स्थानीय वलय

From Vigyanwiki

गणित में विशेष रूप से वलय सिद्धांत में, स्थानीय वलय कुछ निश्चित वलय (गणित) होते हैं जो तुलनात्मक रूप से सरल होते हैं और यह वर्णन करने के लिए काम करते हैं कि स्थानीय व्यवहार को क्या कहा जाता है बीजगणितीय विविधता या अनेक गुना पर परिभाषित कार्यों के अर्थ में या बीजगणितीय संख्या क्षेत्रों की जांच की जाती है। किसी विशेष स्थान पर (गणित) या अभाज्य। स्थानीय बीजगणित क्रमविनिमेय बीजगणित की शाखा है जो क्रमविनिमेय स्थानीय वलय और उनके मॉड्यूल (गणित) का अध्ययन करती है।

व्यवहार में एक क्रमविनिमेय स्थानीय वलय अधिकांशतः एक प्रमुख आदर्श पर वलय के स्थानीयकरण के परिणामस्वरूप उत्पन्न होता है।

स्थानीय रिंगों की अवधारणा वोल्फगैंग क्रुल द्वारा 1938 में स्टेलनरिंगे नाम से पेश की गई थी।[1] अंग्रेजी शब्द लोकल रिंग ज़ारिस्की के कारण है।[2]


परिभाषा और प्रथम परिणाम

एक वलय (गणित) आर एक 'स्थानीय वलय' है यदि इसमें निम्नलिखित समकक्ष गुणों में से कोई एक है:

  • R के पास एक अद्वितीय अधिकतम आदर्श बायां वलय आदर्श है।
  • R का एक अद्वितीय अधिकतम दाएँ आदर्श है।
  • 1 ≠ 0 और R में किन्हीं दो गैर-इकाई (बीजगणित) का योग एक गैर-इकाई है।
  • 1 ≠ 0 और यदि x, R का कोई अवयव है, तब x या 1 − x एक इकाई है.
  • यदि एक परिमित योग एक इकाई है, तब इसका एक पद है जो एक इकाई है (यह विशेष रूप से कहता है कि खाली योग एक इकाई नहीं हो सकता है, इसलिए इसका तात्पर्य 1 ≠ 0 है)।

यदि ये गुण मान्य हैं तब अद्वितीय अधिकतम बाएँ आदर्श अद्वितीय अधिकतम दाएँ आदर्श और रिंग के जैकबसन कट्टरपंथी के साथ मेल खाता है। ऊपर सूचीबद्ध गुणों में से तीसरा कहता है कि स्थानीय रिंग में गैर-इकाइयों का समूह एक (उचित) आदर्श बनाता है,[3] आवश्यक रूप से जैकबसन रेडिकल में निहित है। चौथी संपत्ति को इस प्रकार परिभाषित किया जा सकता है: एक रिंग आर स्थानीय है यदि और केवल तभी जब दो सहअभाज्य उचित (प्रधान आदर्श) (बाएं) आदर्श उपस्थित नहीं हैं, जहां दो आदर्श I1, मैं2 सहअभाज्य कहलाते हैं यदि R = I1 + I2.

क्रमविनिमेय वलय के स्थितियों में किसी को बाएँ, दाएँ और दो-तरफा आदर्शों के मध्य अंतर करने की आवश्यकता नहीं है: एक क्रमविनिमेय वलय स्थानीय है यदि और केवल तभी जब इसमें एक अद्वितीय अधिकतम आदर्श हो। लगभग 1960 से पहले अनेक लेखकों की आवश्यकता थी कि एक स्थानीय रिंग (बाएं और दाएं) नोथेरियन अंगूठी हो और (संभवतः गैर-नोथेरियन) स्थानीय रिंगों को अर्ध-स्थानीय रिंग कहा जाता था। इस आलेख में यह आवश्यकता क्रियान्वित नहीं की गई है.

