सापेक्षवादी क्वांटम यांत्रिकी

From Vigyanwiki
Revision as of 09:07, 12 April 2023 by alpha>Radhamishra

भौतिकी में, सापेक्षवादी क्वांटम यांत्रिकी आरक्यूएम) क्वांटम यांत्रिकी (क्यूएम) का कोई भी पोंकारे सहसंयोजक सूत्रीकरण है। यह सिद्धांत बड़े पैमाने पर कणों पर प्रयुक्त होता है जो प्रकाश c की गति के बराबर सभी वेगों पर विस्तारित होते हैं, और बड़े पैमाने पर कणों को समायोजित कर सकते हैं। सिद्धांत में उच्च ऊर्जा भौतिकी,[1] कण भौतिकी और त्वरक भौतिकी,[2] साथ ही परमाणु भौतिकी, रसायन विज्ञान[3] और और संघनित पदार्थ भौतिकी में अनुप्रयोग हैं।[4][5] गैर-सापेक्षवादी क्वांटम यांत्रिकी गैलीलियन सापेक्षता के संदर्भ में प्रयुक्त क्वांटम यांत्रिकी के गणितीय सूत्रीकरण को संदर्भित करता है, विशेष रूप से संकारक (भौतिकी) द्वारा गतिशील चर को बदलकर उत्कृष्ट यांत्रिकी के समीकरणों की मात्रा निर्धारित करता है। सापेक्षवादी क्वांटम यांत्रिकी (आरक्यूएम) विशेष सापेक्षता के साथ प्रयुक्त क्वांटम यांत्रिकी है। हालांकि श्रोडिंगर चित्र और हाइजेनबर्ग चित्र जैसे पहले के सूत्रीकरण मूल रूप से एक गैर-सापेक्षतावादी पृष्ठभूमि में निर्मित किए गए थे, उनमें से कुछ (जैसे डिरैक या पथ-समाकल औपचारिकतावाद) विशेष सापेक्षता के साथ भी काम करते हैं।

सभी सापेक्षवादी क्वांटम यांत्रिकी के लिए सामान्य प्रमुख विशेषताओं में प्रतिद्रव्य की भविष्यवाणी, प्रारंभिक प्रचक्रण 1/2 फर्मियन के प्रचक्रण चुंबकीय आघूर्ण, सूक्ष्म संरचना, और विद्युत चुम्बकीय क्षेत्रों में आवेशित कणों की क्वांटम गतिकी में सम्मिलित हैं।[6] मुख्य परिणाम डायराक समीकरण है, जिससे ये भविष्यवाणियां स्वतः निर्गमन हैं। इसके विपरीत, गैर-सापेक्षतावादी क्वांटम यांत्रिकी में, प्रयोगात्मक टिप्पणियों के साथ स्वीकृति प्राप्त करने के लिए शब्दों को हैमिल्टनियन संकारक में कृत्रिम रूप से प्रस्तुत किया जाना है।

सबसे सफल (और सबसे व्यापक रूप से इस्तेमाल किया जाने वाला) सापेक्षवादी क्वांटम यांत्रिकी सापेक्षतावादी क्वांटम क्षेत्र सिद्धांत (क्यूएफटी) है, जिसमें प्राथमिक कणों की व्याख्या क्षेत्र क्वांटा के रूप में की जाती है। क्यूएफटी का एक अद्वितीय परिणाम जिसे अन्य सापेक्षवादी क्वांटम यांत्रिकी के विपरीत परीक्षण किया गया है, कण संख्या के संरक्षण की विफलता है, उदाहरण के लिए पदार्थ निर्माण और विलोपन में किया जाता है।[7]

इस लेख में, समीकरणों को परिचित 3D सदिश कलन संकेतन में लिखा गया है और संकारक (भौतिकी) के लिए शीर्ष का उपयोग किया गया है (आवश्यक नहीं कि साहित्य में), और जहां दिक्काल के घटकों को एकत्र किया जा सकता है, प्रदिश सूचकांक संकेतन को भी (प्रायः साहित्य में उपयोग किया जाता है) दिखाया गया है , इसके अतिरिक्त आइंस्टीन संकेतन का उपयोग किया जाता है। एसआई इकाइयों का उपयोग यहां किया जाता है; गाऊसी इकाइयाँ और प्राकृतिक इकाइयाँ सामान्य विकल्प हैं। सभी समीकरण स्थिति प्रतिनिधित्व में हैं; संवेग निरूपण के लिए समीकरणों को फूरियर रूपांतरित होना चाहिए - स्थिति और संवेग स्थान देखें।

विशेष सापेक्षता और क्वांटम यांत्रिकी का संयोजन

विशेष सापेक्षता के अनुरूप होने के लिए श्रोडिंगर चित्र को संशोधित करना एक दृष्टिकोण है।[2]

क्वांटम यांत्रिकी का एक गणितीय सूत्रीकरण यह है कि किसी क्वांटम प्रणाली का समय विकास श्रोडिंगर समीकरण द्वारा दिया जाता है:

प्रणाली के अनुरूप एक उपयुक्त हैमिल्टनियन ऑपरेटर Ĥ का उपयोग करना। समाधान एक सम्मिश्र-मान तरंग फलन ψ(r, t) है, जो प्रणाली के व्यवहार का वर्णन करते हुए समय t पर कण के 3D स्थिति सदिश r का एक फलन है।

प्रत्येक कण में एक गैर-ऋणात्मक प्रचक्रण क्वांटम संख्या s होती है। जो संख्या 2s एक पूर्णांक पूर्णांक विषम है जो फ़र्मियन और यहां तक कि बोसोन के लिए भी है। प्रत्येक s में 2s + 1 z-प्रक्षेपण क्वांटम संख्याएँ σ = s, s − 1, ... , −s + 1, −s होती हैं।[lower-alpha 1] यह एक अतिरिक्त असतत चर है जिसके लिए तरंग फलन ψ(rtσ) की आवश्यकता होती है।

ऐतिहासिक रूप से, 1920 के दशक के प्रारंभ में वोल्फगैंग पाउली, राल्फ क्रोनिग, जॉर्ज उहलेनबेक और शमूएल गौडस्मिट प्रचक्रण की अवधारणा को प्रस्तावित करने वाले पहले व्यक्ति थे। तरंग फलन में प्रचक्रण को सम्मिलित करने में पाउली अपवर्जन सिद्धांत (1925) और अधिक सामान्य प्रचक्रण-सांख्यिकी प्रमेय (1939) मार्कस फ़िएरज़ के कारण सम्मिलित है, जिसे एक साल बाद पाउली द्वारा पुनः प्राप्त किया गया। यह परमाणुओं के नाभिक के इलेक्ट्रॉनिक विन्यास (और इसलिए आवर्त सारणी पर सभी तत्व और उनके रसायन) से लेकर क्वार्क विन्यास और रंग आवेश (इसलिए बेरिऑन और मेसॉन के गुण) तक उप-परमाणु कण व्यवहार और घटना की एक विविध श्रेणी के लिए स्पष्टीकरण है।

विशेष आपेक्षिकता की एक मौलिक भविष्यवाणी सापेक्षतावादी ऊर्जा-संवेग संबंध है; विराम द्रव्यमान m के एक कण के लिए, और ऊर्जा के संदर्भ में एक विशेष संरचना में E और 3-संवेग p डॉट उत्पाद के संदर्भ में मानक (गणित) के साथ, यह है:[8]

इन समीकरणों का उपयोग ऊर्जा और संवेग संचालकों के साथ किया जाता है, जो क्रमशः हैं:

सापेक्षिक तरंग समीकरण (आरडब्ल्यूई) का निर्माण करने के लिए: ऊर्जा-संवेग संबंध के अनुरूप एक आंशिक अवकलन समीकरण, और कण की क्वांटम गतिशीलता की भविष्यवाणी करने के लिए ψ के लिए हल किया जाता है। दिक्काल को समान स्तर पर रखने के लिए, सापेक्षता के रूप में, दिक्काल के आंशिक अवकलज के क्रम समान होने चाहिए, और आदर्श रूप से जितना संभव हो उतना कम होना चाहिए, आंशिक अवकलज के प्रारंभिक मानो को निर्दिष्ट करने की आवश्यकता न हो। संभाव्यता व्याख्याओं के लिए यह महत्वपूर्ण है, जिसका उदाहरण नीचे दिया गया है। किसी भी अवकलन समीकरण का सबसे कम संभव (शून्य क्रम अवकलज एक अवकलन समीकरण नहीं बनायेगा) क्रम पहला है।

