सिम्प्लेक्टिक सदिश समिष्ट
गणित में, एक सिम्प्लेक्टिक सदिश स्थल फ़ील्ड (गणित) F (उदाहरण के लिए वास्तविक संख्या R) के ऊपर एक सदिश समष्टि V होता है जो सिम्प्लेक्टिक द्विरेखीय रूप से सुसज्जित होता है।
एक सिम्प्लेक्टिक बिलिनियर रूप मानचित्र है (गणित) ω : V × V → F अर्थात
- द्विरेखीय रूप
- प्रत्येक तर्क में अलग से रैखिक मानचित्र;
- वैकल्पिक रूप
- यदि ω(v, v) = 0 सभी के लिए धारण करता है v ∈ V; और
- अविक्षिप्त रूप
- सभी v ∈ V के लिए ω(u, v) = 0 का तात्पर्य है कि u = 0.
यदि अंतर्निहित फ़ील्ड में विशेषता (बीजगणित) 2 नहीं है, तो प्रत्यावर्तन विषम-समरूपता के समान है। यदि विशेषता 2 है, तो विषम-समरूपता निहित है, किन्तु प्रत्यावर्तन का अर्थ नहीं है। इस स्तिथि में प्रत्येक सहानुभूतिपूर्ण रूप एक सममित द्विरेखीय रूप है, किन्तु इसके विपरीत नहीं है।
एक निश्चित आधार (रैखिक बीजगणित) में कार्य करते हुए, यदि ω को आव्युह (गणित) द्वारा दर्शाया जा सकता है। उपरोक्त स्थितियाँ इस आव्युह के समतुल्य हैं, विषम-सममित आव्युह, गैर-एकवचन आव्युह, और निरर्थक आव्युह या विकर्ण प्रविष्टियाँ सभी शून्य (सभी विकर्ण प्रविष्टियाँ शून्य हैं)। इसे सिंपलेक्टिक आव्युह के साथ भ्रमित नहीं किया जाना चाहिए, जो अंतरिक्ष के सिम्प्लेक्टिक परिवर्तन का प्रतिनिधित्व करता है। यदि V परिमित-आयामी है, तो इसका आयाम आवश्यक रूप से सम संख्या होना चाहिए क्योंकि विषम आकार के प्रत्येक विषम-सममित, निरर्थक आव्युह में निर्धारक शून्य होता है। ध्यान दें कि यदि फ़ील्ड की विशेषता 2 है, तो आव्युह निरर्थक होने की स्थिति निरर्थक नहीं है। सहानुभूतिपूर्ण रूप सममित रूप से अधिक अलग व्यवहार करता है, उदाहरण के लिए, यूक्लिडियन सदिश रिक्त स्थान पर अदिश उत्पाद किया जाता है।
मानक सहानुभूति स्थान
मानक सिंपलेक्टिक समष्टि R2n है जिसका सिंपलेक्टिक रूप एक गैर-एकवचन, विषम-सममित आव्युह द्वारा दिया गया है। सामान्यतः ω को ब्लॉक आव्युह चुना जाता है
जहां In n × n पहचान आव्युह है। आधार सदिशों के संदर्भ में (x1, ..., xn, y1, ..., yn):
ग्राम-श्मिट प्रक्रिया के संशोधित संस्करण से पता चलता है कि किसी भी परिमित-आयामी सहानुभूति सदिश स्थान का आधार ऐसा होता है कि ω यह रूप लेता है, जिसे प्रायः 'डार्बोक्स आधार' या सहानुभूति आधार कहा जाता है।
'प्रक्रिया का रेखाचित्र:'
इच्छानुसार आधार से प्रारंभ करें , और दोहरे आधार द्वारा प्रत्येक आधार सदिश के दोहरे का प्रतिनिधित्व करें: . इससे मान लीजिये प्रविष्टियों के साथ आव्युह . इसके शून्य स्थान को हल करिए। अब किसी के लिए शून्य स्थान में, हमारे पास है , इसलिए शून्य स्थान हमें पतित उपस्थान देता है .