एक स्थानीय रिंग जो एक अभिन्न डोमेन है उसे स्थानीय डोमेन कहा जाता है।

उदाहरण

  • सभी फ़ील्ड (गणित) (और तिरछा फ़ील्ड) स्थानीय रिंग हैं, क्योंकि इन रिंगों में {0} एकमात्र अधिकतम आदर्श है।
  • अंगूठी एक स्थानीय वलय है (p मुख्य, n ≥ 1). अद्वितीय अधिकतम आदर्श में सभी गुणज सम्मिलित होते हैं p.
  • अधिक सामान्यतः, एक गैर-शून्य वलय जिसमें प्रत्येक तत्व या तब एक इकाई या शून्यपोटेंट होता है, एक स्थानीय वलय होता है।
  • स्थानीय रिंगों का एक महत्वपूर्ण वर्ग अलग मूल्यांकन रिंग हैं, जो स्थानीय प्रमुख आदर्श डोमेन हैं जो फ़ील्ड नहीं हैं।
  • अंगूठी , जिनके तत्व अनंत श्रेणी के हैं जहां गुणन द्वारा दिया जाता है ऐसा है कि , स्थानीय है. इसके अद्वितीय अधिकतम आदर्श में वे सभी तत्व सम्मिलित हैं जो उलटे नहीं हैं। दूसरे शब्दों में, इसमें अचर पद शून्य वाले सभी तत्व सम्मिलित हैं।
  • अधिक सामान्यतः, स्थानीय रिंग पर औपचारिक शक्ति श्रृंखला की प्रत्येक रिंग स्थानीय होती है; अधिकतम आदर्श में आधार वलय के अधिकतम आदर्श में स्थिर पद वाली वे शक्ति श्रृंखलाएँ सम्मिलित होती हैं।
  • इसी प्रकार, किसी भी क्षेत्र में दोहरी संख्याओं का बीजगणित स्थानीय होता है। अधिक सामान्यतः, यदि F एक स्थानीय वलय है और n एक धनात्मक पूर्णांक है, तब भागफल वलय F[X]/(Xn) अधिकतम आदर्श वाला स्थानीय है जिसमें F के अधिकतम आदर्श से संबंधित स्थिर पद वाले बहुपदों के वर्ग सम्मिलित हैं, क्योंकि कोई अन्य सभी बहुपदों को उलटने के लिए एक ज्यामितीय श्रृंखला का उपयोग कर सकता है आदर्श (रिंग सिद्धांत) Xn. यदि F एक फ़ील्ड है, तब F[X]/(Xn) या तब शून्यशक्तिशाली हैं या उलटे हैं। (F के ऊपर दोहरी संख्याएँ स्थितियों के अनुरूप हैं n = 2.)
  • स्थानीय वलय के अशून्य भागफल वलय स्थानीय होते हैं।
  • विषम संख्या वाले हर वाली परिमेय संख्याओं का वलय स्थानीय होता है; इसके अधिकतम आदर्श में सम अंश और विषम हर वाले भिन्न सम्मिलित होते हैं। यह 2 पर एक रिंग का पूर्णांक स्थानीयकरण है।
  • अधिक सामान्यतः, किसी भी क्रमविनिमेय वलय R और R के किसी अभाज्य आदर्श P को देखते हुए, P पर R के वलय का स्थानीयकरण स्थानीय होता है; अधिकतम आदर्श इस स्थानीयकरण में पी द्वारा उत्पन्न आदर्श है; अर्थात्, अधिकतम आदर्श में ∈ P और s ∈ R - P वाले सभी तत्व a/s सम्मिलित हैं।

गैर-उदाहरण

  • बहुपदों का वलय एक मैदान के ऊपर चूँकि, स्थानीय नहीं है और गैर-इकाइयाँ हैं, किन्तु उनका योग एक इकाई है।
  • पूर्णांकों का वलय यह स्थानीय नहीं है क्योंकि इसका अधिकतम आदर्श है प्रत्येक प्राइम के लिए .

