बहुमूल्यांकित फलन

From Vigyanwiki
Revision as of 23:55, 8 July 2023 by alpha>Amrapali

गणित में, एक बहुमूल्यवान फलन, जिसे बहुआयामी और कई-मूल्यवान फलन भी कहा जाता है, निरंतरता गुणों वाला एक समुच्चय-मूल्यवान फलन है जो इसे स्थानीय रूप से एक सामान्य फलन के रूप में विचार करने की अनुमति देता है।

अंतर्निहित फलन प्रमेय के अनुप्रयोगों में बहुमूल्यवान फलन सामान्यतः उत्पन्न होते हैं, क्योंकि इस प्रमेय को बहुमूल्यवान फलन के अस्तित्व पर जोर देने के रूप में देखा जा सकता है। विशेष रूप से, अवकलनीय फलन मे व्युत्क्रम फलन का एक बहुमूल्यांकित फलन होता है, और एकल-मूल्यवान तभी होता है जब मूल फलन एकदिष्ट फलन होता है। उदाहरण के लिए, जटिल लघुगणक बहुमूल्यांकित फलन है, जो घातीय फलन के व्युत्क्रम के रूप में होता है। इसे सामान्य फलन के रूप में नहीं माना जा सकता है, क्योंकि, जब कोई केंद्र पर केंद्रित वृत्त के अनुदिश लघुगणक के मान का अनुसरण करता है 0, पूर्ण घुमाव के बाद आरंभिक मान से भिन्न मान प्राप्त होता है। इस घटना को मोनोड्रोमी कहा जाता है।

बहुमूल्यवान फलन को परिभाषित करने का एक अन्य सामान्य तरीका विश्लेषणात्मक निरंतरता है, जो आम तौर पर कुछ मोनोड्रोमी उत्पन्न करता है: एक बंद वक्र के साथ विश्लेषणात्मक निरंतरता एक अंतिम मान उत्पन्न कर सकती है जो शुरुआती मूल्य से भिन्न होती है।

बहुमूल्यवान फलन विभेदक समीकरणों के समाधान के रूप में भी उत्पन्न होते हैं, जहां विभिन्न मान प्रारंभिक स्थितियों द्वारा पैरामीट्रिज्ड होते हैं।

प्रेरणा

मल्टीवैल्यूड फलन शब्द की उत्पत्ति जटिल विश्लेषण में, विश्लेषणात्मक निरंतरता से हुई है। अक्सर ऐसा होता है कि कोई व्यक्ति किसी जटिल विश्लेषणात्मक फलन का मूल्य जानता है किसी बिंदु के कुछ पड़ोस (गणित) में . यह अंतर्निहित फलन प्रमेय या टेलर श्रृंखला द्वारा परिभाषित कार्यों का मामला है . ऐसी स्थिति में, कोई एकल-मूल्यवान फलन के डोमेन का विस्तार कर सकता है जटिल तल में वक्रों के साथ शुरू होता है . ऐसा करने पर, किसी को एक बिंदु पर विस्तारित फलन का मान पता चलता है से चुने गए वक्र पर निर्भर करता है को ; चूँकि कोई भी नया मूल्य दूसरों की तुलना में अधिक स्वाभाविक नहीं है, उन सभी को एक बहुमूल्यवान फलन में शामिल किया गया है।

उदाहरण के लिए, चलो सकारात्मक वास्तविक संख्याओं पर सामान्य वर्गमूल फलन बनें। कोई अपने डोमेन को पड़ोस तक बढ़ा सकता है जटिल तल में, और फिर आगे शुरू होने वाले वक्रों के साथ , ताकि किसी दिए गए वक्र के साथ मान लगातार बदलते रहें . ऋणात्मक वास्तविक संख्याओं तक विस्तार करने पर, वर्गमूल के लिए दो विपरीत मान प्राप्त होते हैं—उदाहरण के लिए ±i के लिए –1—इस पर निर्भर करता है कि डोमेन को जटिल तल के ऊपरी या निचले आधे हिस्से के माध्यम से बढ़ाया गया है या नहीं। यह घटना बहुत बार होती है, nवें मूल के लिए घटित होती है|nवें मूल, लघुगणक, और व्युत्क्रम त्रिकोणमितीय फलन

एक जटिल बहुमूल्यवान फलन से एकल-मूल्यवान फलन को परिभाषित करने के लिए, कोई व्यक्ति एकाधिक मानों में से एक को मुख्य मान के रूप में अलग कर सकता है, जिससे पूरे विमान पर एक एकल-मूल्यवान फलन उत्पन्न होता है जो कुछ सीमा वक्रों के साथ असंतत होता है। वैकल्पिक रूप से, बहुमूल्यवान फलन से निपटने से कुछ ऐसी चीज़ प्राप्त करने की अनुमति मिलती है जो हर जगह निरंतर होती है, जब कोई बंद पथ (मोनोड्रोमी) का अनुसरण करता है तो संभावित मूल्य परिवर्तन की कीमत पर। इन समस्याओं का समाधान रीमैन सतहों के सिद्धांत में किया गया है: एक बहुमूल्यवान फलन पर विचार करना किसी भी मान को त्यागे बिना एक सामान्य फलन के रूप में, कोई डोमेन को कई-स्तरित शाखित आवरण में गुणा करता है, एक कई गुना जो रीमैन सतह से जुड़ा होता है .

उदाहरण

  • शून्य से बड़ी प्रत्येक वास्तविक संख्या के दो वास्तविक वर्गमूल होते हैं, ताकि वर्गमूल को एक बहुमूल्यांकित फलन माना जा सके। उदाहरण के लिए, हम लिख सकते हैं ; हालाँकि शून्य का केवल एक ही वर्गमूल होता है, .
  • प्रत्येक शून्येतर सम्मिश्र संख्या में दो वर्गमूल, तीन घनमूल और सामान्यतः nवाँ मूल होता है। 0 का एकमात्र nवाँ मूल 0 है।
  • जटिल लघुगणक फलन बहु-मूल्यवान है। द्वारा ग्रहण किए गए मान वास्तविक संख्याओं के लिए और हैं सभी पूर्णांकों के लिए .
  • प्रतिलोम त्रिकोणमितीय फलन बहु-मूल्यवान होते हैं क्योंकि त्रिकोणमितीय फलन आवधिक होते हैं। अपने पास
    परिणामस्वरूप, आर्कटान(1) सहज रूप से कई मूल्यों से संबंधित है: π/4, 5π/4, −3π/4, इत्यादि। हम टैन एक्स के डोमेन को सीमित करके आर्कटैन को एकल-मूल्यवान फलन के रूप में मान सकते हैं π/2 < x < π/2 - एक डोमेन जिस पर tan x एकरस रूप से बढ़ रहा है। इस प्रकार, आर्कटान(x) का परिसर बन जाता है π/2 < y < π/2. प्रतिबंधित डोमेन के इन मानों को प्रमुख मान कहा जाता है।
  • प्रतिअवकलन को एक बहुमूल्यांकित फलन माना जा सकता है। किसी फलन का प्रतिअवकलन उन कार्यों का समूह है जिसका व्युत्पन्न वह फलन है। एकीकरण का स्थिरांक इस तथ्य से निकलता है कि एक स्थिर फलन का व्युत्पन्न 0 है।
  • जटिल डोमेन पर व्युत्क्रम अतिपरवलयिक फलन बहु-मूल्यवान होते हैं क्योंकि अतिशयोक्तिपूर्ण फलन काल्पनिक अक्ष के साथ-साथ आवधिक होते हैं। असल में, आर्कोश और आर्सेक को छोड़कर, वे एकल-मूल्यवान हैं।

ये सभी बहुमूल्यवान फ़ंक्शंस के उदाहरण हैं जो गैर-इंजेक्शन फ़ंक्शंस से आते हैं। चूँकि मूल फलन अपने इनपुट की सभी जानकारी को संरक्षित नहीं करते हैं, इसलिए वे प्रतिवर्ती नहीं होते हैं। अक्सर, बहुमूल्यवान फलन का प्रतिबंध मूल फलन का आंशिक व्युत्क्रम होता है।

शाखा बिंदु

एक जटिल चर के बहुमूल्यवान कार्यों में शाखा बिंदु होते हैं। उदाहरण के लिए, nवें मूल और लघुगणक कार्यों के लिए, 0 एक शाखा बिंदु है; आर्कटेंजेंट फलन के लिए, काल्पनिक इकाइयाँ i और -i शाखा बिंदु हैं। शाखा बिंदुओं का उपयोग करके, सीमा को सीमित करके, इन कार्यों को एकल-मूल्य वाले कार्यों के रूप में फिर से परिभाषित किया जा सकता है। शाखा काटना के उपयोग के माध्यम से एक उपयुक्त अंतराल पाया जा सकता है, एक प्रकार का वक्र जो शाखा बिंदुओं के जोड़े को जोड़ता है, इस प्रकार फलन की बहुस्तरीय रीमैन सतह को एक परत में कम कर देता है। जैसा कि वास्तविक कार्यों के मामले में होता है, प्रतिबंधित सीमा को फलन की प्रमुख शाखा कहा जा सकता है।

अनुप्रयोग

भौतिकी में, बहुमूल्यवान कार्य तेजी से महत्वपूर्ण भूमिका निभाते हैं। वे पॉल डिराक के चुंबकीय मोनोपोल के लिए गणितीय आधार बनाते हैं, क्रिस्टल में क्रिस्टलोग्राफिक दोषों के सिद्धांत और सामग्रियों की परिणामी प्लास्टिसिटी (भौतिकी), अतितरल और अतिचालक ्स में भंवर के लिए, और इन प्रणालियों में चरण संक्रमण के लिए, उदाहरण के लिए पिघलने और क्वार्क कारावास के लिए . वे भौतिकी की कई शाखाओं में गेज क्षेत्र संरचनाओं के मूल हैं।[citation needed]

अग्रिम पठन