चयन नियम

From Vigyanwiki
Revision as of 22:01, 5 April 2023 by alpha>AmitKumar

भौतिकी और रसायन विज्ञान में, चयन नियम या संक्रमण नियम औपचारिक रूप से क्वांटम स्थिति से दूसरे में प्रणाली के संभावित संक्रमण को रोकता है। अणुओं में, परमाणुओं में, परमाणु नाभिक में, और इसी तरह विद्युत चुम्बकीय संक्रमण के लिए चयन नियम तैयार किए गए हैं। संक्रमण का निरीक्षण करने के लिए उपयोग की जाने वाली तकनीक के अनुसार चयन नियम भिन्न हो सकते हैं। चयन नियम रासायनिक प्रतिक्रियाओं में भी भूमिका निभाता है, जहां कुछ औपचारिक रूप से स्पिन-निषिद्ध प्रतिक्रियाएं होती हैं, यानी प्रतिक्रियाएं जहां स्पिन स्थिति कम से कम एक बार अभिकर्मक से उत्पाद (रसायन विज्ञान) में बदलती है।

निम्नलिखित में मुख्य रूप से परमाणु और आणविक संक्रमणों पर विचार किया जाता है।

अवलोकन

क्वांटम यांत्रिकी में स्पेक्ट्रोस्कोपिक चयन नियम का आधार संक्रमण क्षण अभिन्न का मान है[1]

जहाँ और संक्रमण में सम्मिलित दो स्थितियों, स्थिति 1 और स्थिति 2 के तरंग कार्य हैं, और μ संक्रमण द्विध्रुव आघूर्ण है। यह अभिन्न स्थितियों 1 और 2 के बीच संक्रमण के प्रचारक (और इस प्रकार संभावना) का प्रतिनिधित्व करता है; यदि इस अभिन्न का मान शून्य है तो संक्रमण है।

अभ्यास में, चयन नियम निर्धारित करने के लिए अभिन्न अंग की गणना करने की आवश्यकता नहीं है: यह संक्रमण क्षण फलन की समरूपता निर्धारित करने के लिए पर्याप्त है यदि संक्रमण क्षण फलन उस बिंदु समूह के सभी सममित प्रतिनिधित्व पर सममित है, जिसमें परमाणु या अणु संबंधित है, तो अभिन्न का मान (सामान्य रूप से) शून्य नहीं है और संक्रमण की अनुमति है। अन्यथा, संक्रमण वर्जित ट्रांस है।

संक्रमण क्षण अभिन्न शून्य है यदि संक्रमण क्षण कार्य करता है, विरोधी सममित या विषम कार्य है, अर्थात रखती है। संक्रमण क्षण फलन की समरूपता इसके तीन घटकों के सम और विषम कार्य के समूहों का प्रत्यक्ष उत्पाद है। प्रत्येक घटक की समरूपता विशेषताओं को मानक वर्ण तालिकाओं से प्राप्त किया जा सकता है। प्रत्यक्ष उत्पाद की समरूपता प्राप्त करने के नियम वर्ण तालिकाओं पर ग्रंथों में पाए जा सकते हैं।[2]

संक्रमण क्षण ऑपरेटर की समरूपता विशेषताएँ[2]
संक्रमण प्रकार μ के रूप में परिवर्तित हो जाता है प्रसंग
विद्युत द्विध्रुव x, y, z ऑप्टिकल स्पेक्ट्रा
विद्युत चतुष्कोण x2, y2, z2, xy, xz, yz प्रतिबंध x2 + y2 + z2 = 0
विद्युत ध्रुवीकरण x2, y2, z2, xy, xz, yz रमन स्पेक्ट्रा
चुंबकीय द्विध्रुवीय Rx, Ry, Rz ऑप्टिकल स्पेक्ट्रा (कमजोर)


उदाहरण

इलेक्ट्रॉनिक स्पेक्ट्रा

लापोर्टे नियम एक चयन नियम है जिसे औपचारिक रूप से निम्नानुसार कहा गया है सेंट्रोसिमेट्रिक वातावरण में, परमाणु ऑर्बिटल्स जैसे s-s, p-p, d-d, या f-f के बीच संक्रमण, संक्रमण वर्जित हैं। लापोर्टे नियम (नियम) विद्युत द्विध्रुव संक्रमणों पर प्रयुक्त होता है, इसलिए ऑपरेटर के पास u समरूपता (अर्थात् अनगेरेड, विषम) है।[3] p ऑर्बिटल्स में भी u समरूपता होती है, इसलिए संक्रमण क्षण फलन की समरूपता u×u×u समूहों के प्रत्यक्ष उत्पाद द्वारा दी जाती है, जिसमें यू समरूपता होती है। इसलिए संक्रमण वर्जित है। इसी तरह, d ऑर्बिटल्स में g समरूपता है (अर्थात् गेरेड, यहां तक), इसलिए ट्रिपल उत्पाद g×u×g में भी u समरूपता है और संक्रमण निषिद्ध है।[4]

एकल इलेक्ट्रॉन का तरंग कार्य अंतरिक्ष-निर्भर तरंग फलन और स्पिन (भौतिकी) तरंग फलन का उत्पाद है। स्पिन दिशात्मक है और इसे विषम समता (भौतिकी) कहा जा सकता है। यह इस प्रकार है कि संक्रमण जिसमें स्पिन दिशा में परिवर्तन वर्जित है। औपचारिक शब्दों में, केवल एक ही कुल स्पिन क्वांटम संख्या वाले स्थिति स्पिन-अनुमत हैं।[5] क्रिस्टल क्षेत्र सिद्धांत में, d-d संक्रमण जो स्पिन-निषिद्ध हैं स्पिन-अनुमत संक्रमण से बहुत कमजोर हैं। लापोर्टे नियम के अतिरिक्त दोनों को देखा जा सकता है, क्योंकि वास्तविक संक्रमण उन कंपनों से जुड़े होते हैं जो विरोधी-सममित होते हैं और द्विध्रुवीय पल ऑपरेटर के समान समरूपता रखते हैं।[6]


कंपन स्पेक्ट्रा

कंपन स्पेक्ट्रोस्कोपी में, विभिन्न आणविक कंपन के बीच संक्रमण देखा जाता है। मौलिक कंपन में, अणु अपनी जमीनी अवस्था (v = 0) से पहली उत्तेजित अवस्था (v = 1) तक उत्तेजित होता है। जमीनी अवस्था तरंग फलन की समरूपता अणु की समरूपता के समान होती है। इसलिए, यह अणु के बिंदु समूह में पूरी तरह से सममित प्रतिनिधित्व का आधार है। यह इस प्रकार है कि, कंपन संक्रमण की अनुमति देने के लिए, उत्तेजित स्थिति तरंग फलन की समरूपता संक्रमण क्षण ऑपरेटर की समरूपता के समान होनी चाहिए।[7]

अवरक्त स्पेक्ट्रोस्कोपी में, संक्रमण के क्षण ऑपरेटर या तो x और या y और या z के रूप में रूपांतरित होता है। उत्तेजित स्थिति तरंग फलन को इनमें से कम से कम वैक्टर के रूप में बदलना चाहिए। रमन स्पेक्ट्रोस्कोपी में, ऑपरेटर नीचे वर्ण सिद्धांत तालिका के सबसे दाहिने कॉलम में दूसरे क्रम के शब्दों में से एक के रूप में रूपांतरित होता है।[2]

चरित्र तालिका के लिए Td बिंदु समूह
E 8 C3 3 C2 6 S4 6 σd
A1 1 1 1 1 1 x2 + y2 + z2
A2 1 1 1 -1 -1
E 2 -1 2 0 0 (2 z2 - x2 - y2,x2 - y2)
T1 3 0 -1 1 -1 (Rx, Ry, Rz)
T2 3 0 -1 -1 1 (x, y, z) (xy, xz, yz)

अणु मीथेन, CH4, इन सिद्धांतों के अनुप्रयोग को दर्शाने के लिए उदाहरण के रूप में प्रयोग किया जा सकता है। अणु चतुष्फलकीय है और इसमें Td है समरूपता। मीथेन के कंपन निरूपण A1 + E + 2T2 को फैलाते हैं[8] वर्ण तालिका की जांच से पता चलता है कि चारों कंपन रामन-सक्रिय हैं, लेकिन केवल T2 इन्फ्रारेड स्पेक्ट्रम में कंपन देखा जा सकता है।[9]

क्वांटम हार्मोनिक ऑसिलेटर में, यह दिखाया जा सकता है कि अवरक्त और रमन स्पेक्ट्रा दोनों में ओवरटोन बैंड प्रतिबंधित हैं। चूंकि, जब धार्मिकता को ध्यान में रखा जाता है, तो संक्रमणों को कमजोर रूप से अनुमति दी जाती है।[10]

रमन और इन्फ्रारेड स्पेक्ट्रोस्कोपी में, चयन नियम रमन और या IR में शून्य तीव्रता वाले कुछ कंपन मोड की भविष्यवाणी करते हैं।[11] आदर्श संरचना से विस्थापन के परिणामस्वरूप चयन नियमों में छूट और स्पेक्ट्रा में इन अप्रत्याशित फोनन मोड की उपस्थिति हो सकती है। इसलिए, स्पेक्ट्रा में नए मोड की उपस्थिति समरूपता के टूटने का उपयोगी संकेतक हो सकती है।[12][13]


घूर्णी स्पेक्ट्रा

कठोर रोटर में घूर्णी तरंग कार्यों की समरूपता से प्राप्त घूर्णी संक्रमण के लिए चयन नियम ΔJ = ± 1 है, जहाँ J घूर्णी क्वांटम संख्या है।[14]


युग्मित संक्रमण

एचसीएल गैस का इन्फ्रारेड स्पेक्ट्रम

कई प्रकार के युग्मित संक्रमण होते हैं जैसे घूर्णी-कंपन युग्मन | कंपन-घूर्णन स्पेक्ट्रा में देखा जाता है। एक्साइटेड-स्टेट वेव फलन दो वेव फलन जैसे कंपन और घुमानेवाला उत्पाद है। सामान्य सिद्धांत यह है कि उत्तेजित अवस्था की समरूपता को घटक तरंग कार्यों की समरूपता के प्रत्यक्ष उत्पाद के रूप में प्राप्त किया जाता है।[15] रोविब्रॉनिक युग्मन संक्रमणों में, उत्तेजित अवस्थाओं में तीन तरंग कार्य सम्मिलित होते हैं।

हाइड्रोजन क्लोराइड गैस का अवरक्त स्पेक्ट्रम कंपन स्पेक्ट्रम पर आरोपित घूर्णी सूक्ष्म संरचना को दर्शाता है। यह हेटरोन्यूक्लियर डायटोमिक अणुओं के इन्फ्रारेड स्पेक्ट्रा की विशेषता है। यह तथाकथित p और आर शाखाओं को दर्शाता है। कंपन आवृत्ति पर स्थित q शाखा अनुपस्थित है। घूर्णी स्पेक्ट्रोस्कोपी अणु q शाखा प्रदर्शित करते हैं। यह चयन नियमों के आवेदन से आता है।[16]

अनुनाद रमन स्पेक्ट्रोस्कोपी में एक प्रकार का वाइब्रोनिक कपलिंग सम्मिलित है। इसके परिणामस्वरूप मूलभूत और ओवरटोन संक्रमणों की बहुत अधिक तीव्रता होती है क्योंकि कंपन अनुमत इलेक्ट्रॉनिक संक्रमण से तीव्रता चुराते हैं।[17] दिखावे के अतिरिक्त, चयन नियम रमन स्पेक्ट्रोस्कोपी के समान हैं।[18]


कोणीय संवेग

सामान्यतः, इलेक्ट्रिक (चार्ज) रेडिएशन या मैग्नेटिक (करंट, मैग्नेटिक मोमेंट) रेडिएशन को 2λ मल्टीपोल क्षण Eλ (इलेक्ट्रिक) या Mλ (चुंबकीय) में वर्गीकृत किया जा सकता है, उदाहरण के लिए, विद्युत द्विध्रुव के लिए E1, क्वाड्रुपोल के लिए E2, या ऑक्ट्यूपोल के लिए E3। संक्रमणों में जहां प्रारंभिक और अंतिम अवस्थाओं के बीच कोणीय गति में परिवर्तन कई बहुध्रुव विकिरणों को संभव बनाता है, आमतौर पर निम्नतम क्रम वाले बहुध्रुवों की अत्यधिक संभावना होती है, और संक्रमण पर हावी होते हैं।[19]

उत्सर्जित कण कोणीय संवेग λ, वहन करता है λ, जो फोटॉन के लिए कम से कम 1 होना चाहिए, क्योंकि यह सदिश कण है (अर्थात, इसमें JP = 1 ) इस प्रकार, E0 (विद्युत मोनोपोल) या M0 (चुंबकीय मोनोपोल, जिनका अस्तित्व प्रतीत नहीं होता) से कोई विकिरण नहीं होता है।

चूंकि संक्रमण के समय कुल कोणीय संवेग को संरक्षित करना होता है, हमारे पास वह है

जहाँ और यह प्रक्षेप्य द्वारा दिया गया है और जहाँ और परमाणु के क्रमशः प्रारंभिक और अंतिम कोणीय संवेग हैं।

इसी क्वांटम संख्या λ और μ (z-अक्ष कोणीय गति) को संतुष्ट करना चाहिए

और

समानता भी संरक्षित है। इलेक्ट्रिक मल्टीपोल संक्रमण के लिए

जबकि चुंबकीय बहुध्रुवों के लिए

इस प्रकार, समता E-सम या M-विषम मल्टीपोल के लिए नहीं बदलती है, जबकि यह E-ऑड या M-सम मल्टीपोल के लिए बदलती है।

ये विचार बहुध्रुव क्रम और प्रकार के आधार पर संक्रमण नियमों के विभिन्न सेट उत्पन्न करते हैं। निषिद्ध संक्रमण की अभिव्यक्ति का प्रयोग अधिकांशतः किया जाता है, लेकिन इसका अर्थ यह नहीं है कि ये संक्रमण नहीं हो सकते हैं, केवल यह कि वे विद्युत-द्विध्रुवीय-निषिद्ध हैं। ये बदलाव पूरी तरह से संभव हैं; वे केवल कम दर पर होते हैं। यदि E1 संक्रमण की दर गैर-शून्य है, तो संक्रमण को अनुमति दी गई कहा जाता है; यदि यह शून्य है, तो M1, E2, आदि संक्रमण अभी भी विकिरण उत्पन्न कर सकते हैं, यद्यपि बहुत कम संक्रमण दर के साथ। ये तथाकथित वर्जित संक्रमण हैं। संक्रमण दर मल्टीपोल से अगले एक तक लगभग 1000 के कारक से घट जाती है, इसलिए सबसे कम मल्टीपोल ट्रांज़िशन होने की संभावना सबसे अधिक होती है।[20]

अर्ध-निषिद्ध संक्रमण (तथाकथित इंटरकॉम्बिनेशन लाइनों के परिणामस्वरूप) विद्युत द्विध्रुव (E1) संक्रमण हैं, जिसके लिए चयन नियम का उल्लंघन होता है कि स्पिन नहीं बदलता है। यह एलएस युग्मन की विफलता का परिणाम है।

सारांश तालिका

कुल कोणीय गति,अज़ीमुथल क्वांटम संख्या,स्पिन क्वांटम संख्या और कुल कोणीय गति क्वांटम संख्या है। किन संक्रमणों की अनुमति है हाइड्रोजन जैसे परमाणु पर आधारित है। प्रतीक निषिद्ध संक्रमण को इंगित करने के लिए प्रयोग किया जाता है।

अनुमत संक्रमण विद्युत द्विध्रुव (E1) चुंबकीय द्विध्रुवीय (M1) विद्युत चतुष्कोण (E2) चुंबकीय चतुर्भुज (M2) इलेक्ट्रिक ऑक्टूपोल (E3) चुंबकीय ऑक्टोपोल (M3)
कठोर नियम (1)
(2) if
(3)
एलएस युग्मन (4) एक इलेक्ट्रॉन जाना

कोई इलेक्ट्रॉन नही नहीं रहा है

,
कोई नहीं या एक इलेक्ट्रॉन नही जाता है

एक इलेक्ट्रॉन जाना

एक इलेक्ट्रॉन जाना

एक इलेक्ट्रॉन कूदो

(5) If

If

If

If

इंटरमीडिएट युग्मन (6) If

If

If

If

If

अतिसूक्ष्म संरचना में परमाणु का कुल कोणीय संवेग होता है कहाँ क्वांटम संख्या # परमाणु कोणीय गति क्वांटम संख्या है और इलेक्ट्रॉन (s) की कुल कोणीय गति है। तब से के समान गणितीय रूप है यह उपरोक्त तालिका के समान चयन नियम तालिका का पालन करता है।

सतह

कंपन स्पेक्ट्रोस्कोपी में, कंपन स्पेक्ट्रा में देखी गई चोटियों की पहचान करने के लिए सतह चयन नियम प्रयुक्त किया जाता है। जब एक अणु एक सब्सट्रेट पर सोखना होता है, तो अणु सब्सट्रेट में विपरीत छवि आवेशों को प्रेरित करता है। अणु का द्विध्रुव और सतह के लंबवत प्रतिबिम्ब आवेश एक दूसरे को पुष्ट करते हैं। इसके विपरीत, अणु के द्विध्रुव आघूर्ण और सतह के समानांतर प्रतिबिम्ब आवेश निरस्त हो जाते हैं। इसलिए, कंपन स्पैक्ट्रम में सतह के लम्बवत् गतिशील द्विध्रुव आघूर्ण को जन्म देने वाली केवल आणविक कंपन चोटियों को ही देखा जाएगा।

यह भी देखें

टिप्पणियाँ

  1. Harris & Bertolucci, p. 130
  2. 2.0 2.1 2.2 Salthouse, J.A.; Ware, M.J. (1972). Point Group Character Tables and Related Data. Cambridge University Press. ISBN 0-521-08139-4.
  3. Anything with u (German ungerade) symmetry is antisymmetric with respect to the centre of symmetry. g (German gerade) signifies symmetric with respect to the centre of symmetry. If the transition moment function has u symmetry, the positive and negative parts will be equal to each other, so the integral has a value of zero.
  4. Harris & Berolucci, p. 330
  5. Harris & Berolucci, p. 336
  6. Cotton Section 9.6, Selection rules and polarizations
  7. Cotton, Section 10.6 Selection rules for fundamental vibrational transitions
  8. Cotton, Chapter 10 Molecular Vibrations
  9. Cotton p. 327
  10. Califano, S. (1976). कंपन अवस्थाएँ. Wiley. ISBN 0-471-12996-8. Chapter 9, Anharmonicity
  11. Fateley, W. G., Neil T. McDevitt, and Freeman F. Bentley. "Infrared and Raman selection rules for lattice vibrations: the correlation method." Applied Spectroscopy 25.2 (1971): 155-173.
  12. Arenas, D. J., et al. "Raman study of phonon modes in bismuth pyrochlores." Physical Review B 82.21 (2010): 214302. || DOI:https://doi.org/10.1103/PhysRevB.82.214302
  13. Zhao, Yanyuan, et al. "Phonons in Bi 2 S 3 nanostructures: Raman scattering and first-principles studies." Physical Review B 84.20 (2011): 205330. || DOI:https://doi.org/10.1103/PhysRevB.84.205330
  14. Kroto, H.W. (1992). आणविक रोटेशन स्पेक्ट्रा. new York: Dover. ISBN 0-486-49540-X.
  15. Harris & Berolucci, p. 339
  16. Harris & Berolucci, p. 123
  17. Long, D.A. (2001). The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. Wiley. ISBN 0-471-49028-8. Chapter 7, Vibrational Resonance Raman Scattering
  18. Harris & Berolucci, p. 198
  19. Softley, T.P. (1994). परमाणु स्पेक्ट्रा. Oxford, UK: Oxford University Press. ISBN 0-19-855688-8.
  20. Condon, E.V.; Shortley, G.H. (1953). परमाणु स्पेक्ट्रा का सिद्धांत. Cambridge University Press. ISBN 0-521-09209-4.


संदर्भ

Harris, D.C.; Bertolucci, M.D. (1978). Symmetry and Spectroscopy. Oxford University Press. ISBN 0-19-855152-5.
Cotton, F.A. (1990). Chemical Applications of Group Theory (3rd ed.). Wiley. ISBN 978-0-471-51094-9.


अग्रिम पठन

  • Stanton, L. (1973). "Selection rules for pure rotation and vibration-rotation hyper-Raman spectra". Journal of Raman Spectroscopy. 1 (1): 53–70. Bibcode:1973JRSp....1...53S. doi:10.1002/jrs.1250010105.
  • Bower, D.I; Maddams, W.F. (1989). The vibrational spectroscopy of polymers. Cambridge University Press. ISBN 0-521-24633-4. Section 4.1.5: Selection rules for Raman activity.
  • Sherwood, P.M.A. (1972). Vibrational Spectroscopy of Solids. Cambridge University Press. ISBN 0-521-08482-2. Chapter 4: The interaction of radiation with a crystal.


बाहरी संबंध