बाइनरी ऑपरेशन

From Vigyanwiki
Revision as of 17:44, 7 June 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
द्विआधारी संक्रिया तर्कों तथा के संयोजन से उत्पन्न करने के लिए एक नियम है

गणित में, द्विआधारी संक्रिया या युग्मकीय संक्रिया एक अन्य अवयव उत्पन्न करने के लिए दो अवयवों (गणित) (संफलन कहा जाता है) के संयोजन के लिए एक नियम है। अधिक औपचारिक रूप से, द्विआधारी संक्रिया एरीटी दो का एक संक्रिया (गणित) है।

अधिक विशेष रूप से, एक समुच्चय (गणित) पर एक आंतरिक द्विआधारी संक्रिया द्विआधारी संक्रिया है जिसका फलन के दो डोमेन और सहप्रांत एक ही समुच्चय हैं। उदाहरणों में योग, घटाव और गुणा की परिचित अंकगणितीय संक्रियाएं सम्मिलित हैं। अन्य उदाहरण गणित के विभिन्न क्षेत्रों में सरलता से पाए जाते हैं, जैसे सदिश योग, आव्यूह गुणन और संयुग्मन (समूह सिद्धांत)।

एरीटी दो की संक्रिया है जिसमें कई समुच्चय सम्मिलित होते हैं, कभी-कभी 'द्विआधारी संक्रिया' भी कहा जाता है। उदाहरण के लिए, सदिश समष्टि का अदिश गुणन सदिश उत्पन्न करने के लिए अदिश और एक सदिश लेते है, और अदिश गुणनफल अदिश उत्पन्न करने के लिए दो सदिश लेते है। ऐसे द्विआधारी संक्रियाों को मात्र द्विआधारी फलन कहा जा सकता है।

द्विआधारी संक्रियाों अधिकांश बीजगणितीय संरचनाओं की कुंजीशिला हैं जिनका अध्ययन बीजगणित में किया जाता है, विशेष रूप से अर्धसमूह, एकाभ, समूह (गणित), वलय (बीजगणित), क्षेत्र (गणित), और सदिश रिक्त समष्टि में।

शब्दावली

अधिक यथार्थ रूप से, समुच्चय (गणित) पर द्विआधारी संक्रिया कार्तीय गुणनफल से :[1][2][3]

के अवयवों का प्रतिचित्र (गणित) है।

क्योंकि के अवयवों के युग्म पर संक्रिया करने के परिणाम पुन: के अंग है, संक्रिया को पर संवृत (या आंतरिक) द्विआधारी संक्रिया कहा जाता है (या कभी-कभी संवृत होने के गुण के रूप में व्यक्त किया जाता है)।[4]

यदि फलन (गणित) नहीं है, परन्तु आंशिक फलन है तो को आंशिक द्विआधारी संक्रिया कहते हैं। उदाहरण के लिए, वास्तविक संख्याओं का विभाजन आंशिक द्विआधारी संक्रिया है, क्योंकि शून्य से विभाजन नहीं किया जा सकता है: प्रत्येक वास्तविक संख्या के लिए अपरिभाषित है। सार्वभौमिक बीजगणित और मॉडल सिद्धांत दोनों में, द्विआधारी संक्रियाओं को सभी अवयवों पर परिभाषित करने की आवश्यकता होती है।

कभी-कभी, विशेष रूप से कंप्यूटर विज्ञान में, द्विआधारी संक्रिया शब्द का उपयोग किसी द्विआधारी फलन के लिए किया जाता है।

गुण और उदाहरण

द्विआधारी संक्रियाओं के विशिष्ट उदाहरण संख्या और आव्यूह (गणित) के योग () और गुणा () के साथ-साथ एक समुच्चय पर फलनों की संरचना हैं। उदाहरण के लिए,

  • वास्तविक संख्या के समुच्चय पर, द्विआधारी संक्रिया है क्योंकि दो वास्तविक संख्याओं का योग एक वास्तविक संख्या है।
  • प्राकृतिक संख्या के समुच्चय पर, द्विआधारी संक्रिया है क्योंकि दो प्राकृतिक संख्याओं का योग एक प्राकृतिक संख्या है। यह पिछले वाले की तुलना में अलग द्विआधारी संक्रिया है क्योंकि समुच्चय अलग हैं।
  • वास्तविक प्रविष्टियों के साथ आव्यूह के समुच्चय पर, द्विआधारी संक्रिया है क्योंकि दो ऐसे आव्यूहों का योग आव्यूह है।
  • वास्तविक प्रविष्टियों के साथ आव्यूह के समुच्चय पर, द्विआधारी संक्रिया है क्योंकि दो ऐसे आव्यूहों का गुणनफल आव्यूह है।
  • किसी दिए गए समुच्चय के लिए, को सभी फलनों का समुच्चय होने दें। सभी के लिए से परिभाषित करें, में दो फलनों तथा की संरचना। तब द्विआधारी संक्रिया है क्योंकि दो फलनों की संरचना फिर से समुच्चय (जो कि का एक वर्ग है) पर एक फलन है।

बीजगणित और औपचारिक तर्क दोनों में रुचि के कई द्विआधारी संक्रियाएँ क्रमविनिमेय हैं, में सभी अवयवों तथा के लिए को संतुष्ट करते हैं, या साहचर्य, सभी में , , तथा के लिए को संतुष्ट करते हैं। कई में तत्समक अवयव और व्युत्क्रम अवयव भी होते हैं।