कीटाणुओं का घेरा

इन छल्लों के लिए स्थानीय नाम को प्रेरित करने के लिए, हम वास्तविक रेखा के 0 के आसपास कुछ अंतराल (गणित) पर परिभाषित वास्तविक-मूल्यवान निरंतर कार्यों पर विचार करते हैं। हम केवल 0 के निकट इन कार्यों के व्यवहार (उनके स्थानीय व्यवहार) में रुचि रखते हैं और इसलिए हम दो कार्यों की पहचान करेंगे यदि वे 0 के आसपास कुछ (संभवतः बहुत छोटे) खुले अंतराल पर सहमत हों। यह पहचान एक तुल्यता संबंध और तुल्यता वर्ग को परिभाषित करती है वे हैं जिन्हें 0 पर वास्तविक-मूल्यवान निरंतर कार्यों का रोगाणु (गणित) कहा जाता है। इन रोगाणुओं को जोड़ा और बढ़ाया जा सकता है और एक क्रमविनिमेय वलय का निर्माण किया जा सकता है।

यह देखने के लिए कि रोगाणुओं का यह घेरा स्थानीय है हमें इसके उलटे तत्वों को चिह्नित करने की आवश्यकता है। एक रोगाणु एफ व्युत्क्रमणीय है यदि और केवल यदि f(0) ≠ 0. कारण: यदि f(0) ≠ 0, तब निरंतरता से 0 के आसपास एक खुला अंतराल होता है जहां एफ गैर-शून्य है, और हम फलन बना सकते हैं g(x) = 1/f(x) इस अंतराल पर. फलन g एक रोगाणु को जन्म देता है, और fg का गुणनफल 1 के सामान्तर होता है। (इसके विपरीत, यदि f उलटा है, तब कुछ g ऐसा है कि f(0)g(0) = 1, इसलिए f(0) ≠ 0.)

इस लक्षण वर्णन के साथ, यह स्पष्ट है कि किन्हीं दो गैर-उलटा कीटाणुओं का योग फिर से गैर-उलटा नहीं है, और हमारे पास एक क्रमविनिमेय स्थानीय वलय है। इस वलय के अधिकतम आदर्श में ठीक उन्हीं रोगाणुओं का समावेश होता है f(0) = 0.

बिल्कुल वही तर्क किसी दिए गए बिंदु पर किसी भी टोपोलॉजिकल स्पेस पर निरंतर वास्तविक-मूल्य वाले कार्यों के रोगाणुओं की अंगूठी के लिए काम करते हैं, या किसी दिए गए बिंदु पर किसी भी अलग-अलग अनेक गुना पर अलग-अलग कार्यों के रोगाणुओं की अंगूठी, या तर्कसंगत कार्यों के रोगाणुओं की अंगूठी के लिए काम करते हैं। किसी दिए गए बिंदु पर किसी भी बीजगणितीय विविधता पर। इसलिए ये सभी छल्ले स्थानीय हैं। ये उदाहरण यह समझाने में मदद करते हैं कि स्कीम (गणित), किस्मों के सामान्यीकरण को विशेष स्थानीय रूप से रिंग किए गए स्थानों के रूप में क्यों परिभाषित किया गया है।

मूल्यांकन सिद्धांत

मूल्यांकन सिद्धांत में स्थानीय रिंग एक प्रमुख भूमिका निभाते हैं। परिभाषा के अनुसार, फ़ील्ड K का मूल्यांकन रिंग एक सबरिंग R है, जैसे कि K के प्रत्येक गैर-शून्य तत्व x के लिए, x और x में से कम से कम एक−1आर में है। ऐसी कोई भी सबरिंग एक स्थानीय रिंग होगी। उदाहरण के लिए, विषम संख्या वाले हर (ऊपर उल्लिखित) वाली परिमेय संख्याओं का वलय एक मूल्यांकन वलय है .