अब इच्छानुसार पूरक चुनें ऐसा है कि , और जाने को का आधार बनने दें . तब से , और , डब्लूएलओजी . अब माप जिससे . फिर परिभाषित करें प्रत्येक के लिए . पुनरावृति।
ध्यान दें कि यह विधि केवल वास्तविक संख्याओं के क्षेत्र के लिए ही नहीं, बल्कि किसी भी क्षेत्र पर सिम्प्लेक्टिक सदिश समष्टि के लिए लागू होती है।
वास्तविक या जटिल क्षेत्र का मामला:
जब स्थान वास्तविक संख्याओं के क्षेत्र से ऊपर हो जाता है, तो हम संशोधित ग्राम-श्मिट प्रक्रिया को निम्नानुसार संशोधित कर सकते हैं: उसी तरह से शुरू करें। होने देना ऑर्थोनॉर्मल आधार बनें (सामान्य आंतरिक उत्पाद के संबंध में)। ) का . तब से , और , डब्लूएलओजी . अब गुणा करें संकेत से, जिससे . फिर परिभाषित करें प्रत्येक के लिए , फिर प्रत्येक को स्केल करें जिससे उसका मानक हो। पुनरावृति।
इसी प्रकार, सम्मिश्र संख्याओं के क्षेत्र के लिए, हम एकात्मक आधार चुन सकते हैं। यह विषम-सममित आव्युह#स्पेक्ट्रल सिद्धांत सिद्ध करता है।
लैग्रेन्जियन रूप
इस मानक सहानुभूतिपूर्ण रूप की व्याख्या करने का और तरीका है। चूंकि मॉडल समष्टि आरऊपर प्रयुक्त 2एन में बहुत अधिक विहित संरचना है जिससे आसानी से गलत व्याख्या हो सकती है, हम इसके बजाय अज्ञात सदिश रिक्त स्थान का उपयोग करेंगे। मान लीजिए V आयाम n और V का वास्तविक सदिश समष्टि है∗यह दोहरा स्थान है। अब सदिश समष्टि के प्रत्यक्ष योग पर विचार करें W = V ⊕ V∗ इन स्थानों में से निम्नलिखित प्रपत्र से सुसज्जित:
अब कोई भी आधार चुनें (रैखिक बीजगणित) (v1, ..., vn) V का और इसके दोहरे स्थान पर विचार करें
यदि हम लिखते हैं तो हम आधार सदिशों की व्याख्या W में पड़े हुए के रूप में कर सकते हैं xi = (vi, 0) and yi = (0, vi∗). कुल मिलाकर, ये W का पूर्ण आधार बनाते हैं,
यहां परिभाषित प्रपत्र ω में इस खंड की शुरुआत के समान गुण दिखाए जा सकते हैं। दूसरी ओर, प्रत्येक सहानुभूति संरचना किसी न किसी रूप में समरूपी होती है V ⊕ V∗. उप-स्थान V अद्वितीय नहीं है, और उप-स्थान V की पसंद को 'ध्रुवीकरण' कहा जाता है। जो उप-स्थान ऐसी समरूपता देते हैं, उन्हें 'लैग्रैन्जियन उप-स्थान' या केवल 'लैग्रैन्जियन' कहा जाता है।
स्पष्ट रूप से, लैग्रेंजियन उप-स्थान #Subspaces दिया गया है, फिर आधार का विकल्प (x1, ..., xn) पूरक के लिए दोहरे आधार को परिभाषित करता है ω(xi, yj) = δij.
जटिल संरचनाओं के साथ सादृश्य
जिस प्रकार प्रत्येक सिंपलेक्टिक संरचना किसी न किसी रूप में समरूपी होती है V ⊕ V∗, सदिश समष्टि पर प्रत्येक रैखिक जटिल संरचना किसी रूप में समरूपी होती है V ⊕ V. इन संरचनाओं का उपयोग करते हुए, एन-मैनिफोल्ड के स्पर्शरेखा बंडल, जिसे 2एन-मैनिफोल्ड के रूप में माना जाता है, की लगभग जटिल संरचना होती है, और एन-मैनिफोल्ड के कोटैंजेंट बंडल, जिसे 2एन-मैनिफोल्ड के रूप में माना जाता है, की सहानुभूतिपूर्ण संरचना होती है: T∗(T∗M)p = Tp(M) ⊕ (Tp(M))∗.
लैग्रेंजियन उप-स्थान का जटिल एनालॉग वास्तविक उप-स्थान है, उप-स्थान जिसका जटिलता संपूर्ण स्थान है: W = V ⊕ J V. जैसा कि ऊपर दिए गए मानक सिंपलेक्टिक रूप से देखा जा सकता है, आर पर प्रत्येक सिंपलेक्टिक रूप2n 'सी' पर मानक कॉम्प्लेक्स (हर्मिटियन) आंतरिक उत्पाद के काल्पनिक भाग के लिए आइसोमोर्फिक हैn (पहला तर्क एंटी-लीनियर होने की परंपरा के साथ)।
वॉल्यूम रूप
मान लीजिए ω n-आयामी वास्तविक सदिश समष्टि V पर वैकल्पिक द्विरेखीय रूप है, ω ∈ Λ2(V). तब ω गैर-पतित है यदि और केवल यदि n सम है और ωn/2 = ω ∧ ... ∧ ω आयतन रूप है. एन-आयामी सदिश समष्टि वी पर वॉल्यूम रूप एन-रूप का गैर-शून्य गुणक है e1∗ ∧ ... ∧ en∗ कहाँ e1, e2, ..., en V का आधार है.