उपरोक्त पहले तीन उदाहरण क्रमविनिमेय हैं और उपरोक्त सभी उदाहरण साहचर्य हैं।

वास्तविक संख्या के समुच्चय पर, घटाव, अर्थात्, , द्विआधारी संक्रिया है जो जो सामान्य रूप से के बाद से क्रम विनिमय नहीं है। यह साहचर्य भी नहीं है, क्योंकि, सामान्य रूप से, ; उदाहरण के लिए, परन्तु

प्राकृतिक संख्या के समुच्चय पर, द्विआधारी संक्रिया घातांक, , (cf. समीकरण x^y = y^x) के बाद से क्रमविनिमेय नहीं है, और के बाद से साहचर्य भी नहीं है। उदाहरण के लिए, , , तथा , के साथ, परन्तु। समुच्चय को पूर्णांक के समुच्चय में बदलकर, यह द्विआधारी संक्रिया आंशिक द्विआधारी संक्रिया बन जाता है क्योंकि यह अब अपरिभाषित है जब तथा कोई ऋणात्मक पूर्णांक है। किसी भी समुच्चय के लिए, इस संक्रिया का सत्य तत्समक है (जो है) क्योंकि समुच्चय में सभी के लिए है, जो सामान्य रूप से के बाद से तत्समक (दो पक्षीय तत्समक) नहीं है।

विभाजन (गणित) (), वास्तविक या परिमेय संख्याओं के समुच्चय पर आंशिक द्विआधारी संक्रिया क्रमविनिमेय या साहचर्य नहीं है। टेट्रेशन (), प्राकृतिक संख्याओं पर द्विआधारी संक्रिया के रूप में, क्रमविनिमेय या साहचर्य नहीं है और इसमें कोई तत्समक अवयव नहीं है।

संकेतन

द्विआधारी संक्रियाों को प्रायः रूप के फलनात्मक संकेतन के अतिरिक्त , , या (बिना किसी प्रतीक के निकटता द्वारा) जैसे मध्यप्रत्यय संकेतन का उपयोग करके लिखा जाता है। घातें सामान्यतः संक्रियक के बिना भी लिखी जाती हैं, परन्तु दूसरे तर्क के साथ मूर्धांक के रूप में।

द्विआधारी संक्रियाों को कभी-कभी उपसर्ग या (अधिक बार) अनुलग्न संकेतन का उपयोग करते हुए लिखा जाता है, जिनमें से दोनों को कोष्ठक से अलग किया जाता है। उन्हें क्रमशः परिष्कृत संकेतन और व्युत्क्रम परिष्कृत संकेतन भी कहा जाता है।

द्विआधारी संक्रियाों त्रिचर संबंध के रूप में

समुच्चय पर द्विआधारी संक्रिया को पर त्रिचर संबंध के रूप में देखा जा सकता है, अर्थात, में सभी तथा के लिए में त्रिचर का समुच्चय।

बाहरी द्विआधारी संक्रिया

एक बाहरी द्विआधारी संक्रिया से तक द्विआधारी फलन है। यह एक समुच्चय पर द्विआधारी संक्रिया से इस अर्थ में भिन्न होता है कि को होने की आवश्यकता नहीं है; इसके अवयव बाहर से आते हैं।

बाह्य द्विआधारी संक्रिया का उदाहरण रेखीय बीजगणित में अदिश गुणन है। यहां एक क्षेत्र (गणित) है और उस क्षेत्र पर एक सदिश समष्टि है।

कुछ बाहरी द्विआधारी संक्रियाओं को वैकल्पिक रूप से पर की समूह क्रिया (गणित) के रूप में देखा जा सकता है। इसके लिए में एक साहचर्य गुणन के अस्तित्व की आवश्यकता होती है, और रूप का संगतता नियम, जहाँ तथा (यहाँ, बाह्य संक्रिया और में गुणन दोनों को संयोजन द्वारा निरूपित किया जाता है)।

दो सदिशों का बिंदु गुणनफल से तक है, जहाँ क्षेत्र है और , एक सदिश समष्टि है। यह लेखकों पर निर्भर करता है कि क्या इसे द्विआधारी संक्रिया माना जाता है।

यह भी देखें

टिप्पणियाँ

  1. Rotman 1973, pg. 1
  2. Hardy & Walker 2002, pg. 176, Definition 67
  3. Fraleigh 1976, pg. 10
  4. Hall 1959, pg. 1


संदर्भ

  • Fraleigh, John B. (1976), A First Course in Abstract Algebra (2nd ed.), Reading: Addison-Wesley, ISBN 0-201-01984-1
  • Hall, Marshall Jr. (1959), The Theory of Groups, New York: Macmillan
  • Hardy, Darel W.; Walker, Carol L. (2002), Applied Algebra: Codes, Ciphers and Discrete Algorithms, Upper Saddle River, NJ: Prentice-Hall, ISBN 0-13-067464-8
  • Rotman, Joseph J. (1973), The Theory of Groups: An Introduction (2nd ed.), Boston: Allyn and Bacon


इस पेज में लापता आंतरिक लिंक की सूची

  • क्षेत्र (गणित)
  • योग
  • अंकगणितीय आपरेशनस
  • अवयव (गणित)
  • सदिश योग
  • अंक शास्त्र
  • अदिश उत्पाद
  • अंगूठी (बीजगणित)
  • स्केलर गुणज
  • सदिश स्थल
  • किसी फलन का डोमेन
  • बीजगणितीय संरचना
  • नक्शा (गणित)
  • समापन (गणित)
  • आंशिक समारोह
  • समारोह (गणित)
  • जोड़नेवाला
  • त्रैमासिक संबंध
  • लीनियर अलजेब्रा
  • मेग्मा (बीजगणित)
  • त्रिचर संक्रिया

बाहरी संबंध