एक फ़ील्ड K को देखते हुए, जो बीजगणितीय किस्म का फलन फ़ील्ड हो भी सकता है और नहीं भी, हम इसमें स्थानीय रिंगों की तलाश कर सकते हैं। यदि K वास्तव में बीजगणितीय विविधता V का फलन फ़ील्ड था, तब V के प्रत्येक बिंदु P के लिए हम P पर परिभाषित फलन के मूल्यांकन रिंग R को परिभाषित करने का प्रयास कर सकते हैं। ऐसे स्थितियों में जहां V का आयाम 2 या अधिक है, वहां एक कठिनाई है इस प्रकार देखा जाए: यदि F और G, V पर परिमेय फलन हैं

एफ(पी) = जी(पी) = 0,

कार्यक्रम

एफ/जी

P पर एक अनिश्चित रूप है। एक सरल उदाहरण पर विचार करते हुए, जैसे

Y/X,

एक पंक्ति के साथ संपर्क किया

Y = tX,

कोई देखता है कि P पर मान एक सरल परिभाषा के बिना एक अवधारणा है। इसे मूल्यांकन का उपयोग करके प्रतिस्थापित किया जाता है।

नॉन-कम्यूटेटिव

कुछ अन्य रिंगों पर मॉड्यूल (गणित) के मॉड्यूल अपघटन के प्रत्यक्ष योग के अध्ययन में एंडोमोर्फिज्म रिंग के रूप में गैर-कम्यूटेटिव स्थानीय रिंग स्वाभाविक रूप से उत्पन्न होती हैं। विशेष रूप से, यदि मॉड्यूल एम की एंडोमोर्फिज्म रिंग स्थानीय है, तब एम अविभाज्य मॉड्यूल है; इसके विपरीत यदि मॉड्यूल एम में मॉड्यूल की सीमित लंबाई है और यह अविभाज्य है तब इसकी एंडोमोर्फिज्म रिंग स्थानीय है।

यदि k विशेषता (बीजगणित) का एक क्षेत्र (गणित) है p > 0 और G एक परिमित p-समूह|p-समूह है, तब समूह वलय kG स्थानीय है।

कुछ तथ्य एवं परिभाषाएँ

क्रमविनिमेय स्थितियों

हम भी लिखते हैं (R, m) अधिकतम आदर्श m के साथ क्रमविनिमेय स्थानीय वलय R के लिए। यदि कोई m की शक्तियों को 0 के पड़ोस आधार के रूप में लेता है तब ऐसी प्रत्येक रिंग प्राकृतिक विधि से एक टोपोलॉजिकल रिंग बन जाती है। यह R पर I-adic टोपोलॉजी|m-एडिक टोपोलॉजी है। (R, m) तब फिर एक क्रमविनिमेय नोथेरियन रिंग स्थानीय रिंग है

(क्रुल का प्रतिच्छेदन प्रमेय), और यह इस प्रकार है कि आर एम-एडिक टोपोलॉजी के साथ एक हॉसडॉर्फ स्थान है। प्रमेय नाकायमा के लेम्मा के साथ आर्टिन-रीस लेम्मा का परिणाम है, और, जैसे, नोथेरियन धारणा महत्वपूर्ण है। वास्तव में मान लीजिए R वास्तविक रेखा में 0 पर असीम रूप से भिन्न कार्यों के रोगाणुओं की अंगूठी है और m अधिकतम आदर्श है . फिर एक गैर-शून्य फलन से संबंधित किसी भी n के लिए, क्योंकि उस फलन को विभाजित किया गया है अभी भी चिकना है.

जहां तक ​​किसी टोपोलॉजिकल रिंग का सवाल है, कोई यह पूछ सकता है कि क्या (R, m) पूर्ण एकसमान स्थान है (एकसमान स्थान के रूप में); यदि ऐसा नहीं है, तब कोई इसके समापन (रिंग सिद्धांत) पर विचार करता है, फिर से एक स्थानीय रिंग। पूर्ण नोथेरियन स्थानीय वलय कोहेन संरचना प्रमेय द्वारा वर्गीकृत किया गया है।

बीजगणितीय ज्यामिति में, विशेषकर जब R किसी बिंदु P पर किसी योजना का स्थानीय वलय है, R / m को स्थानीय रिंग का अवशेष क्षेत्र या बिंदु P का अवशेष क्षेत्र कहा जाता है।

