉजी वर्ग का प्रतिनिधित्व करता है। हॉज प्रमेय को अण्डाकार ऑपरेटर आंशिक अंतर समीकरणों के सिद्धांत का उपयोग करके सिद्ध किया गया था, हॉज के प्रारंभिक तर्कों को 1940 के दशक में कुनिहिको कोडायरा और अन्य लोगों द्वारा पूरा किया गया था।
उदाहरण के लिए, हॉज प्रमेय का अर्थ है कि एक बंद कई गुना के वास्तविक गुणांक वाले कोहोलॉजी समूह परिमित-आयामी हैं। (प्रमाणित है, इसे सिद्ध करने के अन्य विधियों हैं।) वास्तव में, ऑपरेटर Δ अंडाकार होते हैं, और एक बंद कई गुना पर अंडाकार ऑपरेटर के कर्नेल (बीजगणित) हमेशा एक परिमित-आयामी वेक्टर स्थान होता है। हॉज प्रमेय का एक अन्य परिणाम यह है कि एक बंद मैनिफोल्ड M पर एक रिमेंनियन मीट्रिक M मॉड्यूलो टोरसन उपसमूह के अभिन्न कोहोलॉजी पर वास्तविक मूल्यवान आंतरिक उत्पाद निर्धारित करता है। यह इस प्रकार है, उदाहरण के लिए, सामान्य रैखिक समूह में M के आइसोमेट्री समूह की छवि GL(H∗(M, Z)) परिमित है (क्योंकि एक जाली (समूह) के आइसोमेट्री का समूह परिमित है)।
हॉज प्रमेय का एक प्रकार हॉज अपघटन है। यह कहता है कि फॉर्म में तीन भागों के योग के रूप में एक बंद रिमेंनियन मैनिफोल्ड पर किसी भी विभेदक रूप ω का एक अनूठा अपघटन है
जिसमें γ हार्मोनिक है: Δγ = 0.[5] एल के संदर्भ में2 विभेदक रूपों पर मीट्रिक, यह एक ऑर्थोगोनल प्रत्यक्ष योग अपघटन देता है:
हॉज अपघटन डी राम कॉम्प्लेक्स के लिए हेल्महोल्ट्ज़ अपघटन का एक सामान्यीकरण है।
अण्डाकार परिसरों का हॉज सिद्धांत
माइकल अतियाह और राउल बॉटल ने अण्डाकार परिसरों को डी राम परिसर के सामान्यीकरण के रूप में परिभाषित किया। हॉज प्रमेय इस सेटिंग तक विस्तारित है, निम्नानुसार है। माना वॉल्यूम फॉर्म dV के साथ एक बंद चिकने मैनिफोल्ड M पर मेट्रिक्स से लैस वेक्टर बंडल बनें। लगता है कि
चिकनेपन पर काम करने वाले रेखीय अवकल संचालिकाएँ हैं | C∞ इन सदिश बंडलों के खंड, और वह प्रेरित अनुक्रम
एक अण्डाकार परिसर है। प्रत्यक्ष रकम का परिचय दें:
और L∗ L का आसन्न हो। अण्डाकार संकारक को परिभाषित करें Δ = LL∗ + L∗L. जैसा कि डी राम स्थितियों में, यह हार्मोनिक वर्गों के सदिश स्थान को उत्पन्न करता है
माना ओर्थोगोनल प्रोजेक्शन हो, और G को ग्रीन का कार्य होने दें | Δ के लिए ग्रीन का ऑपरेटर। 'हॉज प्रमेय' तब निम्नलिखित पर जोर देता है:[6]
- H और G अच्छी तरह से परिभाषित हैं।
- Id = एच + ΔG = एच + जीΔ
- Id = H + ΔG = H + GΔ
- एलजी = जीएल, एल∗ग = गल∗
- LG = GL, L∗G = GL∗
- कॉम्प्लेक्स का कोहोलॉजी हार्मोनिक सेक्शन के स्थान के लिए कैनोनिक रूप से आइसोमोर्फिक है, , इस अर्थ में कि प्रत्येक कोहोलॉजी वर्ग का एक अद्वितीय हार्मोनिक प्रतिनिधि है।
इस स्थिति में एक हॉज अपघटन भी है, डी राम कॉम्प्लेक्स के लिए ऊपर दिए गए बयान को सामान्य बनाना।
जटिल प्रोजेक्टिव किस्मों के लिए हॉज सिद्धांत
