अंतराआण्विक बल

From Vigyanwiki
Revision as of 22:57, 27 March 2023 by alpha>Kajal

एक इंटरमॉलिक्युलर बल (IMF) (या द्वितीयक बल) वह बल है जो अणुओं के बीच परस्पर क्रिया में मध्यस्थता करता है, जिसमें विद्युत चुंबकत्व | आकर्षण के विद्युत चुंबकीय बल शामिल हैं। या प्रतिकर्षण जो परमाणुओं और अन्य प्रकार के पड़ोसी कणों के बीच कार्य करता है, उदा। परमाणु या आयन। इंटरमॉलिक्युलर फोर्स, इंट्रामोल्युलर बल के सापेक्ष कमजोर होती हैं - वे ताकतें जो अणु को एक साथ रखती हैं। उदाहरण के लिए, सहसंयोजक बंधन, जिसमें परमाणुओं के बीच इलेक्ट्रॉन जोड़े साझा करना शामिल है, पड़ोसी अणुओं के बीच मौजूद बलों से कहीं अधिक मजबूत है। बलों के दोनों सेट बल क्षेत्र (रसायन विज्ञान) के आवश्यक भाग हैं जो अक्सर आणविक यांत्रिकी में उपयोग किए जाते हैं।

सूक्ष्म बलों की प्रकृति का पहला संदर्भ 1743 में पेरिस में प्रकाशित एलेक्सिस क्लेराट के काम थ्योरी डे ला फिगर डे ला टेरे में मिलता है।[1] सूक्ष्म बलों की जांच में योगदान देने वाले अन्य वैज्ञानिकों में शामिल हैं: पियरे-साइमन लाप्लास, कार्ल फ्रेडरिक गॉस, जेम्स क्लर्क मैक्सवेल और लुडविग बोल्ट्जमैन

आकर्षक इंटरमॉलिक्युलर बलों को निम्न प्रकारों में वर्गीकृत किया गया है:

चिपचिपाहट, पीवीटी (भौतिकी)|दबाव, आयतन, तापमान (पीवीटी) डेटा जैसे गुणों के मैक्रोस्कोपिक माप द्वारा इंटरमॉलिक्युलर बलों की जानकारी प्राप्त की जाती है। सूक्ष्म पहलुओं का लिंक वायरल गुणांक और लेनार्ड-जोन्स क्षमता द्वारा दिया गया है।

हाइड्रोजन बॉन्डिंग

हाइड्रोजन बॉन्ड द्विध्रुवीय-द्विध्रुवीय बंधन का चरम रूप है, जो हाइड्रोजन परमाणु के बीच आकर्षण का जिक्र करता है जो उच्च वैद्युतीयऋणात्मकता वाले तत्व से जुड़ा होता है, आमतौर पर नाइट्रोजन, ऑक्सीजन या अधातु तत्त्व[2] हाइड्रोजन बंधन को अक्सर मजबूत इलेक्ट्रोस्टैटिक डीपोल-डीपोल इंटरैक्शन के रूप में वर्णित किया जाता है। हालांकि, इसमें सहसंयोजक बंधन की कुछ विशेषताएं भी हैं: यह दिशात्मक है, वैन डेर वाल्स बल की बातचीत से मजबूत है, अपने वैन डेर वाल्स त्रिज्या के योग से कम अंतराल दूरी पैदा करता है, और आम तौर पर सीमित संख्या में बातचीत भागीदारों को शामिल करता है, जो कर सकते हैं एक प्रकार की वैलेंस (रसायन विज्ञान) के रूप में व्याख्या की जाए। अणुओं के बीच बनने वाले हाइड्रोजन बंधों की संख्या सक्रिय युग्मों की संख्या के बराबर होती है। अणु जो अपने हाइड्रोजन का दान करता है उसे दाता अणु कहा जाता है, जबकि एच बंधन में भाग लेने वाले अकेले जोड़े वाले अणु को स्वीकर्ता अणु कहा जाता है। सक्रिय जोड़े की संख्या दाता के हाइड्रोजन की संख्या और स्वीकर्ता के अकेले जोड़े की संख्या के बीच सामान्य संख्या के बराबर होती है।