हाइजेनबर्ग तस्वीर क्वांटम यांत्रिकी का एक और सूत्रीकरण है, जिस स्थिति में तरंग फलन ψ होता है और समय-निरपेक्ष है, और संकारक A(t) में गति के समीकरण द्वारा नियंत्रित समय निर्भरता होती है:

यह समीकरण सापेक्षवादी क्वांटम यांत्रिकी में भी सही है, तथापि हाइजेनबर्ग संकारक को एसआर के अनुरूप होने के लिए संशोधित किया जाए।[9][10]

ऐतिहासिक रूप से, 1926 के आसपास, इरविन श्रोडिंगर और वर्नर हाइजेनबर्ग दिखाते हैं कि तरंग यांत्रिकी और आव्यूह यांत्रिकी समतुल्य हैं, बाद में परिवर्तन सिद्धांत (क्वांटम यांत्रिकी) का उपयोग करके डिराक द्वारा आगे बढ़ाया गया।

आरडब्ल्यूई के लिए एक अधिक आधुनिक दृष्टिकोण, पहली बार प्रस्तुत किया गया था जब आरडब्ल्यूई किसी भी प्रचक्रण के कणों के लिए विकसित हो रहे थे, लोरेंत्ज़ समूह के प्रतिनिधित्व को प्रयुक्त करना है।

दिक्काल

उत्कृष्ट यांत्रिकी और गैर-सापेक्षतावादी क्वांटम यांत्रिकी में, समय एक पूर्ण मात्रा है, सभी पर्यवेक्षक और कण सदैव, अंतरिक्ष से स्वतंत्र पृष्ठभूमि में स्थिर रह सकते हैं। इस प्रकार गैर-सापेक्षतावादी क्वांटम यांत्रिकी में कई कण प्रणाली के लिए ψ(r1, r2, r3, ..., t, σ1, σ2, σ3...) होता है।

सापेक्षवादी यांत्रिकी में, समन्वय प्रणाली और समन्वय समय निरपेक्ष नहीं होते हैं; एक दूसरे के सापेक्ष चलने वाले कोई भी दो पर्यवेक्षक घटना (सापेक्षता) के विभिन्न स्थानों और समय को माप सकते हैं। स्थिति और समय निर्देशांक स्वाभाविक रूप से घटनाओं के अनुरूप चार-आयामी दिक्काल स्थिति X = (ct, r) में संयोजित होते हैं, और ऊर्जा और 3-संवेग स्वाभाविक रूप से एक के चार-संवेग P = (E/c, p) में संयोजित होते हैं। गतिशील कण, जैसा कि कुछ संदर्भ संरचना में मापा जाता है, लोरेंत्ज़ परिवर्तन के अनुसार परिवर्तन के रूप में एक अलग संरचना में एक संशोधन बढ़ाया जाता है और / या मूल संरचना के सापेक्ष घुमाया जाता है। व्युत्पन्न संचालक, और इसलिए ऊर्जा और 3-संवेग संचालक भी गैर-अपरिवर्तनीय हैं और लोरेंत्ज़ परिवर्तनों के अंतर्गत बदलते हैं।

उपयुक्त ऑर्थोक्रोनस लोरेंत्ज़ परिवर्तन के अंतर्गत (r, t) → Λ(r, t) मिंकोव्स्की समष्टि में, सभी एक-कण क्वांटम अवस्था ψσ स्थानीय रूप से लोरेंत्ज़ समूह के कुछ प्रतिनिधित्व D के अंतर्गत रूपांतरित होते हैं:[11][12]

जहाँ D(Λ) एक परिमित-आयामी प्रतिनिधित्व है, दूसरे शब्दों में a (2s + 1)×(2s + 1) वर्ग आव्यूह है। पुनः, ψ को कॉलम सदिश के रूप में माना जाता है जिसमें σ के (2s + 1) अनुमत मान वाले घटक होते हैं। क्वांटम संख्या s और σ के साथ-साथ अन्य स्तर, सतत या असतत, अन्य क्वांटम संख्याओं का प्रतिनिधित्व करते हुए निरुद्ध दिए जाते हैं। प्रतिनिधित्व के आधार पर σ का एक मान एक से अधिक बार हो सकता है।

अधिक जानकारी: जनित्र (गणित), समूह सिद्धांत, लोरेंत्ज़ समूह का प्रतिनिधित्व सिद्धांत, और क्वांटम यांत्रिकी में समरूपता

गैर-सापेक्षवादी और सापेक्षवादी हैमिल्टनियन

अदिश विभव में एक कण के लिए हैमिल्टनियन यांत्रिकी गतिज ऊर्जा p·p/2m धनात्मक संभावित ऊर्जा V(r, t) है, श्रोडिंगर चित्र में संबंधित क्वांटम संकारक के साथ:

और उपरोक्त श्रोडिंगर समीकरण में इसे प्रतिस्थापित करने से तरंग फलन के लिए एक गैर-सापेक्षवादी क्वांटम यांत्रिकी समीकरण मिलता है: प्रक्रिया एक सरल व्यंजक का प्रत्यक्ष प्रतिस्थापन है। इसके विपरीत सापेक्षवादी क्वांटम यांत्रिकी में यह उतना आसान नहीं है; ऊर्जा-संवेग समीकरण ऊर्जा और संवेग में द्विघात है जो समस्याओ का कारण बनता है। सरलता से स्थापित करनाग:

अनेक कारणों से सहायक नहीं है। संकारक के वर्गमूल का उपयोग नहीं किया जा सकता क्योंकि यह स्थापित है; संवेग संचालिका, प्रत्येक पद में एक घात तक बढ़ाए जाने से पहले, ψ पर कार्य करने से पहले इसे एक घात श्रृंखला में विस्तारित करना होगा। घात श्रृंखला के परिणामस्वरूप, समष्टि अवकलज (गणित) पूरी तरह से असममित हैं: समष्टि अवकलज में अनंत-क्रम लेकिन समय अवकलज में केवल पहला क्रम, जो कि अपरिष्कृत और स्थूल है। पुनः, वर्गमूल के बराबर ऊर्जा संकारक के गैर-अपरिवर्तनीयता की समस्या है जो अपरिवर्तनीय भी नहीं है। एक अन्य समस्या, कम स्पष्ट और अधिक गंभीर, यह है कि इसे क्वांटम गैर-स्थानिकता के रूप में दिखाया जा सकता है और यहां तक ​​कि कारणता (भौतिकी) का उल्लंघन भी कर सकता है: यदि कण को प्रारंभ में बिंदु r0 पर स्थानीयकृत किया जाता है ताकि ψ(r0, t = 0) परिमित हो और कहीं और शून्य हो, फिर किसी भी बाद के समय में समीकरण विस्थापन ψ(r, t) ≠ 0 प्रत्येक समष्टि की भविष्यवाणी करता है, यहाँ तक कि |r| > ct जिसका अर्थ है कि कण प्रकाश के स्पंद से पहले एक बिंदु पर पहुंच सकता है। इसे अतिरिक्त अवरोध ψ(|r| > ct, t) = 0 द्वारा दूर करना होगा।[13]

हैमिल्टनियन में प्रचक्रण को सम्मिलित करने की समस्या भी है, जो गैर-सापेक्षवादी श्रोडिंगर सिद्धांत की भविष्यवाणी नहीं है। प्रचक्रण वाले कणों में एक समान प्रचक्रण चुंबकीय आघूर्ण होता है जो μB, बोह्र मैग्नेटॉन की इकाइयों में परिमाणित होता है[14][15]

EDIT जहाँ g कण के लिए (प्रचक्रण) g-कारक (भौतिकी)|g-कारक है, और S प्रचक्रण संकारक, इसलिए वे विद्युत चुम्बकीय क्षेत्रों के साथ बातचीत करते हैं। बाहरी रूप से प्रयुक्त चुंबकीय क्षेत्र में एक कण के लिए B, इंटरैक्शन शब्द[16]

उपरोक्त गैर-सापेक्षवादी हैमिल्टनियन में जोड़ा जाना है। इसके विपरीत; सापेक्षवादी ऊर्जा-संवेग संबंध को प्रयुक्त करने की आवश्यकता के रूप में एक सापेक्षवादी हैमिल्टनियन स्वचालित रूप से प्रचक्रण का परिचय देता है।[17] आपेक्षिकवादी हैमिल्टन निम्नलिखित मामलों में गैर-सापेक्षतावादी क्वांटम यांत्रिकी के अनुरूप हैं;उत्कृष्ट संभावित ऊर्जा अवधि के साथ-साथउत्कृष्ट गतिज ऊर्जा शब्द जैसे संवेग शब्दों के समान, बाह्य रूप से प्रयुक्त क्षेत्रों के साथ बाकी द्रव्यमान और अंतःक्रिया शर्तों सहित शब्द हैं। एक महत्वपूर्ण अंतर यह है कि सापेक्षवादी हैमिल्टनियों में आव्यूह (गणित) के रूप में प्रचक्रण संकारक होते हैं, जिसमें आव्यूह गुणन प्रचक्रण इंडेक्स पर चलता है σ, तो सामान्य तौर पर एक सापेक्षवादी हैमिल्टनियन:

अंतरिक्ष, समय और संवेग और प्रचक्रण संकारक का एक कार्य है।

मुक्त कणों के लिए क्लेन-गॉर्डन और डिराक समीकरण

क्लेन-गॉर्डन समीकरण प्राप्त करने के लिए ऊर्जा और संवेग संचालकों को सीधे ऊर्जा-संवेग संबंध में प्रतिस्थापित करना पहली नज़र में आकर्षक लग सकता है:[18]

और इसे प्राप्त करने के सीधे तरीके के कारण कई लोगों द्वारा खोजा गया था, विशेष रूप से 1925 में श्रोडिंगर द्वारा उनके नाम पर गैर-सापेक्षवादी समीकरण और 1927 में क्लेन और गॉर्डन द्वारा, जिन्होंने समीकरण में विद्युत चुम्बकीय बातचीत सम्मिलित की थी। यह लोरेंत्ज़ सहप्रसरण है, फिर भी यह समीकरण अकेले कम से कम दो कारणों से सापेक्षवादी क्वांटम यांत्रिकी के लिए पर्याप्त आधार नहीं है: एक यह है कि नकारात्मक-ऊर्जा अवस्थाएँ समाधान हैं,[2][19] दूसरा घनत्व है (नीचे दिया गया है), और यह समीकरण जैसा कि खड़ा है केवल स्पिनलेस कणों पर प्रयुक्त होता है। इस समीकरण को इस रूप में देखा जा सकता है: <रेफरी नाम = पेनरोज़ 2005, पृष्ठ 620–621 >Penrose, R. (2005). वास्तविकता का मार्ग. Vintage Books. pp. 620–621. ISBN 978-0-09-944068-0.</ref>[20]

जहाँ α = (α1, α2, α3) और β केवल संख्याएँ या सदिश नहीं हैं, बल्कि 4 × 4 हर्मिटियन आव्यूह हैं जो प्रतिक्रमण के लिए आवश्यक हैं ij:

और वर्ग पहचान आव्यूह के लिए:

ताकि मिश्रित दूसरे क्रम के अवकलज वाले पद रद्द हो जाएं जबकि दूसरे क्रम के अवकलज पूरी तरह से दिक्काल में बने रहें। पहला कारक:

डायराक समीकरण है। अन्य कारक भी डायराक समीकरण है, लेकिन नकारात्मक द्रव्यमान के एक कण के लिए। तर्क दूसरे तरीके से किया जा सकता है: हैमिल्टनियन को उपरोक्त रूप में प्रस्तावित करें, जैसा कि डिराक ने 1928 में किया था, फिर संकारक के अन्य कारक द्वारा समीकरण को पूर्व-गुणा करें E + cα · p + βmc2, और केजी समीकरण के साथ तुलना बाधाओं को निर्धारित करती है α और β. धनात्मक द्रव्यमान समीकरण निरंतरता को खोए बिना उपयोग में लाया जा सकता है। मैट्रिसेस गुणा कर रहे हैं ψ का सुझाव है कि यह केजी समीकरण में अनुमत स्केलर तरंग फलन नहीं है, बल्कि इसके अतिरिक्त चार-घटक इकाई होना चाहिए। डायराक समीकरण अभी भी नकारात्मक ऊर्जा समाधान की भविष्यवाणी करता है, <रेफरी नाम = मार्टिन, शॉ, पीपी। 5-6 />[21] इसलिए डिराक ने माना कि नकारात्मक ऊर्जा अवस्थाएं सदैव व्याप्त रहती हैं, क्योंकि पाउली अपवर्जन सिद्धांत के अनुसार, परमाणुओं में सकारात्मक से नकारात्मक ऊर्जा स्तरों तक इलेक्ट्रॉनिक संक्रमण निषिद्ध होगा। विवरण के लिए डिराक समुद्र देखें।

घनत्व और धाराएं

गैर-सापेक्षवादी क्वांटम यांत्रिकी में, तरंग फलन का वर्ग मापांक ψ प्रायिकता घनत्व फलन देता है ρ = |ψ|2. यह कोपेनहेगन व्याख्या है, लगभग 1927। सापेक्षवादी क्वांटम यांत्रिकी में, जबकि ψ(r, t) एक तरंग फलन है, प्रायिकता की व्याख्या गैर-सापेक्षतावादी क्वांटम यांत्रिकी के समान नहीं है। कुछ सापेक्षिक तरंग समीकरण संभाव्यता घनत्व की भविष्यवाणी नहीं करते हैं ρ या संभाव्यता वर्तमान j (वास्तव में संभाव्यता वर्तमान घनत्व का अर्थ है) क्योंकि वे दिक्काल के सकारात्मक-निश्चित कार्य नहीं हैं। डायराक समीकरण करता है:[22]

जहां डैगर हर्मिटियन आसन्न को दर्शाता है (लेखक सामान्य रूप से लिखते हैं ψ = ψγ0 Dirac adjoint के लिए) और Jμ संभाव्यता वर्तमान # परिभाषा (सापेक्षतावादी 4-वर्तमान) है | संभावना चार-वर्तमान है, जबकि क्लेन-गॉर्डन समीकरण नहीं करता है:[23]

जहाँ μ चार चार ढाल है। चूंकि दोनों के प्रारंभिक मूल्य ψ और ψ/∂t स्वतंत्र रूप से चुना जा सकता है, घनत्व ऋणात्मक हो सकता है।

इसके अतिरिक्त, जो पहली नज़र में दिखाई देता है, एक संभाव्यता घनत्व और संभाव्यता वर्तमान को विद्युत आवेश से गुणा करने पर आवेश घनत्व और वर्तमान घनत्व के रूप में पुनर्व्याख्या की जानी चाहिए। फिर, तरंग फलन ψ एक तरंग फलन बिल्कुल नहीं है, लेकिन एक क्षेत्र के रूप में पुनर्व्याख्या की गई है।[13]विद्युत आवेश का घनत्व और धारा सदैव एक निरंतरता समीकरण को संतुष्ट करती है:

चार्ज के रूप में एक संरक्षित मात्रा है। संभाव्यता घनत्व और धारा भी एक निरंतरता समीकरण को संतुष्ट करते हैं क्योंकि संभावना संरक्षित है, हालांकि यह केवल अंतःक्रियाओं के अभाव में ही संभव है।

प्रचक्रण और विद्युत चुम्बकीय रूप से परस्पर क्रिया करने वाले कण

सापेक्षिक तरंग समीकरण में बातचीत सम्मिलित करना सामान्य रूप से मुश्किल होता है। न्यूनतम युग्मन इलेक्ट्रोमैग्नेटिक इंटरैक्शन को सम्मिलित करने का एक सरल तरीका है। विद्युत आवेश के एक आवेशित कण के लिए q चुंबकीय सदिश विभव द्वारा दिए गए विद्युत चुम्बकीय क्षेत्र में A(r, t) चुंबकीय क्षेत्र द्वारा परिभाषित B = ∇ × A, और इलेक्ट्रिक अदिश विभव ϕ(r, t), यह है:[24]

जहाँ Pμ चार-मोमेंटम है जिसमें संबंधित 4-पल संकारक है, और Aμ चार संभावित। निम्नलिखित में, गैर-सापेक्षतावादी सीमा सीमित मामलों को संदर्भित करती है:

अर्थात्, कण की कुल ऊर्जा छोटे विद्युत विभवों के लिए लगभग शेष ऊर्जा होती है, और संवेगउत्कृष्ट संवेग के लगभग होता है।

प्रचक्रण 0

सापेक्षवादी क्वांटम यांत्रिकी में, केजी समीकरण न्यूनतम युग्मन नुस्खे को स्वीकार करता है;

ऐसे स्थिति में जहां चार्ज शून्य है, समीकरण मुक्त केजी समीकरण के लिए तुच्छ रूप से कम हो जाता है, इसलिए नॉनजीरो चार्ज नीचे माना जाता है। यह एक अदिश समीकरण है जो कि अलघुकरणीय एक-आयामी अदिश के अंतर्गत अपरिवर्तनीय है (0,0) लोरेंत्ज़ समूह का प्रतिनिधित्व। इसका अर्थ है कि इसके सभी समाधान प्रत्यक्ष योग से संबंधित होंगे (0,0) अभ्यावेदन। ऐसे समाधान जो इरेड्यूसिबल से संबंधित नहीं हैं (0,0) प्रतिनिधित्व में दो या दो से अधिक स्वतंत्र घटक होंगे। इस तरह के समाधान सामान्य रूप से अशून्य प्रचक्रण वाले कणों का वर्णन नहीं कर सकते हैं क्योंकि प्रचक्रण घटक स्वतंत्र नहीं हैं। उसके लिए अन्य प्रतिबंध लगाने होंगे, उदा। प्रचक्रण के लिए डायराक समीकरण1/2, नीचे देखें। इस प्रकार यदि कोई प्रणाली केवल केजी समीकरण को संतुष्ट करता है, तो इसे केवल शून्य प्रचक्रण वाले प्रणाली के रूप में व्याख्या किया जा सकता है।

विद्युत चुम्बकीय क्षेत्र को मैक्सवेल के समीकरणों के अनुसारउत्कृष्ट रूप से व्यवहार किया जाता है और कण को ​​तरंग क्रिया द्वारा वर्णित किया जाता है, केजी समीकरण का समाधान। समीकरण, जैसा कि यह खड़ा है, सदैव बहुत उपयोगी नहीं होता है, क्योंकि बड़े पैमाने पर स्पिनलेस कण, जैसे कि π-मेसन, विद्युत चुम्बकीय बातचीत के अतिरिक्त बहुत मजबूत मजबूत बातचीत का अनुभव करते हैं। हालांकि, यह अन्य अंतःक्रियाओं के अभाव में चार्ज किए गए स्पिनलेस बोसोन का सही वर्णन करता है।

केजी समीकरण बाहरी विद्युत चुम्बकीय विभव में स्पिनलेस चार्ज बोसॉन पर प्रयुक्त होता है।[2]जैसे, समीकरण को परमाणुओं के विवरण पर प्रयुक्त नहीं किया जा सकता, क्योंकि इलेक्ट्रॉन एक चक्रण है1/2 कण। गैर-सापेक्षतावादी सीमा में एक विद्युत चुम्बकीय क्षेत्र में स्पिनलेस आवेशित कण के लिए श्रोडिंगर समीकरण के लिए समीकरण कम हो जाता है:[16]


प्रचक्रण 1/2

गैर-सापेक्ष रूप से, प्रचक्रण विद्युत चुम्बकीय क्षेत्र में कणों के लिए 1927 में वोल्फगैंग पाउली द्वारा पाउली समीकरण में प्रस्तुत किया गया घटनात्मक मॉडल था:

2 × 2 पॉल मैट्रिसेस के माध्यम से, और ψ गैर-सापेक्षतावादी श्रोडिंगर समीकरण के रूप में केवल एक अदिश तरंग नहीं है, बल्कि एक दो-घटक स्पिनर क्षेत्र है:

जहां सबस्क्रिप्ट ↑ और ↓ प्रचक्रण अप को संदर्भित करते हैं (σ = +1/2) और प्रचक्रण डाउन (σ = −1/2) बताता है।[lower-alpha 2] सापेक्षवादी क्वांटम यांत्रिकी में, डायराक समीकरण न्यूनतम युग्मन भी सम्मिलित कर सकता है, ऊपर से पुनः लिखा गया;

और प्रचक्रण का सटीक अनुमान लगाने वाला पहला समीकरण था, जो 4 × 4 गामा आव्यूहों का परिणाम था γ0 = β, γ = (γ1, γ2, γ3) = βα = (βα1, βα2, βα3). एक 4 × 4 पहचान आव्यूह है जो ऊर्जा संकारक (संभावित ऊर्जा शब्द सहित) को पूर्व-गुणा करता है, पारंपरिक रूप से सादगी और स्पष्टता के लिए नहीं लिखा गया है (अर्थात संख्या 1 की तरह व्यवहार किया जाता है)। यहाँ ψ एक चार-घटक स्पिनर क्षेत्र है, जो परंपरागत रूप से दो दो-घटक स्पिनरों में विभाजित होता है:[lower-alpha 3]

2-स्पिनर ψ+ 4-गति वाले कण से मेल खाती है (E, p) और चार्ज करें q और दो प्रचक्रण स्टेट्स (σ = ±1/2, पहले जैसा)। अन्य 2-स्पिनर ψ समान द्रव्यमान और प्रचक्रण अवस्था वाले समान कण से मेल खाता है, लेकिन ऋणात्मक 4-गति −(E, p) और ऋणात्मक आवेश q, यानी, नकारात्मक ऊर्जा अवस्थाएं, T-समरूपता|समय-उलट संवेग, और C-समरूपता। यह एक कण और तदनुरूपी प्रतिकण की पहली व्याख्या और भविष्यवाणी थी। इन स्पिनरों के अधिक विवरण के लिए डिराक स्पिनर और bispinor देखें। गैर-सापेक्षतावादी सीमा में डायराक समीकरण पाउली समीकरण में कम हो जाता है (देखें डायराक समीकरण # कैसे के लिए पाउली सिद्धांत के साथ तुलना करें)। जब एक-इलेक्ट्रॉन परमाणु या आयन लगाया जाता है, तो सेटिंग A = 0 और ϕ उपयुक्त इलेक्ट्रोस्टैटिक विभव के लिए, अतिरिक्त सापेक्षतावादी शब्दों में प्रचक्रण-ऑर्बिट इंटरेक्शन, इलेक्ट्रॉन जाइरोमैग्नेटिक अनुपात और डार्विन शब्द सम्मिलित हैं। साधारण क्वांटम यांत्रिकी में इन शब्दों को हाथ से लगाना पड़ता है और गड़बड़ी सिद्धांत का उपयोग करके इलाज किया जाता है। सकारात्मक ऊर्जा ठीक संरचना के लिए सटीक रूप से गणना करती है।

सापेक्षवादी क्वांटम यांत्रिकी के भीतर, द्रव्यमान रहित कणों के लिए Dirac समीकरण कम हो जाता है:

इनमें से पहला वेइल समीकरण है, जो द्रव्यमान रहित न्युट्रीनो के लिए काफी सरलीकरण है।[25] इस बार एक 2 × 2 पहचान आव्यूह है जो पारंपरिक रूप से नहीं लिखे गए ऊर्जा संकारक को पूर्व-गुणा करता है। सापेक्षवादी क्वांटम यांत्रिकी में इसे ज़ीरोथ पाउली आव्यूह के रूप में लेना उपयोगी है σ0 जो ऊर्जा संचालिका (समय व्युत्पन्न) के साथ जोड़े जाते हैं, ठीक वैसे ही जैसे अन्य तीन आव्यूह संवेग संचालक (स्थानिक व्युत्पन्न) से जोड़े जाते हैं।

पाउली और गामा मैट्रिसेस को यहां शुद्ध गणित के अतिरिक्त सैद्धांतिक भौतिकी में प्रस्तुत किया गया था। उनके पास चतुष्कोणों और SO(2) और SO(3) झूठ समूहों के लिए अनुप्रयोग हैं, क्योंकि वे महत्वपूर्ण कम्यूटेटर [ , ] और कम्यूटेटर#एंटीकम्यूटेटर [ , ] को संतुष्ट करते हैं।+ संबंध क्रमशः:

जहाँ εabc त्रि-आयामी लेवी-सिविता प्रतीक है। क्लिफोर्ड बीजगणित में गामा मैट्रिसेस आधार (रैखिक बीजगणित) बनाते हैं, और फ्लैट दिक्काल मिन्कोव्स्की मीट्रिक के घटकों से संबंध रखते हैं ηαβ प्रतिसंक्रमण संबंध में:

(कार्टन औपचारिकता (भौतिकी) को प्रस्तुत करके इसे घुमावदार दिक्काल तक बढ़ाया जा सकता है, लेकिन यह विशेष सापेक्षता का विषय नहीं है)।

1929 में, ब्रेट समीकरण को दो या दो से अधिक विद्युत चुम्बकीय रूप से बड़े पैमाने पर प्रचक्रण का वर्णन करने के लिए पाया गया था1/2 प्रथम-क्रम सापेक्षवादी सुधारों के लिए फ़र्मियन; इस तरह के एक सापेक्षवादी क्वांटम कई-कण प्रणाली का वर्णन करने वाले पहले प्रयासों में से एक। हालांकि, यह अभी भी केवल एक अनुमान है, और हैमिल्टनियन में कई लंबी और जटिल रकम सम्मिलित हैं।

हेलिसिटी और चिरायता

हेलिसिटी (कण भौतिकी) द्वारा परिभाषित किया गया है;

जहाँ p संवेग संचालक है, S चक्रण के एक कण के लिए प्रचक्रण संकारक s, E कण की कुल ऊर्जा है, और m0 इसका विश्राम द्रव्यमान। हेलिसिटी प्रचक्रण और ट्रांसलेशनल मोमेंटम वैक्टर के झुकाव को इंगित करता है।[26] परिभाषा में 3-मोमेंटम के कारण हेलिसिटी संरचना-निर्भर है, और प्रचक्रण परिमाणीकरण के कारण इसकी मात्रा निर्धारित की जाती है, जिसमें समानांतर संरेखण के लिए असतत सकारात्मक मान और एंटीपैरल समानांतर संरेखण के लिए नकारात्मक मान होते हैं।

डायराक समीकरण (और वेइल समीकरण) में एक स्वचालित घटना प्रचक्रण का प्रक्षेपण है1/2 3-मोमेंटम पर संकारक (गुना c), σ · c p, जो हेलिकॉप्टर है (प्रचक्रण के लिए1/2 मामला) बार .

द्रव्यमान रहित कणों के लिए हेलीकॉप्टर सरल हो जाता है:


उच्च प्रचक्रण

डायराक समीकरण केवल प्रचक्रण के कणों का वर्णन कर सकता है1/2. डायराक समीकरण से परे, आरडब्ल्यूई को विभिन्न चक्रणों के मुक्त कणों पर प्रयुक्त किया गया है। 1936 में, डिराक ने अपने समीकरण को सभी फर्मों तक बढ़ाया, तीन साल बाद मार्कस फ़िएर्ज़ और पाउली ने उसी समीकरण को पुनः प्राप्त किया।[27] 1948 में लोरेंत्ज़ समूह सिद्धांत का उपयोग करते हुए बर्गमैन-विग्नर समीकरण पाए गए, जो किसी भी प्रचक्रण के साथ सभी मुक्त कणों के लिए प्रयुक्त होते हैं।[28][29] उपरोक्त केजी समीकरण के गुणनखंड को ध्यान में रखते हुए, और लोरेंत्ज़ समूह सिद्धांत द्वारा अधिक सख्ती से, यह मैट्रिसेस के रूप में प्रचक्रण को प्रस्तुत करने के लिए स्पष्ट हो जाता है।

तरंग फलन मल्टीकंपोनेंट स्पिनर फील्ड हैं, जिन्हें स्पेस और टाइम के फंक्शन (गणित) के कॉलम वैक्टर के रूप में दर्शाया जा सकता है:

जहां दाहिनी ओर अभिव्यक्ति हर्मिटियन संयुग्म है। प्रचक्रण के एक विशाल कण के लिए s, वहाँ हैं 2s + 1 कण के लिए घटक, और दूसरा 2s + 1 इसी एंटीपार्टिकल के लिए (वहाँ हैं 2s + 1 संभव σ प्रत्येक स्थिति में मान), कुल मिलाकर a 2(2s + 1)-कंपोनेंट स्पिनर फील्ड:

कण को ​​इंगित करने वाले + सबस्क्रिप्ट के साथ और एंटीपार्टिकल के लिए - सबस्क्रिप्ट। हालांकि, प्रचक्रण के द्रव्यमानहीन कणों के लिए, सदैव दो-घटक स्पिनर क्षेत्र होते हैं; एक +s के संगत एक हेलिकॉप्टर अवस्था में कण के लिए है और दूसरा -s के अनुरूप विपरीत हेलिकॉप्टर अवस्था में एंटीपार्टिकल के लिए है:

आपेक्षिक ऊर्जा-संवेग संबंध के अनुसार, सभी द्रव्यमान रहित कण प्रकाश की गति से यात्रा करते हैं, इसलिए प्रकाश की गति से यात्रा करने वाले कणों को भी दो-घटक स्पिनरों द्वारा वर्णित किया जाता है। ऐतिहासिक रूप से, एली कार्टन ने 1913 में स्पिनरों का सबसे सामान्य रूप पाया, इससे पहले कि 1927 के बाद सापेक्षिक तरंग समीकरण में स्पिनरों का खुलासा हुआ।

उच्च-प्रचक्रण कणों का वर्णन करने वाले समीकरणों के लिए, अन्योन्यक्रियाओं का समावेश सरल न्यूनतम युग्मन के रूप में कहीं नहीं है, वे गलत भविष्यवाणियों और आत्म-असंगतताओं को जन्म देते हैं।[30] से अधिक प्रचक्रण के लिए ħ/2, सापेक्षिक तरंग समीकरण कण के द्रव्यमान, चक्रण और विद्युत आवेश द्वारा निर्धारित नहीं होता है; प्रचक्रण क्वांटम संख्या द्वारा अनुमत विद्युत चुम्बकीय क्षण (विद्युत द्विध्रुवीय क्षण और चुंबकीय द्विध्रुवीय क्षण) मनमाना होते हैं। (सैद्धांतिक रूप से, चुंबकीय आवेश भी योगदान देगा)। उदाहरण के लिए, प्रचक्रण1/2 मामला केवल एक चुंबकीय द्विध्रुव की स्वीकृतिदेता है, लेकिन प्रचक्रण के लिए 1 कण चुंबकीय चतुर्ध्रुव और विद्युत द्विध्रुव भी संभव हैं।[25]इस विषय पर अधिक जानकारी के लिए, मल्टीपोल विस्तार और (उदाहरण के लिए) सेड्रिक लॉर्से (2009) देखें।[31][32]


वेलोसिटी संकारक

श्रोडिंगर/पाउली वेलोसिटी संकारक कोउत्कृष्ट परिभाषा का उपयोग करते हुए एक विशाल कण के लिए परिभाषित किया जा सकता है p = m v, और क्वांटम संकारक को सामान्य तरीके से प्रतिस्थापित करना:[33]

जिसमें ऐसे eigenvalues ​​​​हैं जो कोई भी मान लेते हैं। सापेक्षवादी क्वांटम यांत्रिकी में, डायराक सिद्धांत, यह है:

जिसका ±c के बीच eigenvalues ​​​​होना चाहिए। अधिक सैद्धांतिक पृष्ठभूमि के लिए फ़ोल्डी-वौथुसेन परिवर्तन देखें।

आपेक्षिक क्वांटम Lagrangians

श्रोडिंगर तस्वीर में हैमिल्टनियन संकारक के लिए अवकलन समीकरण बनाने के लिए एक दृष्टिकोण है ψ. एक समतुल्य विकल्प एक Lagrangian (क्षेत्र थ्योरी) (वास्तव में लैग्रेंजियन घनत्व का अर्थ है) निर्धारित करना है, फिर क्लासिकल क्षेत्र थ्योरी#Relativistic क्षेत्र थ्योरी द्वारा डिफरेंशियल इक्वेशन जनरेट करें|क्षेत्र-सैद्धांतिक यूलर-लैग्रेंज समीकरण:

कुछ आरडब्लूई के लिए, निरीक्षण के द्वारा लैग्रेंजियन पाया जा सकता है। उदाहरण के लिए, डिराक Lagrangian है:[34]

और क्लेन-गॉर्डन लैग्रैंगियन है:

यह सभी सापेक्षिक तरंग समीकरण के लिए संभव नहीं है; और एक कारण यह है कि लोरेंत्ज़ समूह सैद्धांतिक दृष्टिकोण महत्वपूर्ण और आकर्षक है: दिक्काल में मौलिक अपरिवर्तनीयता और समरूपता का उपयोग उपयुक्त समूह प्रतिनिधित्वों का उपयोग करके सापेक्षिक तरंग समीकरण प्राप्त करने के लिए किया जा सकता है। की क्षेत्र व्याख्या के साथ Lagrangian दृष्टिकोण ψ सापेक्षवादी क्वांटम यांत्रिकी के अतिरिक्त QFT का विषय है: फेनमैन का पथ समाकल सूत्रीकरण हेमिल्टनियन संकारक के अतिरिक्त अपरिवर्तनीय लैग्रैन्जियन का उपयोग करता है, क्योंकि उत्तरार्द्ध बेहद जटिल हो सकता है, देखें (उदाहरण के लिए) वेनबर्ग (1995)।[35]


आपेक्षिकीय क्वांटम कोणीय संवेग

गैर-सापेक्षतावादी क्वांटम यांत्रिकी में, कोणीय संवेग संचालिका क्लासिकल pseudovector परिभाषा से बनता है L = r × p. सापेक्षवादी क्वांटम यांत्रिकी में, स्थिति और संवेग संचालकों को सीधे सम्मिलित किया जाता है, जहां वे कक्षीय सापेक्षिक कोणीय संवेग प्रदिश में चार-आयामी स्थिति और कण की गति से परिभाषित होते हैं, बाहरी बीजगणित औपचारिकता में समान रूप से एक द्विभाजक:[36][lower-alpha 4]

जो कुल मिलाकर छह घटक हैं: तीन गैर-सापेक्षवादी 3-कक्षीय कोणीय संवेग हैं; M12 = L3, M23 = L1, M31 = L2, और अन्य तीन M01, M02, M03 घूर्णन वस्तु के द्रव्यमान के केंद्र के बूस्ट हैं। प्रचक्रण वाले कणों के लिए एक अतिरिक्त सापेक्ष-क्वांटम शब्द जोड़ा जाना है। विराम द्रव्यमान के एक कण के लिए m, कुल कोणीय संवेग प्रदिश है:

जहां स्टार हॉज दोहरी को दर्शाता है, और

पाउली-लुबांस्की स्यूडोवेक्टर है।[37] आपेक्षिक प्रचक्रण पर अधिक जानकारी के लिए, देखें (उदाहरण के लिए) ट्रोशिन एंड ट्यूरिन (1994)।[38]


थॉमस प्रीसेशन और प्रचक्रण-ऑर्बिट इंटरैक्शन

1926 में, थॉमस प्रीसेशन की खोज की गई: परमाणुओं के प्रचक्रण-ऑर्बिट इंटरेक्शन और मैक्रोस्कोपिक ऑब्जेक्ट्स के रोटेशन में आवेदन के साथ प्राथमिक कणों के प्रचक्रण के सापेक्ष सुधार।[39][40] 1939 में विग्नर ने थॉमस प्रीसेशन को व्युत्पन्न किया।

उत्कृष्ट विद्युत चुंबकत्व और विशेष सापेक्षता में # ई और बी क्षेत्र, एक इलेक्ट्रॉन एक वेग के साथ आगे बढ़ रहा है v एक विद्युत क्षेत्र के माध्यम से E लेकिन चुंबकीय क्षेत्र नहीं B, संदर्भ के अपने स्वयं के संरचना में एक लोरेंत्ज़ परिवर्तन का अनुभव करेगा। लोरेंत्ज़-रूपांतरित चुंबकीय क्षेत्र B′:

गैर-सापेक्षतावादी सीमा में v << c:

इसलिए गैर-सापेक्षतावादी प्रचक्रण इंटरैक्शन हैमिल्टनियन बन जाता है:[41]

जहां पहला शब्द पहले से ही गैर-सापेक्षतावादी चुंबकीय आघूर्ण बातचीत है, और दूसरा शब्द आदेश का सापेक्ष सुधार है (v/c, लेकिन यह प्रायोगिक परमाणु स्पेक्ट्रा से एक कारक से असहमत है 12. एल. थॉमस द्वारा यह इंगित किया गया था कि एक दूसरा सापेक्ष प्रभाव है: इलेक्ट्रॉन वेग के लंबवत एक विद्युत क्षेत्र घटक इसके तात्कालिक वेग के लंबवत इलेक्ट्रॉन के अतिरिक्त त्वरण का कारण बनता है, इसलिए इलेक्ट्रॉन घुमावदार पथ में चलता है। इलेक्ट्रॉन संदर्भ के एक घूर्णन संरचना में चलता है, और इलेक्ट्रॉन के इस अतिरिक्त पुरस्सरण को थॉमस पुरस्सरण कहा जाता है। इसे दिखाया जा सकता है[42] कि इस प्रभाव का शुद्ध परिणाम यह है कि प्रचक्रण-ऑर्बिट इंटरैक्शन आधे से कम हो जाता है, जैसे कि इलेक्ट्रॉन द्वारा अनुभव किए गए चुंबकीय क्षेत्र का मान केवल आधा है, और हैमिल्टनियन में सापेक्ष सुधार है:

सापेक्षवादी क्वांटम यांत्रिकी के स्थिति में, का कारक 12 की भविष्यवाणी डायराक समीकरण द्वारा की जाती है।[41]


इतिहास

जिन घटनाओं ने सापेक्षवादी क्वांटम यांत्रिकी को जन्म दिया और स्थापित किया, और क्वांटम इलेक्ट्रोडायनामिक्स (क्यूईडी) से परे निरंतरता को नीचे संक्षेप में प्रस्तुत किया गया है [देखें, उदाहरण के लिए, आर. रेसनिक और आर. आइज़बर्ग (1985),[43] और पीटर एटकिंस|पी.डब्ल्यू एटकिंस (1974)[44]]। 1890 के दशक से लेकर 1950 के दशक तक नए और रहस्यमय क्वांटम सिद्धांत में प्रायोगिक और सैद्धांतिक अनुसंधान की आधी सदी से भी अधिक समय तक यह पता चला कि कई घटनाओं को अकेले क्वांटम यांत्रिकी द्वारा नहीं समझाया जा सकता है। एसआर, 20वीं शताब्दी के अंत में पाया गया, एक आवश्यक घटक पाया गया, जो एकीकरण के लिए अग्रणी था: सापेक्षवादी क्वांटम यांत्रिकी। सैद्धांतिक भविष्यवाणियां और प्रयोग मुख्य रूप से नए पाए गए परमाणु भौतिकी, परमाणु भौतिकी और कण भौतिकी पर केंद्रित हैं; स्पेक्ट्रोस्कोपी, कणों के विवर्तन और प्रकीर्णन, और परमाणुओं और अणुओं के भीतर इलेक्ट्रॉनों और नाभिकों पर विचार करके। प्रचक्रण के प्रभावों के लिए कई परिणाम जिम्मेदार हैं।

क्वांटम परिघटना में कणों का सापेक्षिक विवरण

1905 में अल्बर्ट आइंस्टीन ने प्रकाश विद्युत प्रभाव की व्याख्या की; फोटोन के रूप में प्रकाश का एक कण विवरण। 1916 में, अर्नोल्ड सोमरफेल्ड ने सूक्ष्म संरचना की व्याख्या की; पहले क्रम के सापेक्षवादी सुधारों के कारण परमाणुओं की वर्णक्रमीय रेखाओं का विभाजन। 1923 के कॉम्पटन प्रभाव ने अधिक साक्ष्य प्रदान किया कि विशेष सापेक्षता प्रयुक्त होती है; इस स्थिति में फोटॉन-इलेक्ट्रॉन बिखरने के कण विवरण के लिए। लुई डी ब्रोगली तरंग-कण द्वैत को पदार्थ तक फैलाते हैं: डी ब्रोगली संबंध, जो विशेष सापेक्षता और क्वांटम यांत्रिकी के अनुरूप हैं। 1927 तक, क्लिंटन डेविसन और लेस्टर जर्मर और अलग से जॉर्ज पगेट थॉमसन | जी। थॉमसन ने तरंग-कण द्वैत के प्रायोगिक साक्ष्य प्रदान करते हुए सफलतापूर्वक इलेक्ट्रॉनों को अलग किया।