माना X को एक चिकनी योजना जटिल प्रोजेक्टिव मैनिफोल्ड होने दें, जिसका अर्थ है कि एक्स कुछ जटिल प्रक्षेप्य स्थान 'CPN' का एक बंद जटिल कई गुना है एन. बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति द्वारा # चाउ की प्रमेय| चाउ की प्रमेय, जटिल प्रक्षेपी कई गुना स्वचालित रूप से बीजगणितीय होते हैं: वे 'CPN' पर सजातीय बहुपद समीकरणों के गायब होने से परिभाषित होते हैं एन. 'CPN' पर फुबिनी-अध्ययन मीट्रिक N X पर एक रीमैनियन मेट्रिक को प्रेरित करता है जिसकी जटिल संरचना के साथ एक मजबूत संगतता है, जिससे X एक काहलर कई गुना हो जाता है।
एक जटिल कई गुना x और एक प्राकृतिक संख्या r के लिए, हर सुचारू कार्य C∞ r--फॉर्म x पर (जटिल गुणांकों के साथ) विशिष्ट रूप से जटिल अंतर फॉर्म के योग के रूप में लिखा जा सकता है। type (p, q) साथ p + q = r, जिसका अर्थ है कि स्थानीय रूप से शब्दों के परिमित योग के रूप में लिखा जा सकता है, प्रत्येक शब्द के रूप में
f a C∞ के साथ ∞ फलन और zs और ws होलोमॉर्फिक कार्य। काहलर मैनिफोल्ड पर, (p, q) हार्मोनिक रूप के घटक फिर से हार्मोनिक होते हैं। इसलिए, किसी भी कॉम्पैक्ट जगह केहलर मैनिफोल्ड x के लिए, हॉज प्रमेय जटिल वेक्टर रिक्त स्थान के प्रत्यक्ष योग के रूप में जटिल गुणांक वाले एक्स के कोहोलॉजी का अपघटन देता है:[7]
यह अपघटन वास्तव में काहलर मीट्रिक की पसंद से स्वतंत्र है (लेकिन सामान्य कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड के लिए कोई समान अपघटन नहीं है)। दूसरी ओर, हॉज अपघटन वास्तव में एक्स की संरचना पर एक जटिल मैनिफोल्ड के रूप में निर्भर करता है, जबकि समूह Hr(X, C) केवल X के अंतर्निहित टोपोलॉजिकल स्पेस पर निर्भर करता है।
इन हार्मोनिक प्रतिनिधियों के वेज उत्पाद लेना कप उत्पाद # कप_उत्पाद_और_विभिन्न_रूपों से मेल खाता है, इसलिए जटिल गुणांक वाले कप उत्पाद हॉज अपघटन के साथ संगत है:
टुकड़ा Hp,q(X) हॉज अपघटन के p,q(X) को एक सुसंगत शीफ कोहोलॉजी समूह के साथ पहचाना जा सकता है, जो केवल X पर एक जटिल मैनिफोल्ड के रूप में निर्भर करता है (कहलेर मीट्रिक की पसंद पर नहीं):[8]
जहां Ωp X पर होलोमॉर्फिक p-फॉर्म के शीफ (गणित) को दर्शाता है। उदाहरण के लिए, Hp,0(X) X पर होलोमोर्फिक p-रूपों का स्थान है। (यदि X प्रक्षेपी है, तो जीन पियरे सेरे के गागा प्रमेय का तात्पर्य है कि सभी X पर एक होलोमोर्फिक p-रूप वास्तव में बीजगणितीय है।)
दूसरी ओर, इंटीग्रल को Z के होमोलॉजी वर्ग के कैप उत्पाद के रूप में लिखा जा सकता है और कोहोलॉजी वर्ग द्वारा दर्शाया गया है . पोनकारे द्वैत द्वारा, Z का समरूपता वर्ग एक कोहोलॉजी वर्ग के लिए दोहरी है जिसे हम [Z] कहेंगे, और कैप उत्पाद की गणना [Z] और α के कप उत्पाद को लेकर और X के मौलिक वर्ग के साथ कैपिंग करके की जा सकती है।
क्योंकि [Z] एक कोहोलॉजी वर्ग है, इसमें हॉज अपघटन है। गणना के द्वारा हमने ऊपर किया, अगर हम इस वर्ग को किसी भी प्रकार के वर्ग के साथ मिलाते हैं , तो हमें शून्य मिलता है। क्योंकि , हम यह निष्कर्ष निकालते हैं कि [Z] को अंदर होना चाहिए .
हॉज नंबर hp,q(X) का अर्थ जटिल वेक्टर स्पेस H का आयाम है p.q(एक्स). ये एक चिकने जटिल प्रक्षेपी किस्म के महत्वपूर्ण आक्रमणकारी हैं; जब X की जटिल संरचना लगातार बदलती रहती है तो वे नहीं बदलते हैं, और फिर भी वे सामान्य रूप से टोपोलॉजिकल इनवेरिएंट नहीं होते हैं। हॉज संख्या के गुणों में 'हॉज समरूपता' हैं hp,q = hq,p (क्योंकिHp,q(X) H का सम्मिश्र संयुग्म है Hq,p(X)) और hp,q = hn−p,n−q (सेरे द्वैत द्वारा)।
चिकनी जटिल प्रक्षेपी विविधता (या कॉम्पैक्ट काहलर मैनिफोल्ड) की हॉज संख्या को होमोलॉजिकल मिरर समरूपता # हॉज हीरा (जटिल आयाम 2 के स्थितियों में दिखाया गया) में सूचीबद्ध किया जा सकता है:
h2,2 | ||||
h2,1 | h1,2 | |||
h2,0 | h1,1 | h0,2 | ||
h1,0 | h0,1 | |||
h0,0 |
उदाहरण के लिए, जीनस (गणित) g के प्रत्येक चिकने प्रक्षेपी बीजगणितीय वक्र में हॉज डायमंड होता है
1 | ||
g | g | |
1 |
दूसरे उदाहरण के लिए, प्रत्येक K3 सतह में हॉज हीरा होता है
1 | ||||
0 | 0 | |||
1 | 20 | 1 | ||
0 | 0 | |||
1 |
X की बेट्टी संख्याएँ दी गई पंक्ति में हॉज संख्याओं का योग हैं। हॉज सिद्धांत का एक मूलभूत अनुप्रयोग तो यह है कि विषम बेट्टी संख्या b2a+1 हॉज समरूपता द्वारा एक चिकनी जटिल प्रोजेक्टिव विविधता (या कॉम्पैक्ट काहलर मैनिफोल्ड) भी हैं। यह सामान्य रूप से कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड्स के लिए सही नहीं है, जैसा कि हॉफ सतह के उदाहरण द्वारा दिखाया गया है, जो कि अलग-अलग है S1 × S3 और इसलिए है b1 = 1.