पानी में हाइड्रोजन बंधन

हालांकि दोनों को आरेख में नहीं दिखाया गया है, पानी के अणुओं में चार सक्रिय बंधन हैं। ऑक्सीजन परमाणु अपने दो अकेले जोड़े के माध्यम से दो हाइड्रोजन बांड बनाने के लिए दो हाइड्रोजन के साथ बातचीत कर सकता है, और निश्चित रूप से, दूसरा हाइड्रोजन परमाणु भी पड़ोसी अणु के साथ बातचीत कर सकता है। अन्य हाइड्रोजन चाकोजेनाइड की तुलना में इंटरमॉलिक्युलर हाइड्रोजन बॉन्डिंग पानी के उच्च क्वथनांक (100 °C) के लिए ज़िम्मेदार है, जिसमें हाइड्रोजन बॉन्ड की क्षमता बहुत कम होती है। इंट्रामोल्युलर हाइड्रोजन बॉन्डिंग प्रोटीन और न्यूक्लिक अम्ल की द्वितीयक संरचना, तृतीयक संरचना और चतुर्धातुक संरचनाओं के लिए आंशिक रूप से जिम्मेदार है। यह सिंथेटिक और प्राकृतिक दोनों तरह के पॉलिमर की संरचना में भी महत्वपूर्ण भूमिका निभाता है।[3]


ज़िम्मेदार है, जिसमें हाइड्रोजन बॉन्ड की क्षमता बहुत कम होती है। इंट्रामोल्युलर हाइड्रोजन बॉन्डिंग प्रोटीन और न्यूक्लिक अम्ल की द्वितीयक संरचना, तृतीयक संरचना और चतुर्धातुक संरचनाओं के लिए आंशिक रूप से जिम्मेदार है। यह सिंथेटिक और प्राकृतिक दोनों तरह के पॉलिमर की संरचना में भी महत्वपूर्ण भूमिका निभाता है।[3]

आयोनिक बॉन्डिंग

Cationic और anionic साइटों के बीच आकर्षण एक गैर सहसंयोजक, या इंटरमॉलिक्युलर इंटरैक्शन है जिसे आमतौर पर आयन पेयरिंग या साल्ट ब्रिज के रूप में जाना जाता है।[4] यह अनिवार्य रूप से इलेक्ट्रोस्टैटिक बलों के कारण होता है, हालांकि जलीय माध्यम में एसोसिएशन एंट्रॉपी द्वारा संचालित होता है और अक्सर एंडोथर्मिक भी होता है। अधिकांश लवण आयनों के बीच विशिष्ट दूरी वाले क्रिस्टल बनाते हैं; कई अन्य गैर-सहसंयोजक अंतःक्रियाओं के विपरीत, नमक पुल दिशात्मक नहीं होते हैं और ठोस अवस्था में दिखाई देते हैं, आमतौर पर केवल आयनों के वैन डेर वाल्स रेडी द्वारा निर्धारित संपर्क होता है। अकार्बनिक के साथ-साथ कार्बनिक आयन मध्यम आयनिक शक्ति पर पानी में प्रदर्शित होते हैं I एसोसिएशन के समान नमक पुल ΔG मान लगभग 5 से 6 kJ / mol के लिए 1: 1 आयनों और कटियन के संयोजन के लिए, प्रकृति से लगभग स्वतंत्र (आकार, ध्रुवीकरण, आदि) .) आयनों की।[5] ΔG मान योगात्मक हैं और आवेशों का लगभग रेखीय फलन है, उदा. एकल आवेशित अमोनियम धनायन के साथ दोगुना आवेशित फॉस्फेट ऋणायन लगभग 2x5 = 10 kJ/mol होता है। ΔG मान समाधान की आयनिक शक्ति I पर निर्भर करता है, जैसा कि Debye-Hückel समीकरण द्वारा वर्णित है, शून्य आयनिक शक्ति पर कोई ΔG = 8 kJ/mol देखता है।