पिछले अनुभाग में परिभाषित मानक आधार के लिए, हमारे पास है
पुनः व्यवस्थित करके कोई भी लिख सकता है
लेखक विभिन्न प्रकार से ω को परिभाषित करते हैंnया (−1)n/2ओहn को 'मानक वॉल्यूम रूप' के रूप में। n का सामयिक कारक! यह भी प्रकट हो सकता है, यह इस पर निर्भर करता है कि वैकल्पिक उत्पाद की परिभाषा में n का कारक शामिल है या नहीं! या नहीं। वॉल्यूम रूप सिंपलेक्टिक सदिश समष्टि पर अभिविन्यास (गणित) को परिभाषित करता है (V, ω).
सिम्प्लिक मानचित्र
लगता है कि (V, ω) और (W, ρ) सिम्प्लेक्टिक सदिश समष्टि हैं। फिर रेखीय मानचित्र f : V → W को सिम्प्लेक्टिक मानचित्र कहा जाता है यदि पुलबैक (विभेदक ज्यामिति) सिम्प्लेक्टिक रूप को संरक्षित करता है, यानी। f∗ρ = ω, जहां पुलबैक रूप को परिभाषित किया गया है (f∗ρ)(u, v) = ρ(f(u), f(v)). सिम्प्लेक्टिक मानचित्र आयतन- और अभिविन्यास-संरक्षित हैं।
सिम्प्लेक्टिक समूह
अगर V = W, तो सहानुभूति मानचित्र को V का रैखिक सहानुभूति परिवर्तन कहा जाता है। विशेष रूप से, इस स्तिथि में किसी के पास वह है ω(f(u), f(v)) = ω(u, v), और इसलिए रैखिक परिवर्तन f सहानुभूतिपूर्ण रूप को सुरक्षित रखता है। सभी सहानुभूति परिवर्तनों का समुच्चय समूह (गणित) और विशेष रूप से लाई समूह बनाता है, जिसे सहानुभूति समूह कहा जाता है और इसे Sp(V) या कभी-कभी द्वारा दर्शाया जाता है। Sp(V, ω). आव्युह रूप में सिंपलेक्टिक परिवर्तन सिंपलेक्टिक आव्युह द्वारा दिए जाते हैं।
उपस्थान
मान लीजिए कि W, V का रैखिक उपसमष्टि है। उपसमष्टि होने के लिए W के 'सहानुभूतिपूर्ण पूरक' को परिभाषित करें
सहानुभूतिपूर्ण पूरक संतुष्ट करता है:
हालाँकि, ऑर्थोगोनल पूरकों के विपरीत, डब्ल्यू⊥ ∩ W का 0 होना आवश्यक नहीं है। हम चार मामलों को अलग करते हैं:
- यदि W 'सहानुभूतिपूर्ण' है W⊥ ∩ W = {0}. यह सच है अगर और केवल अगर ω डब्ल्यू पर गैर-अपक्षयी रूप तक सीमित है। प्रतिबंधित रूप के साथ सहानुभूति उप-स्थान अपने आप में सहानुभूति सदिश स्थान है।
- W 'आइसोट्रोपिक' है यदि W ⊆ W⊥. यह सत्य है यदि और केवल यदि ω W पर 0 तक सीमित है। कोई भी एक-आयामी उप-स्थान आइसोट्रोपिक है।
- यदि W 'कोइसोट्रोपिक' है W⊥ ⊆ W. W कोइसोट्रोपिक है यदि और केवल यदि ω भागफल स्थान (रैखिक बीजगणित) W/W पर गैर-अपक्षयी रूप में उतरता है⊥. समान रूप से W कोइसोट्रोपिक है यदि और केवल यदि W⊥आइसोट्रोपिक है। कोई भी संहिताकरण -एक उपस्थान कोइसोट्रोपिक है।
- यदि W 'लैग्रेन्जियन' है W = W⊥. उपस्थान लैग्रेंजियन है यदि और केवल यदि यह आइसोट्रोपिक और कोइसोट्रोपिक दोनों है। परिमित-आयामी सदिश अंतरिक्ष में, लैग्रैन्जियन उपस्थान आइसोट्रोपिक है जिसका आयाम वी का आधा है। प्रत्येक आइसोट्रोपिक उपस्थान को लैग्रैन्जियन तक बढ़ाया जा सकता है।
कैनोनिकल सदिश समष्टि 'आर' का जिक्र करते हुए2nऊपर,