काहलर पैकेज हॉज सिद्धांत पर निर्माण, चिकनी जटिल प्रोजेक्टिव किस्मों (या कॉम्पैक्ट काहलर मैनिफोल्ड्स) के कोहोलॉजी पर प्रतिबंधों का एक शक्तिशाली सेट है। परिणामों में लेफ्शेट्ज़ हाइपरप्लेन प्रमेय, कठिन लेफ़्सचेट्ज़ प्रमेय और हॉज-रीमैन द्विरेखीय संबंध सम्मिलित हैं।[9] इनमें से कई परिणाम मौलिक तकनीकी उपकरणों से आते हैं, जो हॉज सिद्धांत का उपयोग करके कॉम्पैक्ट काहलर मैनिफोल्ड के लिए सिद्ध हो सकते हैं, जिसमें काहलर पहचान और डडबार लेम्मा सम्मिलित हैं।-लेम्मा।
हॉज सिद्धांत और विस्तार जैसे सिम्पसन पत्राचार | गैर-अबेलियन हॉज सिद्धांत भी कॉम्पैक्ट काहलर मैनिफोल्ड्स के संभावित मौलिक समूहों पर मजबूत प्रतिबंध देते हैं।
बीजगणितीय चक्र और हॉज अनुमान
बता दें कि X एक चिकनी जटिल प्रक्षेपी किस्म है। कोडिमेंशन p के x में एक जटिल उप-किस्म y कोहोलॉजी समूह के एक तत्व को परिभाषित करता है . इसके अतिरिक्त, परिणामी वर्ग की एक विशेष संपत्ति है: जटिल कोहोलॉजी में इसकी छवि हॉज अपघटन के मध्य भाग में स्थित है, . हॉज अनुमान एक बातचीत की भविष्यवाणी करता है: का हर तत्व जिसकी जटिल कोहोलॉजी में छवि उप-स्थान में निहित है एक सकारात्मक अभिन्न गुणक होना चाहिए जो कि a है X की जटिल उप-किस्मों के वर्गों का रैखिक संयोजन। (इस तरह के एक रैखिक संयोजन को X पर 'बीजगणितीय चक्र' कहा जाता है।)
एक महत्वपूर्ण बिंदु यह है कि हॉज अपघटन जटिल गुणांक वाले कोहोलॉजी का अपघटन है जो आम तौर पर अभिन्न (या तर्कसंगत) गुणांक वाले कोहोलॉजी के अपघटन से नहीं आता है। परिणामस्वरूप, चौराहा
पूरे समूह की तुलना में बहुत छोटा हो सकता है मरोड़, भले ही हॉज नंबर बड़ा है। संक्षेप में, हॉज अनुमान भविष्यवाणी करता है कि X की जटिल उप-किस्मों के संभावित आकार (जैसा कि कोहोलॉजी द्वारा वर्णित है) X के 'हॉज स्ट्रक्चर' (जटिल कोहोलॉजी के हॉज अपघटन के साथ अभिन्न कोहोलॉजी का संयोजन) द्वारा निर्धारित किया जाता है।
(1,1)-वर्गों पर लेफ़शेट्ज़ प्रमेय | लेफ़्सचेट्ज़ (1,1)-प्रमेय कहता है कि हॉज अनुमान किसके लिए सत्य है p = 1 (यहां तक कि अभिन्न रूप से, यानी बयान में एक सकारात्मक अभिन्न गुणक की आवश्यकता के बिना)।
किस्म X की हॉज संरचना, X पर बीजगणितीय अंतर रूपों के इंटीग्रल का वर्णन करती है, X में एकवचन समरूपता कक्षाओं पर। इस अर्थ में, हॉज सिद्धांत कलन में एक मूलभूत मुद्दे से संबंधित है: बीजगणितीय के अभिन्न अंग के लिए सामान्य रूप से कोई सूत्र नहीं है फलन। विशेष रूप से, बीजगणितीय कार्यों के निश्चित अभिन्न अंग, जिन्हें अवधियों के वलय के रूप में जाना जाता है, पारलौकिक संख्याएँ हो सकती हैं। हॉज अनुमान की कठिनाई सामान्य रूप से ऐसे अभिन्नों की समझ की कमी को दर्शाती है।