डीपोल-डीपोल और इसी तरह की बातचीत

द्विध्रुवीय-द्विध्रुवीय अंतःक्रियाएं (या कीसोम अन्योन्यक्रियाएं) स्थायी द्विध्रुव वाले अणुओं के बीच वैद्युतस्थैतिक अंतःक्रियाएं हैं। यह अन्योन्य क्रिया लंदन बलों की तुलना में अधिक मजबूत है लेकिन आयन-आयन अन्योन्य क्रिया से कमजोर है क्योंकि केवल आंशिक शुल्क शामिल हैं। ये अंतःक्रिया अणुओं को आकर्षण बढ़ाने (संभावित ऊर्जा को कम करने) के लिए संरेखित करती हैं। हाइड्रोजन क्लोराइड (एचसीएल) में द्विध्रुव-द्विध्रुवीय अंतःक्रिया का उदाहरण देखा जा सकता है: ध्रुवीय अणु का धनात्मक सिरा दूसरे अणु के ऋणात्मक सिरे को आकर्षित करेगा और उसकी स्थिति को प्रभावित करेगा। ध्रुवीय अणुओं के बीच शुद्ध आकर्षण होता है। ध्रुवीय अणुओं के उदाहरणों में हाइड्रोजन क्लोराइड (HCl) और क्लोरोफार्म (CHCl3).

अक्सर अणुओं में परमाणुओं के द्विध्रुवी समूह होते हैं, लेकिन समग्र रूप से अणु पर कोई समग्र विद्युत द्विध्रुवीय क्षण नहीं होता है। यह तब होता है जब अणु के भीतर समरूपता होती है जो डिप्लोल्स को एक दूसरे को रद्द करने का कारण बनती है। यह टेट्राक्लोरोमेथेन और कार्बन डाईऑक्साइड जैसे अणुओं में होता है। दो अलग-अलग परमाणुओं के बीच द्विध्रुवीय-द्विध्रुवीय अंतःक्रिया आमतौर पर शून्य होती है, क्योंकि परमाणु शायद ही कभी स्थायी द्विध्रुवीय होते हैं।

कीसोम इंटरेक्शन एक वैन डेर वाल्स बल है। वान डेर वाल्स बलों के खंड में आगे चर्चा की गई है।

आयन-द्विध्रुवीय और आयन-प्रेरित द्विध्रुवीय बल

आयन-द्विध्रुवीय और आयन-प्रेरित द्विध्रुव बल द्विध्रुव-द्विध्रुवीय और द्विध्रुव-प्रेरित द्विध्रुव अंतःक्रियाओं के समान होते हैं, लेकिन इनमें केवल ध्रुवीय और गैर-ध्रुवीय अणुओं के बजाय आयन शामिल होते हैं। आयन-द्विध्रुवीय और आयन-प्रेरित द्विध्रुवीय बल द्विध्रुवीय-द्विध्रुवीय अंतःक्रियाओं की तुलना में अधिक मजबूत होते हैं क्योंकि किसी भी आयन का आवेश द्विध्रुवीय क्षण के आवेश से बहुत अधिक होता है। आयन-द्विध्रुव आबंधन हाइड्रोजन आबंधन से प्रबल होता है।[6] एक आयन-द्विध्रुवीय बल में आयन और ध्रुवीय अणु परस्पर क्रिया करते हैं। वे संरेखित करते हैं ताकि अधिकतम आकर्षण की अनुमति देते हुए सकारात्मक और नकारात्मक समूह एक दूसरे के बगल में हों। इस अन्योन्य क्रिया का महत्वपूर्ण उदाहरण पानी में आयनों का जलयोजन है जो जलयोजन ऊर्जा को जन्म देता है। ध्रुवीय पानी के अणु पानी में आयनों के चारों ओर खुद को घेर लेते हैं और इस प्रक्रिया के दौरान निकलने वाली ऊर्जा को हाइड्रेशन एन्थैल्पी के रूप में जाना जाता है। विभिन्न आयनों (जैसे Cu2+) पानी में।

एक आयन-प्रेरित द्विध्रुव बल में आयन और गैर-ध्रुवीय अणु परस्पर क्रिया करते हैं। द्विध्रुव-प्रेरित द्विध्रुवीय बल की तरह, आयन का आवेश गैर-ध्रुवीय अणु पर इलेक्ट्रॉन बादल के विरूपण का कारण बनता है।[7]


वैन डेर वाल्स बल

वैन डेर वाल्स बल अपरिवर्तित परमाणुओं या अणुओं के बीच परस्पर क्रिया से उत्पन्न होते हैं, जो न केवल संघनित चरणों के सामंजस्य और गैसों के भौतिक अवशोषण जैसी घटनाओं के लिए अग्रणी होते हैं, बल्कि मैक्रोस्कोपिक निकायों के बीच आकर्षण के एक सार्वभौमिक बल के लिए भी होते हैं।[8]


कीसोम बल (स्थायी द्विध्रुव – स्थायी द्विध्रुव)

वैन डेर वाल्स बलों में पहला योगदान घूर्णन स्थायी द्विध्रुवों, चतुष्कोणों (घन से कम समरूपता वाले सभी अणु) और बहुध्रुवों के बीच इलेक्ट्रोस्टैटिक इंटरैक्शन के कारण होता है। इसे कीसोम इंटरेक्शन कहा जाता है, जिसका नाम विलेम हेंड्रिक कीसोम के नाम पर रखा गया है।[9] ये बल स्थायी द्विध्रुव (ध्रुवीय अणु) के बीच आकर्षण से उत्पन्न होते हैं और तापमान पर निर्भर होते हैं।[8]

वे द्विध्रुवों के बीच आकर्षक अंतःक्रियाओं से युक्त होते हैं जो द्विध्रुवों के विभिन्न घूर्णी झुकावों पर औसतन कैनोनिकल पहनावा होते हैं। यह माना जाता है कि अणु लगातार घूमते रहते हैं और कभी भी अपने स्थान पर बंद नहीं होते। यह अच्छी धारणा है, लेकिन कुछ बिंदु पर अणु जगह में बंद हो जाते हैं। केसोम इंटरैक्शन की ऊर्जा दूरी की व्युत्क्रम छठी शक्ति पर निर्भर करती है, दो स्थानिक रूप से स्थिर द्विध्रुवों की अंतःक्रियात्मक ऊर्जा के विपरीत, जो दूरी की व्युत्क्रम तीसरी शक्ति पर निर्भर करती है। कीसोम इंटरेक्शन केवल उन अणुओं के बीच हो सकता है जिनमें स्थायी द्विध्रुवीय क्षण होते हैं, यानी दो ध्रुवीय अणु। इसके अलावा कीसोम अन्योन्य क्रियाएं बहुत कमजोर वैन डेर वाल्स अंतःक्रियाएं हैं और इलेक्ट्रोलाइट्स वाले जलीय घोलों में नहीं होती हैं। कोण औसत अंतःक्रिया निम्नलिखित समीकरण द्वारा दी गई है:

जहाँ d = विद्युत द्विध्रुव आघूर्ण, = मुक्त स्थान की पारगम्यता, = आसपास की सामग्री का ढांकता हुआ स्थिरांक, T = तापमान, = बोल्ट्ज़मैन स्थिरांक, और r = अणुओं के बीच की दूरी।

डेबी बल (स्थायी द्विध्रुव-प्रेरित द्विध्रुव)

दूसरा योगदान प्रेरण (जिसे ध्रुवीकरण भी कहा जाता है) या डेबी बल है, जो स्थायी द्विध्रुवों को घुमाने और परमाणुओं और अणुओं (प्रेरित द्विध्रुव) के ध्रुवीकरण से उत्पन्न होता है। ये प्रेरित द्विध्रुव तब होते हैं जब स्थायी द्विध्रुव वाला अणु दूसरे अणु के इलेक्ट्रॉनों को पीछे हटाता है। स्थायी द्विध्रुव वाला अणु समान पड़ोसी अणु में द्विध्रुव को प्रेरित कर सकता है और पारस्परिक आकर्षण पैदा कर सकता है। परमाणुओं के बीच डेबी बल नहीं हो सकते। प्रेरित और स्थायी द्विध्रुवों के बीच बल केसोम अंतःक्रियाओं के रूप में तापमान पर निर्भर नहीं हैं क्योंकि प्रेरित द्विध्रुव ध्रुवीय अणु के चारों ओर स्थानांतरित करने और घूमने के लिए स्वतंत्र है। डेबी इंडक्शन इफेक्ट और कीसोम ओरिएंटेशन इफेक्ट को पोलर इंटरेक्शन कहा जाता है।[8]