- {x द्वारा फैलाया गया उपस्थान1, और1} सिंपलेक्टिक है
- {x द्वारा फैलाया गया उपस्थान1, एक्स2} आइसोट्रोपिक है
- {x द्वारा फैलाया गया उपस्थान1, एक्स2, ..., एक्सn, और1} कोइसोट्रोपिक है
- {x द्वारा फैलाया गया उपस्थान1, एक्स2, ..., एक्सn} लैग्रेन्जियन है।
हाइजेनबर्ग समूह
एक हाइजेनबर्ग समूह को किसी भी सहानुभूतिपूर्ण सदिश स्थान के लिए परिभाषित किया जा सकता है, और यह हाइजेनबर्ग समूहों के उत्पन्न होने का विशिष्ट तरीका है।
एक सदिश समष्टि को क्रमविनिमेय लाई समूह (जोड़ के तहत) के रूप में, या समकक्ष रूप से क्रमविनिमेय लाई बीजगणित के रूप में माना जा सकता है, जिसका अर्थ है तुच्छ लाई ब्रैकेट। हाइजेनबर्ग समूह ऐसे क्रमविनिमेय समूह/बीजगणित का केंद्रीय विस्तार (गणित) है: सहानुभूतिपूर्ण रूप विहित कम्यूटेशन संबंधों (सीसीआर) के अनुरूप रूपांतर को परिभाषित करता है, और डार्बौक्स आधार विहित निर्देशांक से मेल खाता है - भौतिकी के संदर्भ में, गति संचालक और स्थिति संचालक।
वास्तव में, स्टोन-वॉन न्यूमैन प्रमेय के अनुसार, सीसीआर (हाइजेनबर्ग समूह का प्रत्येक प्रतिनिधित्व) को संतुष्ट करने वाला प्रत्येक प्रतिनिधित्व इस रूप का है, या अधिक उचित रूप से मानक रूप से इकाई रूप से संयुग्मित है।
इसके अलावा, सदिश स्थान (दोहरे से) का समूह वलय सममित बीजगणित है, और हेइज़ेनबर्ग समूह (दोहरे का) का समूह बीजगणित वेइल बीजगणित है: कोई केंद्रीय विस्तार को परिमाणीकरण या विरूपण के अनुरूप सोच सकता है परिमाणीकरण.
औपचारिक रूप से, क्षेत्र F पर सदिश समष्टि V का सममित बीजगणित दोहरे का समूह बीजगणित है, Sym(V) := F[V∗], और वेइल बीजगणित (दोहरी) हाइजेनबर्ग समूह का समूह बीजगणित है W(V) = F[H(V∗)]. चूंकि समूह बीजगणित को पारित करना विरोधाभासी फ़ैक्टर है, केंद्रीय विस्तार मानचित्र H(V) → V समावेश बन जाता है Sym(V) → W(V).
यह भी देखें
- एक सिंपलेक्टिक मैनिफ़ोल्ड चिकनी कई गुना है जिसमें प्रत्येक स्पर्शरेखा स्थान पर सुचारू रूप से अलग-अलग बंद सिंपलेक्टिक रूप होता है।
- मास्लोव सूचकांक
- एक सहानुभूतिपूर्ण प्रतिनिधित्व समूह प्रतिनिधित्व है जहां प्रत्येक समूह तत्व सहानुभूति परिवर्तन के रूप में कार्य करता है।
संदर्भ
- Claude Godbillon (1969) "Géométrie différentielle et mécanique analytique", Hermann
- Abraham, Ralph; Marsden, Jerrold E. (1978). "Hamiltonian and Lagrangian Systems". Foundations of Mechanics (2nd ed.). London: Benjamin-Cummings. pp. 161–252. ISBN 0-8053-0102-X. PDF
- Paulette Libermann and Charles-Michel Marle (1987) "Symplectic Geometry and Analytical Mechanics", D. Reidel
- Jean-Marie Souriau (1997) "Structure of Dynamical Systems, A Symplectic View of Physics", Springer