चौराहा उन तत्वों का समूह है जो दोनों समुच्चय में उपस्थित हैं <गणित>A</गणित> एवं समुच्चय <गणित>B</गणित>.
Symbolic statement
<गणित>A \कैप B = \{ x: x \A \ टेक्स्ट { एवं } x \ B में\}</गणित>
समुच्चय सिद्धांत में, दो समुच्चय का प्रतिच्छेदन (गणित) तथा द्वारा चिह्नित [1] के सभी तत्वों से युक्त समुच्चय है वह भी संबंधित है या समकक्ष, के सभी तत्व का भी हैI[2]
इंटरसेक्शन प्रतीक का उपयोग करके लिखा गया है शब्दों के मध्य; अर्थात् इंफिक्स नोटेशन में, उदाहरण के लिए:
दो से अधिक समुच्चयो के प्रतिच्छेदन (सामान्यीकृत प्रतिच्छेदन) को इस प्रकार लिखा जा सकता है:
जो कैपिटल-सिग्मा नोटेशन के समान है।
इस लेख में प्रयुक्त प्रतीकों की व्याख्या के लिए, गणितीय प्रतीकों की तालिका देखें।
परिभाषा
तीन समुच्चय का इंटरसेक्शन:
केवल अक्षरों के आकार पर विचार करते हुए एवं उनके उच्चारण की उपेक्षा करते हुए, बिना उच्चारण वाले आधुनिक ग्रीक वर्णमाला, लैटिन लिपि एवं सिरिलिक लिपियों का इंटरसेक्शन
समुच्चय के साथ इंटरसेक्शन का उदाहरण
दो समुच्चयो का इंटरसेक्शन तथा द्वारा चिह्नित ,[3] उन सभी वस्तुओं का समुच्चय है जो दोनों समुच्चयों के सदस्य हैं तथा
प्रतीकों में:
वह है, इंटरसेक्शन का तत्व है एवं यदि दोनों का समान तत्व है एवं तत्व [3]
उदाहरण के लिए:
समुच्चय {1, 2, 3} एवं {2, 3, 4} का प्रतिच्छेदन {2, 3} है।
अंक 9 अभाज्य संख्याओं के समुच्चय {2, 3, 5, 7, 11, ...} एवं विषम संख्याओं के समुच्चय {1, 3, 5, 7, 9, 11, ...} के प्रतिच्छेदन में, क्योंकि 9 प्रधान नहीं है।
इंटरसेक्टिंग एवं डिसजॉइंट समुच्चय
हम कहते हैं प्रतिच्छेद करता है (मिलता है) यदि कुछ उपस्थित है वह दोनों का तत्व है तथा जिस स्थिति में हम भी यही कहते हैं प्रतिच्छेद करता है (मिलता है) at. समान रूप से, प्रतिच्छेद करता है यदि उनका इंटरसेक्शन वसित समुच्चय, जिसका अर्थ है कि कुछ उपस्थित है ऐसा है कि हम कहते हैं, यदि प्रतिच्छेद नहीं करता सरल भाषा में, उनके पास सामान्य तत्व नहीं हैं। तथा असंयुक्त हैं यदि उनका इंटरसेक्शन अतिरिक्त समुच्चय है, चिह्नित है उदाहरण के लिए, समुच्चयो तथा असम्बद्ध हैं, जबकि सम संख्याओं का समुच्चय 3 के गुणजों के समुच्चय को 6 के गुणजों में काटता है।
बाइनरी इंटरसेक्शन साहचर्य ऑपरेशन है; अर्थात किसी भी समुच्चय के लिए तथा किसी के पास
इस प्रकार अस्पष्टता के बिना कोष्ठकों को त्यागा जा सकता है: उपरोक्त में से किसी को भी लिखा जा सकता है . इंटरसेक्शन भी कम्यूटेटिव संपत्ति है। अर्थात किसी के लिए तथा किसी के पास
अतिरिक्त समुच्चय के साथ किसी भी समुच्चय का प्रतिच्छेदन अतिरिक्त समुच्चय में परिणाम देता है; अर्थात कि किसी भी समुच्चय के लिए ,
इसके अतिरिक्त, इंटरसेक्शन ऑपरेशन निःशक्तता है; अर्थात कोई भी समुच्चय संतुष्ट करता है . ये सभी गुण तार्किक संयोजन के विषय में समान तथ्यों से अनुसरण करते हैं।
इंटरसेक्शन संघ पर वितरित करता है एवं संघ चौराहे पर वितरित करता है। अर्थात किसी भी समुच्चय के लिए तथा किसी के पास
ब्रह्मांड के अंदर कोई पूरक (समुच्चय सिद्धांत) को परिभाषित कर सकता है का के सभी तत्वों का समुच्चय होना है अंदर नही हो, इसके अतिरिक्त, का इंटरसेक्शन तथा को उनके पूरक के संघ के रूप में लिखा जा सकता है, जो डी मॉर्गन के कानूनों से सरलता से प्राप्त होता है
सबसे सामान्य धारणा समुच्चयो के इच्छानुसार अन्य अतिरिक्त संग्रह का प्रतिच्छेदन है। यदि अतिरिक्त समुच्चय है जिसके तत्व स्वयं समुच्चय होते हैं का तत्व है इंटरसेक्शन का यदि केवल सार्वभौमिक परिमाणीकरण तत्व का का तत्व है प्रतीकों में:
इस अंतिम अवधारणा के लिए अंकन अधिक भिन्न हो सकते हैं। समुच्चय थ्योरी कभी लिखेंगे , अन्य इसके अतिरिक्त लिखेंगे पश्चात के अंकन को सामान्यीकृत किया जा सकता है, जो संग्रह के प्रतिच्छेदन को संदर्भित करता है यहां गैर-अतिरिक्त समुच्चय है, एवं प्रत्येक के लिए समुच्चय है हानि में कि सूचकांक समुच्चय प्राकृतिक संख्याओं का समुच्चय है, अनंत गुणनफल के अनुरूप अंकन देखा जा सकता है:
जब स्वरूपण कठिन हो, तो इसे भी लिखा जा सकता है . यह अंतिम उदाहरण, अनगिनत समुच्चयों का प्रतिच्छेदन, वास्तव में बहुत सामान्य है; उदाहरण के लिए, सिग्मा बीजगणि σ-अलजेब्रा पर लेख देखें।
शून्य इंटरसेक्शन
कोष्ठकों में तर्कों का तार्किक संयोजन
बिना किसी तर्क का संयोजन टॉटोलॉजी (तर्क) है (तुलना करें: अतिरिक्त उत्पाद); तदनुसार बिना समुच्चय का प्रतिच्छेदन ब्रह्मांड (समुच्चय सिद्धांत) है।
ध्यान दें कि पूर्व अनुभाग में, हमने उस हानि को बाहर कर दिया था जहाँ अतिरिक्त समुच्चय था () था, कारण इस प्रकार है: संग्रह का प्रतिच्छेदन समुच्चय के रूप में परिभाषित किया गया है (समुच्चय -बिल्डर नोटेशन देखें)
यदि अतिरिक्त है, कोई समुच्चय नहीं है में तो सवाल बन जाता है कौन सा कथित शर्तों को पूरा करते हैं? उत्तर लगता है every possible . कब अतिरिक्त है, ऊपर दी गई शर्त अतिरिक्त सच्चाई का उदाहरण है। अतिरिक्त परिवार का इंटरसेक्शन सार्वभौमिक समुच्चय होना चाहिए (प्रतिच्छेदन के संचालन के लिए पहचान तत्व),[4]परन्तु मानक (ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत) समुच्चय सिद्धांत में, सार्वभौमिक समुच्चय नहीं है।
प्रकार सिद्धांत में चूँकि, निर्धारित प्रकार का है इसलिए इंटरसेक्शन प्रकार का समझा जाता है (समुच्चय का प्रकार जिसके तत्व अंदर हैं ), एवं हम परिभाषित कर सकते हैं का सार्वभौमिक समुच्चय होना (वह समुच्चय जिसके तत्व सभी प्रकार के पद हैं |)
यह भी देखें
Wikimedia Commons has media related to [[commons:Category:प्रतिच्छेदन (समुच्चय सिद्धांत)|प्रतिच्छेदन (समुच्चय सिद्धांत)]].