प्रेरित द्विध्रुव बल प्रेरण (जिसे द्विध्रुवीय ध्रुवीकरण भी कहा जाता है) से प्रकट होता है, जो अणु पर स्थायी बहुध्रुव के बीच प्रेरित (पूर्व di/बहु-ध्रुव द्वारा) 31 के बीच आकर्षक अंतःक्रिया है।[10][11][12] इस अन्योन्यक्रिया को डेबी बल कहा जाता है, जिसका नाम पीटर जे.डब्ल्यू. डेबी के नाम पर रखा गया है।

स्थायी द्विध्रुव और प्रेरित द्विध्रुव के बीच प्रेरण अन्योन्यक्रिया का उदाहरण HCl और Ar के बीच अन्योन्यक्रिया है। इस प्रणाली में, Ar द्विध्रुव का अनुभव करता है क्योंकि इसके इलेक्ट्रॉन HCl द्वारा (HCl के H पक्ष की ओर) आकर्षित होते हैं या (Cl की ओर से) पीछे हटते हैं।[10][11] कोण औसत अंतःक्रिया निम्नलिखित समीकरण द्वारा दी गई है:

कहाँ = ध्रुवीकरण।

किसी भी ध्रुवीय अणु और गैर-ध्रुवीय/सममित अणु के बीच इस तरह की बातचीत की उम्मीद की जा सकती है। प्रेरण-बातचीत बल द्विध्रुवीय-द्विध्रुवीय अंतःक्रिया की तुलना में बहुत कमजोर है, लेकिन लंदन फैलाव बल से अधिक मजबूत है।

लंदन फैलाव बल (उतार-चढ़ाव वाला द्विध्रुव-प्रेरित द्विध्रुव अन्योन्य क्रिया)

तीसरा और प्रमुख योगदान फैलाव या लंदन बल (उतार-चढ़ाव वाले द्विध्रुव-प्रेरित द्विध्रुव) है, जो सभी परमाणुओं और अणुओं के गैर-शून्य तात्कालिक द्विध्रुव क्षणों के कारण उत्पन्न होता है। इस तरह के ध्रुवीकरण को या तो ध्रुवीय अणु या गैर-ध्रुवीय अणुओं में नकारात्मक रूप से आवेशित इलेक्ट्रॉन बादलों के प्रतिकर्षण द्वारा प्रेरित किया जा सकता है। इस प्रकार, लंदन की बातचीत इलेक्ट्रॉन बादल में इलेक्ट्रॉन घनत्व के यादृच्छिक उतार-चढ़ाव के कारण होती है। इलेक्ट्रॉनों की बड़ी संख्या वाले परमाणु में कम इलेक्ट्रॉनों वाले परमाणु की तुलना में अधिक संबद्ध लंदन बल होगा। फैलाव (लंदन) बल सबसे महत्वपूर्ण घटक है क्योंकि सभी सामग्री ध्रुवीकरण योग्य हैं, जबकि कीसोम और डेबी बलों को स्थायी द्विध्रुव की आवश्यकता होती है। लंदन इंटरेक्शन सार्वभौमिक है और परमाणु-परमाणु इंटरैक्शन में भी मौजूद है। विभिन्न कारणों से, संघनित प्रणालियों में मैक्रोस्कोपिक निकायों के बीच बातचीत के लिए लंदन इंटरैक्शन (फैलाव) को प्रासंगिक माना गया है। हैमेकर सिद्धांत ने 1937 में मैक्रोस्कोपिक पिंडों के बीच वैन डेर वाल्स के सिद्धांत को विकसित किया और दिखाया कि इन अंतःक्रियाओं की योगात्मकता उन्हें काफी अधिक लंबी दूरी प्रदान करती है।[8]


बलों की सापेक्ष शक्ति

Bond type Dissociation energy
(kcal/mol)[13]
Dissociation energy

(kJ/mol)

Note
Ionic lattice 250–4000[14] 1100–20000
Covalent bond 30–260 130–1100
Hydrogen bond 1–12 4–50 About 5 kcal/mol (21 kJ/mol) in water
Dipole–dipole 0.5–2 2–8
London dispersion forces <1 to 15 <4 to 63 Estimated from the enthalpies of vaporization of hydrocarbons[15]

यह तुलना अनुमानित है। शामिल अणुओं के आधार पर वास्तविक सापेक्ष शक्ति अलग-अलग होगी। उदाहरण के लिए, पानी की उपस्थिति प्रतिस्पर्धात्मक अंतःक्रियाओं का निर्माण करती है जो आयनिक और हाइड्रोजन बांड दोनों की ताकत को बहुत कमजोर कर देती है।[16] हम विचार कर सकते हैं कि स्थैतिक प्रणालियों के लिए, किसी भी पदार्थ में आयनिक बंधन और सहसंयोजक बंधन हमेशा अंतर-आणविक बलों से अधिक मजबूत होंगे। लेकिन बड़े गतिमान सिस्टम जैसे कि एनजाइम अणु सबस्ट्रेट (रसायन विज्ञान) प्रतिक्रिया करने वाले अणु के साथ परस्पर क्रिया करते हैं, ऐसा नहीं है।[17] यहाँ बहुसंख्यक इंट्रामोल्युलर (अक्सर - हाइड्रोजन बॉन्ड) बॉन्ड सक्रिय मध्यवर्ती अवस्था बनाते हैं जहाँ इंटरमॉलिक्युलर बॉन्ड कुछ सहसंयोजक बंधन को तोड़ते हैं, जबकि अन्य बनते हैं, इस तरह हजारों एंजाइम कटैलिसीस की प्रक्रिया करते हैं, जो जीव के लिए बहुत महत्वपूर्ण है .

गैसों के व्यवहार पर प्रभाव

इंटरमॉलिक्युलर बल कम दूरी पर प्रतिकारक और लंबी दूरी पर आकर्षक होते हैं (लेनार्ड-जोन्स क्षमता देखें)। गैस में, प्रतिकर्षण बल मुख्य रूप से दो अणुओं को समान मात्रा में रखने का प्रभाव रखता है। यह वास्तविक गैस को एक ही तापमान और दबाव पर आदर्श गैस की तुलना में अधिक मात्रा में कब्जा करने की प्रवृत्ति देता है। आकर्षण बल अणुओं को एक साथ पास खींचता है और वास्तविक गैस को आदर्श गैस की तुलना में कम मात्रा में कब्जा करने की प्रवृत्ति देता है। कौन सी बातचीत अधिक महत्वपूर्ण है तापमान और दबाव पर निर्भर करता है (संपीड़न कारक देखें)।

एक गैस में, अणुओं के बीच की दूरी आम तौर पर बड़ी होती है, इसलिए इंटरमॉलिक्युलर बलों का प्रभाव बहुत कम होता है। आकर्षण बल प्रतिकारक बल से नहीं, बल्कि अणुओं की तापीय ऊर्जा से दूर होता है। थर्मोडायनामिक तापमान तापीय ऊर्जा का माप है, इसलिए तापमान बढ़ने से आकर्षक बल का प्रभाव कम हो जाता है। इसके विपरीत, प्रतिकारक बल का प्रभाव अनिवार्य रूप से तापमान से अप्रभावित रहता है।

जब किसी गैस को उसका घनत्व बढ़ाने के लिए संपीडित किया जाता है तो आकर्षण बल का प्रभाव बढ़ जाता है। यदि गैस को पर्याप्त रूप से सघन बनाया जाता है, तो अणुओं को फैलाने के लिए तापीय गति की प्रवृत्ति को दूर करने के लिए आकर्षण काफी बड़ा हो सकता है। तब गैस ठोस या तरल, यानी संघनित चरण बनाने के लिए संघनित हो सकती है। कम तापमान संघनित चरण के निर्माण का पक्षधर है। संघनित अवस्था में, आकर्षक और प्रतिकारक शक्तियों के बीच लगभग संतुलन होता है।

क्वांटम यांत्रिक सिद्धांत

परमाणुओं और अणुओं के बीच देखे गए अंतर-आणविक बलों को परिघटना के रूप में वर्णित किया जा सकता है, जैसा कि ऊपर उल्लिखित स्थायी और तात्कालिक द्विध्रुवों के बीच होता है। वैकल्पिक रूप से, कोई मौलिक, एकीकृत सिद्धांत की तलाश कर सकता है जो विभिन्न प्रकार की अंतःक्रियाओं जैसे कि हाइड्रोजन बंध की व्याख्या करने में सक्षम हो।[18] वैन डेर वाल्स बल[19] और द्विध्रुवीय-द्विध्रुवीय अंतःक्रियाएँ। आमतौर पर, यह क्वांटम यांत्रिकी के विचारों को अणुओं पर लागू करके किया जाता है, और रेले-श्रोडिंगर गड़बड़ी सिद्धांत इस संबंध में विशेष रूप से प्रभावी रहा है। मौजूदा क्वांटम रसायन विज्ञान विधियों पर लागू होने पर, इंटरमॉलिक्युलर इंटरैक्शन की ऐसी क्वांटम मैकेनिकल व्याख्या अनुमानित तरीकों की सरणी प्रदान करती है जिसका उपयोग इंटरमॉलिक्युलर इंटरैक्शन का विश्लेषण करने के लिए किया जा सकता है।[20] इस तरह के इंटरमॉलिक्युलर इंटरैक्शन की कल्पना करने के लिए सबसे उपयोगी तरीकों में से एक, जिसे हम क्वांटम रसायन विज्ञान में पा सकते हैं, गैर-सहसंयोजक इंटरैक्शन इंडेक्स|गैर-सहसंयोजक इंटरैक्शन इंडेक्स है, जो सिस्टम के इलेक्ट्रॉन घनत्व पर आधारित है। लंदन फैलाव बल इसमें बड़ी भूमिका निभाते हैं।

इलेक्ट्रॉन घनत्व टोपोलॉजी के संबंध में, हाल ही में इलेक्ट्रॉन घनत्व ढाल विधियों पर आधारित तरीके उभरे हैं, विशेष रूप से IBSI (आंतरिक बॉन्ड स्ट्रेंथ इंडेक्स) के विकास के साथ,[21] आईजीएम (स्वतंत्र ढाल मॉडल) पद्धति पर निर्भर।[22][23][24]


यह भी देखें

संदर्भ

  1. Margenau H, Kestner NR (1969). इंटरमॉलिक्युलर फोर्स का सिद्धांत. International Series of Monographs in Natural Philosophy. Vol. 18 (1st ed.). Oxford: Pergamon Press. ISBN 978-0-08-016502-8.
  2. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "hydrogen bond". doi:10.1351/goldbook.H02899
  3. 3.0 3.1 Lindh U (2013), "Biological functions of the elements", in Selinus O (ed.), Essentials of Medical Geology (Revised ed.), Dordrecht: Springer, pp. 129–177, doi:10.1007/978-94-007-4375-5_7, ISBN 978-94-007-4374-8
  4. Ciferri A, Perico A, eds. (2012). प्राकृतिक और सिंथेटिक मैक्रोमोलेक्यूल्स में आयनिक सहभागिता. Hoboken, NJ: John Wiley & Sons, Inc. ISBN 978-0-470-52927-0.
  5. Biedermann F, Schneider HJ (May 2016). "सुपरमॉलेक्युलर कॉम्प्लेक्स में प्रायोगिक बंधन ऊर्जा". Chemical Reviews. 116 (9): 5216–5300. doi:10.1021/acs.chemrev.5b00583. PMID 27136957.
  6. Tro N (2011). Chemistry: A Molecular Approach. United States: Pearson Education Inc. p. 466. ISBN 978-0-321-65178-5.
  7. Blaber M (1996). "अंतर आणविक बल". mikeblaber.org. Archived from the original on 2020-08-01. Retrieved 2011-11-17.
  8. 8.0 8.1 8.2 8.3 Leite FL, Bueno CC, Da Róz AL, Ziemath EC, Oliveira ON (October 2012). "सतह बलों और आसंजन के लिए सैद्धांतिक मॉडल और परमाणु बल माइक्रोस्कोपी का उपयोग करके उनका मापन". International Journal of Molecular Sciences. 13 (10): 12773–12856. doi:10.3390/ijms131012773. PMC 3497299. PMID 23202925.
  9. Keesom WH (1915). "कठोर गोलाकार अणुओं के लिए दूसरा वायरल गुणांक जिसका पारस्परिक आकर्षण इसके केंद्र में रखे चौगुने के बराबर है" (PDF). Proceedings of the Royal Netherlands Academy of Arts and Sciences. 18: 636–646.
  10. 10.0 10.1 Blustin PH (1978). "A Floating Gaussian Orbital calculation on argon hydrochloride (Ar·HCl)". Theoretica Chimica Acta. 47 (3): 249–257. doi:10.1007/BF00577166. S2CID 93104668.
  11. 11.0 11.1 Roberts JK, Orr WJ (1938). "प्रेरित द्विध्रुव और आयनिक क्रिस्टल पर आर्गन के सोखने की गर्मी". Transactions of the Faraday Society. 34: 1346. doi:10.1039/TF9383401346.
  12. Sapse AM, Rayez-Meaume MT, Rayez JC, Massa LJ (1979). "Ion-induced dipole H−n clusters". Nature. 278 (5702): 332–333. Bibcode:1979Natur.278..332S. doi:10.1038/278332a0. S2CID 4304250.
  13. Eğe SN (2004). Organic Chemistry: Structure and Reactivity (5th ed.). Boston: Houghton Mifflin Company. pp. 30–33, 67. ISBN 978-0-618-31809-4.
  14. "Lattice Energies". Division of Chemical Education. Purdue University. Retrieved 2014-01-21.
  15. Majer V, Svoboda V (1985). Enthalpies of Vaporization of Organic Compounds. Oxford: Blackwell Scientific. ISBN 978-0-632-01529-0.
  16. Alberts B (2015). कोशिका का आणविक जीवविज्ञान (6th ed.). New York, NY. ISBN 978-0-8153-4432-2. OCLC 887605755.{{cite book}}: CS1 maint: location missing publisher (link)
  17. Savir Y, Tlusty T (May 2007). "Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition". PLOS ONE. 2 (5): e468. Bibcode:2007PLoSO...2..468S. doi:10.1371/journal.pone.0000468. PMC 1868595. PMID 17520027.
  18. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. (2011-07-08). "Definition of the hydrogen bond (IUPAC Recommendations 2011)". Pure and Applied Chemistry. 83 (8): 1637–1641. doi:10.1351/PAC-REC-10-01-02. ISSN 1365-3075. S2CID 97688573.
  19. Landau LD, Lifshitz EM (1960). निरंतर मीडिया के इलेक्ट्रोडायनामिक्स. Oxford: Pergamon. pp. 368–376.
  20. King M (1976). "रासायनिक बंधन का सिद्धांत". JACS. 98 (12): 3415–3420. doi:10.1021/ja00428a004.
  21. Klein J, Khartabil H, Boisson JC, Contreras-García J, Piquemal JP, Hénon E (March 2020). "बॉन्ड स्ट्रेंथ की जांच के लिए नया तरीका" (PDF). The Journal of Physical Chemistry A. 124 (9): 1850–1860. Bibcode:2020JPCA..124.1850K. doi:10.1021/acs.jpca.9b09845. PMID 32039597. S2CID 211070812.
  22. Lefebvre C, Rubez G, Khartabil H, Boisson JC, Contreras-García J, Hénon E (July 2017). "कम घनत्व प्रवणता बनाम इलेक्ट्रॉन घनत्व के NCI प्लॉट में मौजूद इंटरमॉलिक्युलर इंटरैक्शन के हस्ताक्षर को सटीक रूप से निकालना" (PDF). Physical Chemistry Chemical Physics. 19 (27): 17928–17936. Bibcode:2017PCCP...1917928L. doi:10.1039/C7CP02110K. PMID 28664951.
  23. Lefebvre C, Khartabil H, Boisson JC, Contreras-García J, Piquemal JP, Hénon E (March 2018). "The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations" (PDF). ChemPhysChem. 19 (6): 724–735. doi:10.1002/cphc.201701325. PMID 29250908.
  24. Ponce-Vargas M, Lefebvre C, Boisson JC, Hénon E (January 2020). "मेज़बान-अतिथि सभाओं पर लागू गैर-सहसंयोजक अंतःक्रियाओं की परमाणु अपघटन योजना". Journal of Chemical Information and Modeling. 60 (1): 268–278. doi:10.1021/acs.jcim.9b01016. PMID 31877034. S2CID 209488458.