उदाहरण: एक चिकने जटिल प्रक्षेपी K3 सतह X के लिए, समूह H2(X, Z) Z के लिए आइसोमोर्फिक है Z22, और H1,1 (X) 'C' के लिए तुल्याकारी है C20< /उप>। उनके प्रतिच्छेदन की रैंक 1 और 20 के बीच कहीं भी हो सकती है; इस रैंक को X की पिकार्ड संख्या कहा जाता है। सभी प्रक्षेप्य K3 सतहों के मोडुली स्पेस में घटकों का एक अनंत अनंत सेट होता है, प्रत्येक जटिल आयाम 19 का होता है। पिकार्ड नंबर a के साथ K3 सतहों के उप-स्थान का आयाम 20−a होता है।[10] (इस प्रकार, अधिकांश प्रक्षेपी K3 सतहों के लिए, प्रतिच्छेदन H2(X, Z) एच के साथ1,1(X) 'Z' के लिए समरूपी है, लेकिन विशेष K3 सतहों के लिए प्रतिच्छेदन बड़ा हो सकता है।)
यह उदाहरण जटिल बीजगणितीय ज्यामिति में हॉज सिद्धांत द्वारा निभाई गई कई अलग-अलग भूमिकाओं का सुझाव देता है। सबसे पहले, हॉज सिद्धांत उन प्रतिबंधों को देता है जिन पर टोपोलॉजिकल रिक्त स्थान एक चिकनी जटिल प्रोजेक्टिव किस्म की संरचना हो सकते हैं। दूसरा, हॉज सिद्धांत दिए गए टोपोलॉजिकल प्रकार के साथ चिकनी जटिल प्रोजेक्टिव किस्मों के मोडुली स्पेस के बारे में जानकारी देता है। सबसे अच्छा स्थितियों तब होता है जब टोरेली प्रमेय धारण करता है, जिसका अर्थ है कि इसकी हॉज संरचना द्वारा आइसोमोर्फिज्म तक की विविधता निर्धारित की जाती है। अंत में, हॉज सिद्धांत किसी दी गई विविधता पर बीजगणितीय चक्रों के चाउ समूह के बारे में जानकारी देता है। हॉज अनुमान चाउ समूह की छवि के बारे में है # चाउ समूहों से सामान्य कोहोलॉजी के लिए चक्र मानचित्र, लेकिन हॉज सिद्धांत चक्र मानचित्र के कर्नेल के बारे में भी जानकारी देता है, उदाहरण के लिए मध्यवर्ती जैकबियन का उपयोग करके जो हॉज संरचना से निर्मित होते हैं।
सामान्यीकरण
मिश्रित हॉज सिद्धांत, पियरे डेलिग्ने द्वारा विकसित, हॉज सिद्धांत को सभी जटिल बीजगणितीय किस्मों तक फैलाता है, जरूरी नहीं कि चिकनी या कॉम्पैक्ट हो। अर्थात्, किसी भी जटिल बीजगणितीय विविधता के कोहोलॉजी में अधिक सामान्य प्रकार का अपघटन, एक मिश्रित हॉज संरचना है।
इंटरसेक्शन होमोलॉजी समरूपता द्वारा एकवचन किस्मों के लिए हॉज सिद्धांत का एक अलग सामान्यीकरण प्रदान किया जाता है। अर्थात्, मोरीहिको सैटो ने दिखाया कि किसी भी जटिल प्रक्षेप्य विविधता (आवश्यक रूप से चिकनी नहीं) के प्रतिच्छेदन होमोलॉजी में एक शुद्ध हॉज संरचना है, जैसे कि चिकने स्थितियों में। वास्तव में, पूरा काहलर पैकेज इंटरसेक्शन होमोलॉजी तक फैला हुआ है।
