वृत्त समूह
बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
---|
Lie groups |
---|
गणित में, वृत्त समूह, द्वारा निरूपित किया जाता है या , निरपेक्ष मान#जटिल संख्या 1 के साथ सभी सम्मिश्र संख्याओं का गुणक समूह है, यानी, सम्मिश्र तल में इकाई वृत्त या केवल इकाई सम्मिश्र संख्याएँ[1]
सर्कल समूह में एक इकाई जटिल संख्या मूल के बारे में जटिल विमान के रोटेशन (गणित) का प्रतिनिधित्व करती है और इसे कोण माप द्वारा पैरामीट्रिज किया जा सकता है :
सर्कल समूह पोंट्रीगिन द्वैत में और झूठ समूहों के सिद्धांत में एक केंद्रीय भूमिका निभाता है।
अंकन सर्कल समूह के लिए इस तथ्य से उपजा है कि, मानक टोपोलॉजी (नीचे देखें) के साथ, सर्कल समूह 1-टोरस्र्स है। आम तौर पर अधिक, (समूहों का प्रत्यक्ष उत्पाद खुद के साथ टाइम्स) ज्यामितीय रूप से एक है -विश्वास। सर्कल ग्रुप विशेष ऑर्थोगोनल ग्रुप के लिए ग्रुप आइसोमोर्फिज्म है .
प्रारंभिक परिचय
वृत्त समूह के बारे में सोचने का एक तरीका यह है कि यह वर्णन करता है कि कोणों को कैसे जोड़ा जाए, जहाँ केवल 0° और 360° के बीच के कोण हों या या अनुमति है। उदाहरण के लिए, आरेख दिखाता है कि 150° को 270° में कैसे जोड़ा जाए। जवाब है 150° + 270° = 420°, लेकिन सर्कल समूह के संदर्भ में सोचते समय, हम इस तथ्य को भूल सकते हैं कि हमने सर्कल के चारों ओर लपेट लिया है। इसलिए, हम अपने उत्तर को 360° से समायोजित करते हैं, जो देता है 420° ≡ 60° (mod 360°).
एक अन्य विवरण साधारण (वास्तविक) जोड़ के संदर्भ में है, जहां केवल 0 और 1 के बीच की संख्या की अनुमति है (1 पूर्ण रोटेशन के अनुरूप: 360° या ), यानी वास्तविक संख्याएँ पूर्णांकों को मापती हैं: . इसे दशमलव बिंदु से पहले आने वाले अंकों को हटाकर प्राप्त किया जा सकता है। उदाहरण के लिए, जब हम व्यायाम करते हैं 0.4166... + 0.75, उत्तर 1.1666 है..., लेकिन हम अग्रणी 1 को फेंक सकते हैं, इसलिए उत्तर (वृत्त समूह में) सिर्फ है कुछ वरीयता के साथ 0.166..., क्योंकि .
सामयिक और विश्लेषणात्मक संरचना
वृत्त समूह केवल एक सार बीजगणितीय वस्तु से अधिक है। इसकी एक प्राकृतिक टोपोलॉजी है जब इसे जटिल विमान के उप-क्षेत्र (टोपोलॉजी) के रूप में माना जाता है। चूंकि गुणा और व्युत्क्रमण निरंतर फलन (टोपोलॉजी) पर होते हैं , सर्कल समूह में एक सामयिक समूह की संरचना होती है। इसके अलावा, चूंकि यूनिट सर्कल जटिल विमान का एक बंद उपसमुच्चय है, सर्कल समूह का एक बंद उपसमूह है (खुद को एक सामयिक समूह के रूप में माना जाता है)।
कोई और भी कह सकता है। सर्कल एक 1-आयामी वास्तविक कई गुना है, और गुणा और व्युत्क्रम विश्लेषणात्मक कार्य हैं। चक्र पर वास्तविक-विश्लेषणात्मक मानचित्र। यह सर्कल समूह को एक-पैरामीटर समूह की संरचना देता है, एक लाई समूह का एक उदाहरण। वास्तव में, आइसोमोर्फिज्म तक, यह अद्वितीय 1-आयामी कॉम्पैक्ट जगह , जुड़ा हुआ स्थान ली ग्रुप है। इसके अलावा, हर -डायमेंशनल कॉम्पैक्ट, कनेक्टेड, एबेलियन लाइ ग्रुप आइसोमॉर्फिक है .
समाकृतिकता
वृत्त समूह गणित में विभिन्न रूपों में दिखाई देता है। हम यहां कुछ अधिक सामान्य रूपों की सूची दे रहे हैं। विशेष रूप से, हम दिखाते हैं
सभी 1×1 एकात्मक मैट्रिक्स का सेट सर्कल समूह के साथ स्पष्ट रूप से मेल खाता है; एकात्मक स्थिति इस स्थिति के समतुल्य है कि इसके तत्व का पूर्ण मान 1 है। इसलिए, वृत्त समूह कैनोनिक रूप से आइसोमोर्फिक है , पहला एकात्मक समूह।
घातीय कार्य एक समूह समरूपता को जन्म देता है योज्य वास्तविक संख्याओं से मंडली समूह को मानचित्र के माध्यम से
यदि जटिल संख्याएं 2 × 2 वास्तविक मैट्रिक्स (गणित) (जटिल संख्या देखें) के रूप में महसूस की जाती हैं, तो इकाई जटिल संख्याएं इकाई निर्धारक के साथ 2 × 2 ऑर्थोगोनल मेट्रिसेस के अनुरूप होती हैं। विशेष रूप से, हमारे पास है
इस समरूपता की ज्यामितीय व्याख्या है कि एक इकाई सम्मिश्र संख्या द्वारा गुणा करना सम्मिश्र (और वास्तविक) तल में एक उचित घूर्णन है, और ऐसा प्रत्येक घूर्णन इसी रूप का है।
गुण
हर कॉम्पैक्ट झूठ समूह आयाम का > 0 का एक उपसमूह वृत्त समूह के समरूपी है। इसका मतलब यह है कि, समरूपता के संदर्भ में सोचने पर, लगातार कार्य करने वाले एक कॉम्पैक्ट समरूपता समूह से एक-पैरामीटर सर्कल उपसमूहों के अभिनय की उम्मीद की जा सकती है; भौतिक प्रणालियों में परिणाम देखे जाते हैं, उदाहरण के लिए, घूर्णी आक्रमण और सहज समरूपता टूटने पर।
वृत्त समूह में कई उपसमूह होते हैं, लेकिन इसका एकमात्र उचित बंद उपसमूह एकता की जड़ से बना होता है: प्रत्येक पूर्णांक के लिए , द -एकता की जड़ें एक चक्रीय समूह बनाती हैं order , जो समरूपता तक अद्वितीय है।
ठीक उसी तरह जैसे कि वास्तविक संख्याएँ द्विअर्थी परिमेय की पूर्णता (टोपोलॉजी) हैं|बी-ऐडिक परिमेय प्रत्येक प्राकृतिक संख्या के लिए , वृत्त समूह Prüfer समूह का समापन है के लिए , प्रत्यक्ष सीमा द्वारा दिया गया .
प्रतिनिधित्व
सर्कल समूह के समूह प्रतिनिधित्व का वर्णन करना आसान है। शूर के लेम्मा से यह पता चलता है कि एबेलियन समूह के इरेड्यूसिबल प्रतिनिधित्व जटिल संख्या प्रतिनिधित्व सभी 1-आयामी हैं। चूंकि सर्कल समूह कॉम्पैक्ट है, कोई भी प्रतिनिधित्व
ये अभ्यावेदन सभी असमान हैं। प्रतिनिधित्व संयुग्मित प्रतिनिधित्व है :
समूह संरचना
मंडल समूह विभाज्य समूह है। इसका मरोड़ उपसमूह सभी के सेट द्वारा दिया गया है -सभी के लिए एकता की जड़ और आइसोमॉर्फिक है . विभाज्य समूह # विभाज्य समूहों के लिए विभाज्य समूहों की संरचना प्रमेय और पसंद के स्वयंसिद्ध एक साथ हमें बताते हैं कि के एबेलियन समूहों के प्रत्यक्ष योग के लिए आइसोमोर्फिक है की कई प्रतियों के साथ .[citation needed]
प्रतियों की संख्या होना चाहिए (सातत्य की कार्डिनैलिटी) प्रत्यक्ष योग की कार्डिनैलिटी के सही होने के लिए। लेकिन का सीधा योग की प्रतियां के लिए आइसोमोर्फिक है , जैसा आयाम का एक सदिश स्थान है ऊपर . इस प्रकार
यह भी देखें
- यूनिट सर्कल पर तर्कसंगत बिंदुओं का समूह
- एक-पैरामीटर उपसमूह
- एन-क्षेत्र |n-वृत्त
- ऑर्थोगोनल समूह
- चरण कारक (क्वांटम-यांत्रिकी में आवेदन)
- घूर्णन संख्या
- सोलेनॉइड (गणित)
टिप्पणियाँ
- ↑ James, Robert C.; James, Glenn (1992). गणित शब्दकोश (Fifth ed.). Chapman & Hall. p. 436. ISBN 9780412990410.
a unit complex number is a complex number of unit absolute value
.
संदर्भ
- James, Robert C.; James, Glenn (1992). Mathematics Dictionary (Fifth ed.). Chapman & Hall. ISBN 9780412990410.
अग्रिम पठन
- Hua Luogeng (1981) Starting with the unit circle, Springer Verlag, ISBN 0-387-90589-8.