प्रयोग


क्वांटम गैर-स्थानीयता और सापेक्षतावादी इलाके

1935 में आइंस्टीन, नाथन रोसेन, बोरिस पोडॉल्स्की ने एक पेपर प्रकाशित किया[47] कणों के क्वांटम उलझन से संबंधित, क्वांटम गैर-स्थानीयता पर सवाल उठाना और एसआर में कार्य-कारण का स्पष्ट उल्लंघन: कण मनमानी दूरी पर तत्काल बातचीत करने के लिए प्रकट हो सकते हैं। यह एक ग़लतफ़हमी थी क्योंकि सूचना उलझी हुई अवस्थाओं में न तो स्थानांतरित होती है और न ही स्थानांतरित की जा सकती है; बल्कि सूचना संचरण दो पर्यवेक्षकों द्वारा माप की प्रक्रिया में है (एक पर्यवेक्षक को दूसरे को एक संकेत भेजना होता है, जो कि c से अधिक नहीं हो सकता है)। क्वांटम यांत्रिकी एसआर का उल्लंघन नहीं करता है।[48][49] 1959 में, डेविड बोहम और याकिर अहरोनोव ने एक पेपर प्रकाशित किया[50] अहरोनोव-बोहम प्रभाव पर, क्वांटम यांत्रिकी में विद्युत चुम्बकीय विभव की स्थिति पर सवाल उठाते हुए। विद्युत चुम्बकीय क्षेत्र टेंसर और विद्युत चुम्बकीय चार-विभव | EM 4-पोटेंशियल फॉर्मूलेशन दोनों SR में प्रयुक्त होते हैं, लेकिन क्वांटम यांत्रिकी में पोटेंशिअल हैमिल्टनियन (ऊपर देखें) में प्रवेश करते हैं और चार्ज किए गए कणों की गति को उन क्षेत्रों में भी प्रभावित करते हैं जहां क्षेत्र शून्य हैं। 1964 में, बेल की प्रमेय EPR विरोधाभास पर एक पेपर में प्रकाशित हुई थी,[51] दिखा रहा है कि क्वांटम यांत्रिकी को स्थानीय छिपे-चर सिद्धांत से प्राप्त नहीं किया जा सकता है। स्थानीय छिपे-चर सिद्धांत यदि स्थानीयता को बनाए रखा जाना है।

लैम्ब शिफ्ट

1947 में, लैम्ब शिफ्ट की खोज की गई थी: में एक छोटा सा अंतर 2एस12 और 2</सुप>पी12 हाइड्रोजन के स्तर, इलेक्ट्रॉन और निर्वात के बीच बातचीत के कारण। विलिस लैम्ब और रॉबर्ट रदरफोर्ड प्रयोगात्मक रूप से उत्तेजित रेडियो-आवृत्ति संक्रमणों को मापते हैं 2एस12 और 2</सुप>पी12 माइक्रोवेव विकिरण द्वारा हाइड्रोजन का स्तर।[52] लैंब शिफ्ट की व्याख्या हंस बेथे द्वारा प्रस्तुत की गई है। 1950 के दशक की शुरुआत में प्रभाव पर पत्र प्रकाशित किए गए थे।[53]


क्वांटम इलेक्ट्रोडायनामिक्स का विकास

यह भी देखें

फुटनोट्स

  1. Other common notations include ms and sz etc., but this would clutter expressions with unnecessary subscripts. The subscripts σ labeling spin values are not to be confused for tensor indices nor the Pauli matrices.
  2. This spinor notation is not necessarily standard; the literature usually writes or etc., but in the context of spin 1/2, this informal identification is commonly made.
  3. Again this notation is not necessarily standard, the more advanced literature usually writes
    etc.,
    but here we show informally the correspondence of energy, helicity, and spin states.
  4. Some authors, including Penrose, use Latin letters in this definition, even though it is conventional to use Greek indices for vectors and tensors in spacetime.