जटिल ज्यामिति का एक मूलभूत पहलू यह है कि गैर-आइसोमॉर्फिक कॉम्प्लेक्स मैनिफोल्ड्स के निरंतर परिवार हैं (जो वास्तविक मैनिफोल्ड्स के रूप में सभी अलग-अलग हैं)। फिलिप ग्रिफिथ्स की हॉज संरचना की भिन्नता की धारणा बताती है कि कैसे एक चिकनी जटिल प्रक्षेपी विविधता 'एक्स' की हॉज संरचना बदलती है जब 'एक्स' भिन्न होती है। ज्यामितीय शब्दों में, यह किस्मों के एक परिवार से संबंधित अवधि मानचित्रण का अध्ययन करने के बराबर है। सैटो का हॉज मॉड्यूल का सिद्धांत एक सामान्यीकरण है। मोटे तौर पर, X किस्म पर एक मिश्रित हॉज मॉड्यूल X के ऊपर मिश्रित हॉज संरचनाओं का एक समूह है, जैसा कि उन किस्मों के परिवार से उत्पन्न होगा, जिन्हें चिकनी या कॉम्पैक्ट होने की आवश्यकता नहीं है।
यह भी देखें
- संभावित सिद्धांत
- गंभीर द्वैत
- हेल्महोल्ट्ज़ अपघटन
- स्थानीय अपरिवर्तनीय चक्र प्रमेय
- अरकेलोव सिद्धांत
- हॉज-अराकेलोव सिद्धांत
- डीडीबार लेम्मा, कॉम्पैक्ट काहलर मैनिफोल्ड्स के लिए हॉज सिद्धांत का एक प्रमुख परिणाम।
टिप्पणियाँ
- ↑ Chatterji, Srishti; Ojanguren, Manuel (2010), A glimpse of the de Rham era (PDF), working paper, EPFL
- ↑ Lefschetz, Solomon, "Correspondences Between Algebraic Curves", Ann. of Math. (2), Vol. 28, No. 1, 1927, pp. 342–354.
- ↑ Michael Atiyah, William Vallance Douglas Hodge, 17 June 1903 – 7 July 1975, Biogr. Mem. Fellows R. Soc., 1976, vol. 22, pp. 169–192.
- ↑ Warner (1983), Theorem 6.11.
- ↑ Warner (1983), Theorem 6.8.
- ↑ Wells (2008), Theorem IV.5.2.
- ↑ Huybrechts (2005), Corollary 3.2.12.
- ↑ Huybrechts (2005), Corollary 2.6.21.
- ↑ Huybrechts (2005), sections 3.3 and 5.2; Griffiths & Harris (1994), sections 0.7 and 1.2; Voisin (2007), v. 1, ch. 6, and v. 2, ch. 1.
- ↑ Griffiths & Harris (1994), p. 594.
संदर्भ
- Arapura, Donu, Computing Some Hodge Numbers (PDF)
- Griffiths, Phillip; Harris, Joseph (1994) [1978]. Principles of Algebraic Geometry. Wiley Classics Library. Wiley Interscience. ISBN 0-471-05059-8. MR 0507725.
- Hodge, W. V. D. (1941), The Theory and Applications of Harmonic Integrals, Cambridge University Press, ISBN 978-0-521-35881-1, MR 0003947
- Huybrechts, Daniel (2005), Complex Geometry: An Introduction, Springer, ISBN 3-540-21290-6, MR 2093043
- Voisin, Claire (2007) [2002], Hodge Theory and Complex Algebraic Geometry (2 vols.), Cambridge University Press, doi:10.1017/CBO9780511615344, ISBN 978-0-521-71801-1, MR 1967689
- Warner, Frank (1983) [1971], Foundations of Differentiable Manifolds and Lie Groups, Springer, ISBN 0-387-90894-3, MR 0722297
- Wells Jr., Raymond O. (2008) [1973], Differential Analysis on Complex Manifolds, Graduate Texts in Mathematics, vol. 65 (3rd ed.), Springer, doi:10.1007/978-0-387-73892-5, hdl:10338.dmlcz/141778, ISBN 978-0-387-73891-8, MR 2359489