रैखिक लोच

From Vigyanwiki
Revision as of 09:38, 7 March 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

रैखिक लोच गणितीय मॉडल ऐसा गणितीय प्रारूप है जिससे यह पता किया जाता है कि कैसे निर्धारित लोडिंग स्थितियों के कारण ठोस वस्तुएं विरूपण (भौतिकी) और आंतरिक रूप से तन्यता (यांत्रिकी) बन सकती हैं। यह अधिक सामान्य परिमित तन्यता सिद्धांत और यह यांत्रिकी की शाखा का सरलीकरण है।

रेखीय लोच की मौलिक रेखीयकरण धारणाएं हैं: अतिसूक्ष्म तन्यता सिद्धांत या छोटे विरूपण (या तन्यता) और तन्यता और तन्यता के घटकों के बीच रैखिक संबंध होता हैं। इसके अतिरिक्त रैखिक लोच केवल तन्यता वाली स्थिति के लिए मान्य है जो यील्ड (इंजीनियरिंग) का उत्पादन नहीं करते हैं।

ये धारणाएँ कई इंजीनियरिंग सामग्री और इंजीनियरिंग डिज़ाइन परिदृश्यों के लिए उचित हैं। अधिकांशतः परिमित तत्व विश्लेषण की सहायता से रैखिक लोच इसलिए संरचनात्मक विश्लेषण और इंजीनियरिंग प्रारूप में बड़े पैमाने पर उपयोग किया जाता है।

गणितीय सूत्रीकरण

रैखिक लोचदार सीमा मूल्य समस्या को नियंत्रित करने वाले समीकरण संवेग के संरक्षण के लिए तीन टेन्सर आंशिक अंतर समीकरणों और छह अति सूक्ष्म तन्यता-विस्थापन क्षेत्र (यांत्रिकी) संबंधों पर आधारित हैं। अवकल समीकरणों की प्रणाली रैखिक समीकरण बीजगणितीय संघटक समीकरणों के सेट द्वारा पूरी की जाती है।

डायरेक्ट टेंसर फॉर्म

प्रत्यक्ष टेंसर रूप में जो समन्वय प्रणाली की पसंद से स्वतंत्र है, उक्त समीकरण इस प्रकार प्रदर्शित किया जाता हैं:[1]

  • संवेग किसी निकाय के लिए रेखीय संवेग, जो न्यूटन के गति के नियमों की अभिव्यक्ति है, न्यूटन का दूसरा नियम के अनुसार:
  • इनफिनिटिमल स्ट्रेन सिद्धांत या स्ट्रेन-विस्थापन समीकरण:
  • संवैधानिक समीकरण को लोचदार सामग्री के लिए, हुक के नियम द्वारा इसके भौतिक स्थिति का प्रतिनिधित्व करता है और अज्ञात तन्यता से संबंधित रहता है। हुक के नियम का सामान्य समीकरण है इस प्रकार हैं-

जहाँ कॉची तन्यता टेन्सर है, अतिसूक्ष्म तन्यता टेंसर है, विस्थापन (वेक्टर) है, चौथा क्रम कठोरता टेन्सर कहलाता हैं, यहाँ पर प्रति इकाई आयतन भौतिक बल है, द्रव्यमान घनत्व है, नाबला ऑपरेटर का प्रतिनिधित्व करता है, स्थानान्तरण का प्रतिनिधित्व करता है, समय के संबंध में दूसरी व्युत्पत्ति का प्रतिनिधित्व करता है, और दो दूसरे क्रम के टेंसरों का आंतरिक उत्पाद है जो विशेषकर दोहराए गए सूचकांकों पर योग को निहित रखता है)।

कार्तीय समन्वय रूप

आयताकार कार्टेशियन समन्वय प्रणाली के संबंध में घटकों के संदर्भ में व्यक्त होने वाले रैखिक लोच के लिए स्थिति समीकरण को इस प्रकार प्रदर्शित करते हैं:[1]