अगर (R, m) और (S, n) स्थानीय वलय हैं, तब R से S तक एक स्थानीय वलय समरूपता एक वलय समरूपता है f : RS संपत्ति के साथ f(m) ⊆ n.[4] ये स्पष्ट रूप से रिंग होमोमोर्फिज्म हैं जो आर और एस पर दिए गए टोपोलॉजी के संबंध में निरंतर हैं। उदाहरण के लिए, रिंग मॉर्फिज्म पर विचार करें भेजना . की पूर्वछवि है . स्थानीय वलय आकारिकी का एक और उदाहरण दिया गया है .

सामान्य स्थितियों

एक स्थानीय रिंग आर का जैकबसन रेडिकल एम (जो अद्वितीय अधिकतम बाएं आदर्श के सामान्तर है और अद्वितीय अधिकतम दाएं आदर्श के सामान्तर है) में रिंग की गैर-इकाइयां सम्मिलित हैं; इसके अतिरिक्त , यह आर का अद्वितीय अधिकतम दो-तरफा आदर्श है। चूंकि , गैर-अनुक्रमणीय स्थितियों में एक अद्वितीय अधिकतम दो-तरफा आदर्श होना स्थानीय होने के सामान्तर नहीं है।[5]

स्थानीय रिंग R के तत्व x के लिए, निम्नलिखित समतुल्य हैं:

  • x का बायाँ व्युत्क्रम है
  • x का दायां व्युत्क्रम है
  • x व्युत्क्रमणीय है
  • x, m में नहीं है।

अगर (R, m) स्थानीय है, तब कारक वलय R/m एक तिरछा क्षेत्र है। अगर JR आर में कोई दो-तरफा आदर्श है तब कारक रिंग आर/जे फिर से स्थानीय है, अधिकतम आदर्श एम/जे के साथ।

इरविंग कपलान्स्की द्वारा प्रोजेक्टिव मॉड्यूल पर कपलान्स्की का प्रमेय कहता है कि स्थानीय रिंग पर कोई भी प्रोजेक्टिव मॉड्यूल मुफ़्त मॉड्यूल है, चूंकि वह स्थितियों जहां मॉड्यूल अंतिम रूप से उत्पन्न होता है, वह नाकायमा के लेम्मा का एक सरल परिणाम है। मोरीटा तुल्यता के संदर्भ में इसका एक दिलचस्प परिणाम है। अर्थात्, यदि P एक परिमित रूप से उत्पन्न मॉड्यूल प्रोजेक्टिव R मॉड्यूल है, तब P मुक्त मॉड्यूल R के समरूपी हैn, और इसलिए एंडोमोर्फिज्म की अंगूठी आव्यूहों के पूर्ण वलय का समरूपी है . चूँकि प्रत्येक वलय स्थानीय वलय R के समतुल्य मोरिटा रूप का होता है ऐसे पी के लिए, निष्कर्ष यह है कि स्थानीय रिंग आर के समतुल्य एकमात्र रिंग मोरिटा आर के ऊपर मैट्रिक्स रिंग (आइसोमोर्फिक) हैं।

टिप्पणियाँ

  1. Krull, Wolfgang (1938). "Dimensionstheorie in Stellenringen". J. Reine Angew. Math. (in Deutsch). 1938 (179): 204. doi:10.1515/crll.1938.179.204. S2CID 115691729.
  2. Zariski, Oscar (May 1943). "Foundations of a General Theory of Birational Correspondences" (PDF). Trans. Amer. Math. Soc. American Mathematical Society. 53 (3): 490–542 [497]. doi:10.2307/1990215. JSTOR 1990215.
  3. Lam (2001), p. 295, Thm. 19.1.
  4. "Tag 07BI".
  5. The 2 by 2 matrices over a field, for example, has unique maximal ideal {0}, but it has multiple maximal right and left ideals.


संदर्भ


यह भी देखें

बाहरी संबंध