संदर्भ

  1. Perkins, D.H. (2000). उच्च ऊर्जा भौतिकी का परिचय. Cambridge University Press. ISBN 978-0-521-62196-0.
  2. 2.0 2.1 2.2 2.3 Martin, B.R.; Shaw, G. (2008-12-03). कण भौतिकी. Manchester Physics Series (3rd ed.). John Wiley & Sons. p. 3. ISBN 978-0-470-03294-7.
  3. Reiher, M.; Wolf, A. (2009). सापेक्षवादी क्वांटम रसायन. John Wiley & Sons. ISBN 978-3-527-62749-3.
  4. Strange, P. (1998). Relativistic Quantum Mechanics: With Applications in Condensed Matter and Atomic Physics. Cambridge University Press. ISBN 978-0-521-56583-7.
  5. Mohn, P. (2003). Magnetism in the Solid State: An Introduction. Springer Series in Solid-State Sciences Series. Vol. 134. Springer. p. 6. ISBN 978-3-540-43183-1.
  6. https://en.wikipedia.org/wiki/Relativistic_quantum_mechanics#cite_note-Martin,_Shaw,_pp._5%E2%80%936-6
  7. https://en.wikipedia.org/wiki/Relativistic_quantum_mechanics#cite_note-7
  8. Forshaw, J.R.; Smith, A.G. (2009). गतिशीलता और सापेक्षता. Manchester Physics Series. John Wiley & Sons. pp. 258–259. ISBN 978-0-470-01460-8.
  9. Greiner, W. (2000). सापेक्षवादी क्वांटम यांत्रिकी। तरंग समीकरण (3rd ed.). Springer. p. 70. ISBN 978-3-540-67457-3.
  10. Wachter, A. (2011). "सापेक्षवादी क्वांटम यांत्रिकी". Springer. p. 34. ISBN 978-90-481-3645-2.
  11. Weinberg, S. (1964). "फेनमैन नियम किसी भी स्पिन के लिए" (PDF). Phys. Rev. 133 (5B): B1318–B1332. Bibcode:1964PhRv..133.1318W. doi:10.1103/PhysRev.133.B1318.;
    Weinberg, S. (1964). "Feynman Rules for Any spin. II. Massless Particles" (PDF). Phys. Rev. 134 (4B): B882–B896. Bibcode:1964PhRv..134..882W. doi:10.1103/PhysRev.134.B882.;
    Weinberg, S. (1969). "Feynman Rules for Any spin. III" (PDF). Phys. Rev. 181 (5): 1893–1899. Bibcode:1969PhRv..181.1893W. doi:10.1103/PhysRev.181.1893.
  12. Masakatsu, K. (2012). "Superradiance Problem of Bosons and Fermions for Rotating Black Holes in Bargmann–Wigner Formulation". arXiv:1208.0644 [gr-qc].
  13. 13.0 13.1 Parker, C.B. (1994). मैकग्रा हिल एनसाइक्लोपीडिया ऑफ फिजिक्स (2nd ed.). McGraw Hill. pp. 1193–1194. ISBN 978-0-07-051400-3.
  14. Resnick, R.; Eisberg, R. (1985). परमाणुओं, अणुओं, ठोस, नाभिक और कणों की क्वांटम भौतिकी (2nd ed.). John Wiley & Sons. p. 274. ISBN 978-0-471-87373-0.
  15. Landau, L.D.; Lifshitz, E.M. (1981). क्वांटम यांत्रिकी गैर-सापेक्षतावादी सिद्धांत. Vol. 3. Elsevier. p. 455. ISBN 978-0-08-050348-6.
  16. 16.0 16.1 Peleg, Y.; Pnini, R.; Zaarur, E.; Hecht, E. (2010). क्वांटम यांत्रिकी. Shaum's outlines (2nd ed.). McGraw–Hill. p. 181. ISBN 978-0-07-162358-2.
  17. Abers, E. (2004). क्वांटम यांत्रिकी. Addison Wesley. p. 425. ISBN 978-0-13-146100-0.
  18. Wachter, A. (2011). "सापेक्षवादी क्वांटम यांत्रिकी". Springer. p. 5. ISBN 978-90-481-3645-2.
  19. Abers, E. (2004). क्वांटम यांत्रिकी. Addison Wesley. p. 415. ISBN 978-0-13-146100-0.
  20. Bransden, B.H.; Joachain, C.J. (1983). परमाणुओं और अणुओं का भौतिकी (1st ed.). Prentice Hall. p. 634. ISBN 978-0-582-44401-0.
  21. Grandy, W.T. (1991). लेप्टान और क्षेत्रों के सापेक्षवादी क्वांटम यांत्रिकी. Springer. p. 54. ISBN 978-0-7923-1049-5.
  22. Abers, E. (2004). क्वांटम यांत्रिकी. Addison Wesley. p. 423. ISBN 978-0-13-146100-0.
  23. McMahon, D. (2008). क्वांटम फील्ड थ्योरी. Demystified. McGraw Hill. p. 114. ISBN 978-0-07-154382-8.
  24. Bransden, B.H.; Joachain, C.J. (1983). परमाणुओं और अणुओं का भौतिकी (1st ed.). Prentice Hall. pp. 632–635. ISBN 978-0-582-44401-0.
  25. 25.0 25.1 Parker, C.B. (1994). मैकग्रा हिल एनसाइक्लोपीडिया ऑफ फिजिक्स (2nd ed.). McGraw Hill. p. 1194. ISBN 978-0-07-051400-3..
  26. Labelle, P. (2010). सुपरसिमेट्री. Demystified. McGraw-Hill. ISBN 978-0-07-163641-4.
  27. Esposito, S. (2011). "Searching for an equation: Dirac, Majorana and the others". Annals of Physics. 327 (6): 1617–1644. arXiv:1110.6878. Bibcode:2012AnPhy.327.1617E. doi:10.1016/j.aop.2012.02.016. S2CID 119147261.
  28. Bargmann, V.; Wigner, E.P. (1948). "आपेक्षिक तरंग समीकरणों की समूह सैद्धांतिक चर्चा". Proc. Natl. Acad. Sci. U.S.A. 34 (5): 211–23. Bibcode:1948PNAS...34..211B. doi:10.1073/pnas.34.5.211. PMC 1079095. PMID 16578292.
  29. Wigner, E. (1937). "अमानवीय लोरेंत्ज़ समूह के एकात्मक प्रतिनिधित्व पर" (PDF). Annals of Mathematics. 40 (1): 149–204. Bibcode:1939AnMat..40..149W. doi:10.2307/1968551. JSTOR 1968551. S2CID 121773411. Archived from the original (PDF) on 2015-10-04. Retrieved 2013-04-14.
  30. Jaroszewicz, T.; Kurzepa, P.S (1992). "कताई कणों के स्पेसटाइम प्रसार की ज्यामिति". Annals of Physics. 216 (2): 226–267. Bibcode:1992AnPhy.216..226J. doi:10.1016/0003-4916(92)90176-M.
  31. Lorcé, Cédric (2009). "Electromagnetic Properties for Arbitrary Spin Particles: Part 1 − Electromagnetic Current and Multipole Decomposition". arXiv:0901.4199 [hep-ph].
  32. Lorcé, Cédric (2009). "Electromagnetic Properties for Arbitrary Spin Particles: Part 2 − Natural Moments and Transverse Charge Densities". Physical Review D. 79 (11): 113011. arXiv:0901.4200. Bibcode:2009PhRvD..79k3011L. doi:10.1103/PhysRevD.79.113011. S2CID 17801598.
  33. Strange, P. (1998). Relativistic Quantum Mechanics: With Applications in Condensed Matter and Atomic Physics. Cambridge University Press. p. 206. ISBN 978-0-521-56583-7.
  34. Labelle, P. (2010). सुपरसिमेट्री. Demystified. McGraw-Hill. p. 14. ISBN 978-0-07-163641-4.
  35. Weinberg, S. (1995). खेतों की क्वांटम थ्योरी. Vol. 1. Cambridge University Press. ISBN 978-0-521-55001-7.
  36. Penrose, R. (2005). वास्तविकता का मार्ग. Vintage Books. pp. 437, 566–569. ISBN 978-0-09-944068-0.
  37. Ryder, L.H. (1996). क्वांटम फील्ड थ्योरी (2nd ed.). Cambridge University Press. p. 62. ISBN 978-0-521-47814-4.
  38. Troshin, S.M.; Tyurin, N.E. (1994). कण अंतःक्रियाओं में स्पिन परिघटना. World Scientific. Bibcode:1994sppi.book.....T. ISBN 978-981-02-1692-4.
  39. Misner, C.W.; Thorne, K.S.; Wheeler, J.A. (15 September 1973). आकर्षण-शक्ति. p. 1146. ISBN 978-0-7167-0344-0.
  40. Ciufolini, I.; Matzner, R.R.A. (2010). सामान्य सापेक्षता और जॉन आर्चीबाल्ड व्हीलर. Springer. p. 329. ISBN 978-90-481-3735-0.
  41. 41.0 41.1 Kroemer, H. (2003). "The Thomas precession factor in spin–orbit interaction" (PDF). American Journal of Physics. 72 (1): 51–52. arXiv:physics/0310016. Bibcode:2004AmJPh..72...51K. doi:10.1119/1.1615526. S2CID 119533324.
  42. Jackson, J.D. (1999). शास्त्रीय इलेक्ट्रोडायनामिक्स (3rd ed.). Wiley. p. 548. ISBN 978-0-471-30932-1.
  43. Resnick, R.; Eisberg, R. (1985). परमाणुओं, अणुओं, ठोस, नाभिक और कणों की क्वांटम भौतिकी (2nd ed.). John Wiley & Sons. pp. 57, 114–116, 125–126, 272. ISBN 978-0-471-87373-0.
  44. Atkins, P.W. (1974). Quanta: A handbook of concepts. Oxford University Press. pp. 168–169, 176, 263, 228. ISBN 978-0-19-855493-6.
  45. Krane, K.S. (1988). परिचयात्मक परमाणु भौतिकी. John Wiley & Sons. pp. 396–405. ISBN 978-0-471-80553-3.
  46. Krane, K.S. (1988). परिचयात्मक परमाणु भौतिकी. John Wiley & Sons. pp. 361–370. ISBN 978-0-471-80553-3.
  47. Einstein, A.; Podolsky, B.; Rosen, N. (1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?" (PDF). Phys. Rev. 47 (10): 777–780. Bibcode:1935PhRv...47..777E. doi:10.1103/PhysRev.47.777.
  48. Abers, E. (2004). क्वांटम यांत्रिकी. Addison Wesley. p. 192. ISBN 978-0-13-146100-0.
  49. Penrose, R. (2005). वास्तविकता का मार्ग. Vintage Books. ISBN 978-0-09-944068-0. Chapter 23: The entangled quantum world
  50. Aharonov, Y.; Bohm, D. (1959). "Significance of electromagnetic potentials in quantum theory". Physical Review. 115 (3): 485–491. Bibcode:1959PhRv..115..485A. doi:10.1103/PhysRev.115.485.
  51. Bell, John (1964). "आइंस्टीन पोडॉल्स्की रोसेन विरोधाभास पर" (PDF). Physics. 1 (3): 195–200. doi:10.1103/PhysicsPhysiqueFizika.1.195.
  52. Lamb, Willis E.; Retherford, Robert C. (1947). "माइक्रोवेव विधि द्वारा हाइड्रोजन परमाणु की सूक्ष्म संरचना". Physical Review. 72 (3): 241–243. Bibcode:1947PhRv...72..241L. doi:10.1103/PhysRev.72.241.
  53. Lamb, W.E. Jr. & Retherford, R.C. (1950). "Fine Structure of the Hydrogen Atom. Part I". Phys. Rev. 79 (4): 549–572. Bibcode:1950PhRv...79..549L. doi:10.1103/PhysRev.79.549.
    Lamb, W.E. Jr. & Retherford, R.C. (1951). "Fine Structure of the Hydrogen Atom. Part II". Phys. Rev. 81 (2): 222–232. Bibcode:1951PhRv...81..222L. doi:10.1103/PhysRev.81.222.Lamb, W.E. Jr. (1952). "Fine Structure of the Hydrogen Atom. III". Phys. Rev. 85 (2): 259–276. Bibcode:1952PhRv...85..259L. doi:10.1103/PhysRev.85.259. PMID 17775407.
    Lamb, W.E. Jr. & Retherford, R.C. (1952). "Fine Structure of the Hydrogen Atom. IV". Phys. Rev. 86 (6): 1014–1022. Bibcode:1952PhRv...86.1014L. doi:10.1103/PhysRev.86.1014. PMID 17775407.
    Triebwasser, S.; Dayhoff, E.S. & Lamb, W.E. Jr. (1953). "Fine Structure of the Hydrogen Atom. V". Phys. Rev. 89 (1): 98–106. Bibcode:1953PhRv...89...98T. doi:10.1103/PhysRev.89.98.



चयनित पुस्तकें

क्वांटम भौतिकी में समूह सिद्धांत

चयनित कागजात

अग्रिम पठन

सापेक्षवादी क्वांटम यांत्रिकी और क्षेत्र सिद्धांत

सामान्य रूप में क्वांटम सिद्धांत और अनुप्रयोग

बाहरी संबंध