  • कॉची संवेग समीकरण:
    जहां सबस्क्रिप्ट के लिए आशुलिपि है और दर्शाता है , कॉची स्ट्रेस (भौतिकी) टेंसर है, भौतिक बल घनत्व है, द्रव्यमान घनत्व है, और विस्थापन है। ये रेखीय समीकरणों की 3 प्रणाली हैं 6 स्वतंत्र अज्ञात (तन्यता) के साथ स्वतंत्रता समीकरण द्वारा इंजीनियरिंग संकेतन के रूप में इस प्रकार प्रदर्शित करते हैं:
  • विरूपण (यांत्रिकी) तन्यता या तन्यता विस्थापन समीकरण:
    जहाँ तन्यता है। ये 9 स्वतंत्र अज्ञात (स्ट्रेन और विस्थापन) के साथ तन्यता और विस्थापन से संबंधित 6 स्वतंत्र समीकरण हैं। इंजीनियरिंग संकेतन में ये इस प्रकार हैं:
  • संवैधानिक समीकरण या हुक के नियम का समीकरण है:
    जहाँ कठोरता टेंसर है। ये तन्यता और विकृति से संबंधित 6 स्वतंत्र समीकरण हैं। तन्यता और तन्यता टेंसरों की समरूपता की आवश्यकता से कई लोचदार स्थिरांक की समानता हो जाती है, जिससे विभिन्न तत्वों की संख्या 21 हो जाती है[2] इसे द्वारा प्रदर्शित करते हैं।

आइसोटोपिक सजातीय मीडिया के लिए इलास्टोस्टेटिक सीमा के मान से होने वाली समस्या के लिए 15 स्वतंत्र समीकरणों और समान संख्या में अज्ञात (3 संतुलन समीकरण, 6 तन्यता-विस्थापन समीकरण, और 6 संवैधानिक समीकरण) की प्रणाली बनाई जाती है। इस प्रकार सीमा शर्तों को निर्दिष्ट करते हुए सीमा मूल्य समस्या को पूर्ण रूप से परिभाषित किया जा सकता हैं। प्रणाली को हल करने के लिए सीमा मान समस्या की सीमा स्थितियों के अनुसार दो दृष्टिकोण विस्थापन सूत्रीकरण, और तन्यता सूत्रीकरण अपनाए जाते हैं।

बेलनाकार निर्देशांक रूप

बेलनाकार निर्देशांक में () गति के समीकरण हैं[1]

तन्यता-विस्थापन संबंध हैं


और संवैधानिक संबंध कार्टेशियन निर्देशांक के समान हैं, इसके अतिरिक्त इसका सूचकांक ,, इस स्थिति के लिए क्रमशः ,,, इस प्रकार हैं।

गोलाकार निर्देशांक रूप

गोलाकार निर्देशांक में () गति के समीकरण हैं[1]

गोलाकार निर्देशांक (r, θ, φ) जैसा कि सामान्यतः भौतिकी में उपयोग किया जाता है: रेडियल दूरी r, ध्रुवीय कोण θ (थीटा), और अज़ीमुथल कोण φ (phi)। प्रतीक ρ (रो) अधिकांशतः आर के अतिरिक्त प्रयोग किया जाता है।

गोलाकार निर्देशांक में तन्यता टेन्सर है


(ए) आइसोट्रोपिक (इन) सजातीय मीडिया

हूक के नियम आइसोट्रोपिक सामग्री मीडिया में, कठोरता टेन्सर तन्यता (परिणामस्वरूप आंतरिक तन्यता) और उपभेदों (परिणामस्वरूप विकृतियों) के बीच संबंध देता है। आइसोटोपिक माध्यम के लिए, कठोरता टेंसर की कोई पसंदीदा दिशा नहीं होती है: लागू बल समान विस्थापन (बल की दिशा के सापेक्ष) देगा, चाहे जिस दिशा में बल लगाया जाता हैं। आइसोटोपिक स्थिति में, कठोरता टेंसर लिखा जाता है:

जहाँ क्रोनकर डेल्टा है, K थोक मापांक (या असंपीड़्यता) है, और कतरनी मापांक (या कठोरता) है, जिसके लिए दो लोचदार मापांक निर्धारित किये जाते हैं। यदि माध्यम विषम होता हैं, तो आइसोट्रोपिक मॉडल का उपयोग किया जाता है इसके अतिरिक्त इसके माध्यम के लिए टुकड़े-टुकड़े पर स्थिर या कमजोर रूप से विषम स्थिति को दृढ़ता से अमानवीय चिकने मॉडल में, अनिसोट्रॉपी का हिसाब देना पड़ता है। यदि माध्यम सजातीय (रसायन विज्ञान) है, तो लोचदार मोडुली माध्यम में स्थिति से स्वतंत्र होगी तो संवैधानिक समीकरण को इस रूप में लिखा जा सकता है:
यह अभिव्यक्ति तन्यता को बाईं ओर अदिश भाग में अलग करती है जो अदिश दबाव से जुड़ा हो सकता है, और दाईं ओर ट्रेसलेस भाग जो कतरनी बलों से जुड़ा हो सकता है। सरल अभिव्यक्ति है:[3][4]
जहां λ लैम पैरामीटर लैम का पहला पैरामीटर है। चूँकि संवैधानिक समीकरण केवल रेखीय समीकरणों का समूह है, तन्यता को तन्यता के कार्य के रूप में व्यक्त किया जा सकता है:[5]
जो फिर से, बाईं ओर अदिश भाग और दाईं ओर ट्रेसलेस कतरनी भाग है। इसके लिए समीकरण इस प्रकार हैं:
जहाँ पोइसन का अनुपात है और यंग का मापांक है।

इलास्टोस्टैटिक्स

इलास्टोस्टैटिक्स संतुलन की शर्तों के अनुसार रैखिक लोच का अध्ययन है, जिसमें लोचदार भौतिक पर सभी बलों का योग शून्य होता है, और विस्थापन समय का कार्य नहीं होता है। इस प्रकार इस प्रणाली के लिए रैखिक गति का मान कुछ इस प्रकार होता हैं-

इंजीनियरिंग संकेतन में (कतरनी तन्यता के रूप में टाऊ के साथ),

यह खंड केवल आइसोट्रोपिक सजातीय की स्थिति पर आधारित हैं।

विस्थापन सूत्रीकरण

इस स्थिति में, सीमा में हर जगह विस्थापन निर्धारित हैं। इस दृष्टिकोण में, तन्यता और तन्यता को सूत्रीकरण से समाप्त कर दिया जाता है, विस्थापन को अज्ञात के रूप में इस स्थिति के लिए समीकरणों में हल करने के लिए छोड़ दिया जाता है। इस प्रकार सबसे पहले, तन्यता-विस्थापन समीकरणों को संवैधानिक समीकरणों (हुक के नियम) में प्रतिस्थापित किया जाता है, अज्ञात के रूप में उपभेदों को हटा दिया जाता है:

विभेद करना (मान लेना और स्थानिक रूप से समान हैं) उपज:
संतुलन समीकरण पैदावार में प्रतिस्थापन:
या (डबल (डमी) (= सारांश) सूचकांक k,k को j,j द्वारा प्रतिस्थापित करना और सूचकांकों को इंटरचेंज करना, ij से, ji के बाद, दूसरे डेरिवेटिव की समरूपता के आधार पर श्वार्ज प्रमेय द्वारा किया जाता हैं।)
जहाँ और लमे पैरामीटर हैं। इस तरह, केवल अज्ञात ही विस्थापन रह जाता है, इसलिए इस फॉर्मूलेशन का नाम है। इस तरह से प्राप्त नियामक समीकरणों को इलास्टोस्टैटिक समीकरण कहा जाता है, जो नीचे दिए गए 'नेवियर-कॉची समीकरण' का विशेष स्थिति है।

Derivation of Navier–Cauchy equations in Engineering notation

सबसे पहले -दिशा पर विचार किया जाएगा। तनाव-विस्थापन समीकरणों को संतुलन समीकरण में प्रतिस्थापित करना -दिशा हमारे पास है

फिर इन समीकरणों को संतुलन समीकरण में प्रतिस्थापित करना -दिशा हमारे पास है

इस धारणा का उपयोग करना कि और स्थिर हैं हम पुनर्व्यवस्थित और प्राप्त कर सकते हैं:

इसके लिए भी यही प्रक्रिया अपना रहे हैं -दिशा और -दिशा हमारे पास है

ये अंतिम 3 समीकरण नेवियर-कॉची समीकरण हैं, जिन्हें सदिश संकेतन के रूप में भी व्यक्त किया जा सकता है

एक बार विस्थापन क्षेत्र की गणना हो जाने के पश्चात विस्थापन को तन्यता के समाधान के लिए तन्यता-विस्थापन समीकरणों में प्रतिस्थापित किया जाता है, जो बाद में तन्यता को हल करने के लिए संवैधानिक समीकरणों में उपयोग किया जाता है।

बिहारमोनिक समीकरण

इलास्टोस्टैटिक समीकरण लिखा जा सकता है:

इलास्टोस्टेटिक समीकरण के दोनों पक्षों के विचलन को लेते हुए और यह मानते हुए कि भौतिक बलों () में शून्य विचलन (डोमेन में सजातीय) है-
यह देखते हुए कि सारांशित सूचकांकों का मिलान नहीं होना चाहिए, और यह कि आंशिक डेरिवेटिव कम्यूट करते हैं, दो अंतर शब्द समान दिखाई देते हैं:
जिससे हम यह निष्कर्ष निकालते हैं कि:
इलास्टोस्टैटिक समीकरण के दोनों पक्षों के लाप्लासियन को लेना, और इसके अतिरिक्त इसका मान मानने पर हमारे पास उक्त समीकरण प्राप्त होता हैं-
अपसरण समीकरण से, बाईं ओर का पहला पद शून्य है यहाँ पर ध्यान दें कि फिर से, सारांशित सूचकांकों का मिलान नहीं होना चाहिए:
जिससे हम यह निष्कर्ष निकालते हैं कि:
या, समन्वय मुक्त संकेतन में जो कि सिर्फ बिहारमोनिक समीकरण से प्रदर्शित होता है।

तन्यता सूत्रीकरण

इस स्थिति में, सतही सीमा पर हर जगह सतही कर्षण निर्धारित हैं। इस दृष्टिकोण में, तन्यता और विस्थापनों को समाप्त कर दिया जाता है जिससे तन्यता को अज्ञात के रूप में शासकीय समीकरणों में हल किया जा सकता है। इस प्रकार तन्यता क्षेत्र मिल जाने के बाद, तब संरचनात्मक समीकरणों का उपयोग करके उपभेदों को पाया जाता है।

स्ट्रेस टेन्सर के छह स्वतंत्र घटक हैं जिन्हें निर्धारित करने की आवश्यकता है, फिर भी विस्थापन सूत्रीकरण में, विस्थापन वेक्टर के केवल तीन घटक हैं जिन्हें निर्धारित करने की आवश्यकता है। इसका अर्थ यह है कि स्वतंत्रता की डिग्री की संख्या को तीन तक कम करने के लिए कुछ बाधाएं हैं जिन्हें तन्यता टेंसर पर रखा जाना चाहिए। इसके लिए संवैधानिक समीकरणों का उपयोग करते हुए, इन बाधाओं को सीधे संबंधित बाधाओं से प्राप्त किया जाता है, जो तन्यता टेंसर के लिए धारण करना चाहिए, जिसमें छह स्वतंत्र घटक भी होते हैं। विस्थापन सदिश क्षेत्र के कार्य के रूप में तन्यता टेन्सर पर बाधाएं सीधे तन्यता टेंसर की परिभाषा से व्युत्पन्न होती हैं, जिसका अर्थ है कि ये बाधाएं कोई नई अवधारणा या जानकारी प्रस्तुत नहीं करती हैं। यह तन्यता टेंसर पर बाधाएं हैं जिन्हें सबसे आसानी से समझा जा सकता है। यदि लोचदार माध्यम को अप्रतिबंधित अवस्था में असीम घनों के सेट के रूप में देखा जाता है, तो माध्यम के तन्यताग्रस्त होने के पश्चात तन्यता टेंसर के लिए ऐसी स्थिति में उत्पन्न करनी चाहिए जिसमें विकृत घन अभी भी अतिव्यापी बिना साथ फिट होते हैं। दूसरे शब्दों में, किसी दिए गए तन्यता के लिए, निरंतर सदिश क्षेत्र (विस्थापन) सम्मिलित होना चाहिए जिससे उस तन्यता टेंसर को प्राप्त किया जा सके। तन्यता टेंसर पर बाधाएं जो यह सुनिश्चित करने के लिए आवश्यक हैं कि यह स्थिति संत वेनेंट द्वारा खोजा गया था, और उन्हें संत-वेनेंट की अनुकूलता की स्थिति कहा जाता है। ये 81 समीकरण हैं, जिनमें से 6 स्वतंत्र गैर-तुच्छ समीकरण हैं, जो विभिन्न तन्यता घटकों से संबंधित हैं। इन्हें इंडेक्स नोटेशन में इस प्रकार व्यक्त किया जाता है:

इसका इंजीनियरिंग संकेतन इस प्रकार हैं: