श्रेणी बीजगणित
श्रेणी सिद्धांत में, गणित का क्षेत्र, श्रेणी बीजगणित साहचर्य बीजगणित है, जिसे किसी भी स्थानीय रूप से परिमित श्रेणी (गणित) और क्रमविनिमेय वलय के लिए परिभाषित किया गया है। श्रेणी बीजगणित समूह वलय और घटना बीजगणित की धारणाओं को सामान्यीकृत करते हैं, जैसे श्रेणी (गणित) समूह (गणित) और आंशिक रूप से क्रमित सेटों की धारणाओं को सामान्यीकृत करते हैं।
परिभाषा
यदि दी गई श्रेणी परिमित है (इसमें परिमित रूप से कई वस्तुएँ (श्रेणी सिद्धांत) और रूपवाद हैं), तो श्रेणी बीजगणित की निम्नलिखित दो परिभाषाएँ सहमत हैं।
समूह बीजगणित-शैली परिभाषा
समूह (गणित) जी और क्रमविनिमेय वलय आर को देखते हुए, कोई आरजी का निर्माण कर सकता है, जिसे समूह वलय के रूप में जाना जाता है; यह आर-मॉड्यूल (गणित) है जो गुणन से सुसज्जित है। समूह ल वस्तु वाली श्रेणी के समान होता है जिसमें सभी रूपवाद समरूपता होते हैं (जहां समूह के तत्व श्रेणी के रूपवाद के अनुरूप होते हैं), इसलिए निम्नलिखित निर्माण समूह बीजगणित की परिभाषा को समूहों से मनमानी श्रेणियों में सामान्यीकृत करता है .
मान लीजिए C श्रेणी है और R ता के साथ क्रमविनिमेय वलय है। आरसी (या आर[सी]) को सेट के साथ फ्री मॉड्यूल|फ्री आर-मॉड्यूल के रूप में परिभाषित करें इसके आधार_(रैखिक_बीजगणित)#Free_module के रूप में C के आकारिकी का। दूसरे शब्दों में, आरसी में फॉर्म के औपचारिक रैखिक संयोजन (जो परिमित योग होते हैं) होते हैं , जहां एफiC, और a के रूप हैंiरिंग के तत्व हैं (गणित) आर। श्रेणी में कंपोजिशन ऑपरेशन का उपयोग करके आरसी पर गुणन ऑपरेशन को निम्नानुसार परिभाषित करें:
कहाँ यदि उनकी रचना परिभाषित नहीं है. यह आरसी पर बाइनरी ऑपरेशन को परिभाषित करता है, और इसके अलावा आरसी को रिंग आर के ऊपर सहयोगी बीजगणित में बदल देता है। इस बीजगणित को सी का 'श्रेणी बीजगणित' कहा जाता है।
अलग दृष्टिकोण से, मुक्त मॉड्यूल आरसी के तत्वों को सी से आर के आकारिकी के कार्यों के रूप में भी माना जा सकता है जो कि सपोर्ट_(गणित)#फॉर्मूलेशन हैं। फिर गुणन का वर्णन कनवल्शन द्वारा किया जाता है: यदि (सी के आकारिकी पर कार्यात्मक के रूप में सोचा गया), तो उनके उत्पाद को इस प्रकार परिभाषित किया गया है:
उत्तरार्द्ध योग सीमित है क्योंकि फ़ंक्शन सीमित रूप से समर्थित हैं, और इसलिए .
घटना बीजगणित-शैली परिभाषा
घटना बीजगणित के लिए उपयोग की जाने वाली परिभाषा मानती है कि श्रेणी सी स्थानीय रूप से परिमित है (नीचे देखें), उपरोक्त परिभाषा से दोहरी है, और अलग वस्तु को परिभाषित करती है। यह समूहों के लिए उपयोगी धारणा नहीं है, क्योंकि समूह जो श्रेणी के रूप में स्थानीय रूप से परिमित है, वह परिमित समूह है।
'स्थानीय रूप से परिमित श्रेणी' वह है जहां प्रत्येक रूपवाद को दो गैर-पहचान रूपकों की संरचना के रूप में केवल सीमित रूप से कई तरीकों से लिखा जा सकता है (परिमित होम-सेट अर्थ के साथ भ्रमित नहीं होना चाहिए)। श्रेणी बीजगणित (इस अर्थ में) को ऊपर के रूप में परिभाषित किया गया है, लेकिन सभी गुणांकों को गैर-शून्य होने की अनुमति दी गई है।
औपचारिक योग के संदर्भ में, तत्व सभी औपचारिक योग हैं
जहां पर कोई प्रतिबंध नहीं है (वे सभी गैर-शून्य हो सकते हैं)।
फ़ंक्शंस के संदर्भ में, तत्व C से R के आकारिकी से कोई भी फ़ंक्शंस हैं, और गुणन को कनवल्शन के रूप में परिभाषित किया गया है। स्थानीय परिमितता धारणा के कारण कनवल्शन में योग हमेशा सीमित होता है।
दोहरा
श्रेणी बीजगणित का मॉड्यूल दोहरा (परिभाषा के समूह बीजगणित अर्थ में) सी से आर के आकारिकी से सभी मानचित्रों का स्थान है, जिसे एफ (सी) दर्शाया गया है, और इसमें प्राकृतिक कोलजेब्रा संरचना है। इस प्रकार स्थानीय रूप से परिमित श्रेणी के लिए, श्रेणी बीजगणित (समूह बीजगणित अर्थ में) का द्वैत श्रेणी बीजगणित (घटना बीजगणित अर्थ में) है, और इसमें बीजगणित और कोलजेब्रा संरचना दोनों हैं।
उदाहरण
- यदि C समूह (गणित) है (ल वस्तु वाले समूह के रूप में सोचा जाता है), तो RC समूह वलय है।
- यदि C मोनोइड है (ल वस्तु वाली श्रेणी के रूप में सोचा जाता है), तो RC मोनोइड रिंग है।
- यदि C आंशिक रूप से ऑर्डर किया गया सेट है, तो (उचित परिभाषा का उपयोग करके), RC घटना बीजगणित है।
- जबकि आंशिक आदेश केवल ऊपरी या निचले त्रिकोणीय मैट्रिक्स को घटना बीजगणित के रूप में देखने की अनुमति देते हैं, श्रेणी बीजगणित की अवधारणा भी आर के मैट्रिक्स रिंग को शामिल करती है। वास्तव में, यदि सी एन बिंदुओं पर पूर्व आदेश है जहां हर बिंदु का दूसरे से संबंध होता है ( पूर्ण ग्राफ), तो RC मैट्रिक्स रिंग है .
- यदि सी अलग श्रेणी है, तो आरसी को कार्यों की रिंग के रूप में देखा जा सकता है बिंदुवार जोड़ और गुणा के साथ, या समकक्ष सी पर अनुक्रमित आर की प्रतियों का प्रत्यक्ष उत्पाद। अनंत सी के मामले में, किसी को समूह बीजगणित-शैली और घटना बीजगणित-शैली को अलग करने की आवश्यकता होती है, क्योंकि पूर्व में, कोई केवल अनुमति देता है औपचारिक रैखिक संयोजन में सीमित रूप से कई शब्दों के लिए, जिसके परिणामस्वरूप RC, R की प्रतियों के प्रत्यक्ष योग के बजाय होता है।
- तरकश (गणित) Q का पथ बीजगणित, Q पर मुक्त श्रेणी का श्रेणी बीजगणित है।
संदर्भ
- Haigh, John. On the Möbius Algebra and the Grothendieck Ring of a Finite Category J. London Math. Soc (2), 21 (1980) 81–92.