स्थानीय संबद्ध समष्टि
टोपोलॉजी और गणित की अन्य शाखाओं में, एक टोपोलॉजिकल स्पेस X है
'स्थानीय रूप से जुड़ा हुआ' यदि प्रत्येक बिंदु पड़ोस के आधार को स्वीकार करता है जिसमें पूरी तरह से खुला सेट , कनेक्टेड सेट सेट शामिल हैं।
पृष्ठभूमि
टोपोलॉजी के पूरे इतिहास में, जुड़ा हुआ स्थान और सघन स्थान दो सबसे प्रसिद्ध रहे हैं टोपोलॉजिकल गुणों का व्यापक रूप से अध्ययन किया गया। दरअसल, यूक्लिडियन स्थान के सबसेट के बीच भी इन गुणों का अध्ययन, और यूक्लिडियन मीट्रिक के विशेष रूप से उनकी स्वतंत्रता की मान्यता ने एक टोपोलॉजिकल संपत्ति और इस प्रकार एक टोपोलॉजिकल स्पेस की धारणा को स्पष्ट करने में एक बड़ी भूमिका निभाई। हालाँकि, जबकि यूक्लिडियन अंतरिक्ष के कॉम्पैक्ट उपसमुच्चय की संरचना को हेन-बोरेल प्रमेय के माध्यम से काफी पहले ही समझ लिया गया था, संबंधित उपसमुच्चय (n > 1 के लिए) अधिक जटिल साबित हुआ। वास्तव में, जबकि कोई भी कॉम्पैक्ट हॉसडॉर्फ स्थान स्थानीय रूप से कॉम्पैक्ट होता है, एक कनेक्टेड स्पेस - और यहां तक कि यूक्लिडियन विमान का एक कनेक्टेड उपसमुच्चय - स्थानीय रूप से कनेक्ट होने की आवश्यकता नहीं है (नीचे देखें)।
इससे बीसवीं शताब्दी के पूर्वार्ध में अनुसंधान की एक समृद्ध श्रृंखला शुरू हुई, जिसमें टोपोलॉजिस्ट ने स्थानीय रूप से जुड़े स्थान की धारणा पर तेजी से सूक्ष्म और जटिल विविधताओं के बीच निहितार्थ का अध्ययन किया। उदाहरण के तौर पर, एक बिंदु पर कमजोर स्थानीय कनेक्टिविटी की धारणा और स्थानीय कनेक्टिविटी से इसके संबंध पर लेख में बाद में विचार किया जाएगा।
बीसवीं सदी के उत्तरार्ध में, अनुसंधान की प्रवृत्ति कई गुना जैसे स्थानों के अधिक गहन अध्ययन की ओर स्थानांतरित हो गई, जो स्थानीय रूप से अच्छी तरह से समझे जाते हैं (यूक्लिडियन अंतरिक्ष के लिए स्थानीय रूप से होमोमोर्फिक होने के कारण) लेकिन जटिल वैश्विक व्यवहार रखते हैं। इसका मतलब यह है कि यद्यपि मैनिफोल्ड्स की मूल बिंदु-सेट टोपोलॉजी अपेक्षाकृत सरल है (क्योंकि अवधारणा की अधिकांश परिभाषाओं के अनुसार मैनिफोल्ड्स अनिवार्य रूप से मेट्रिज़ेबल हैं), उनकी बीजगणितीय टोपोलॉजी कहीं अधिक जटिल है। इस आधुनिक परिप्रेक्ष्य से, स्थानीय पथ कनेक्टिविटी की मजबूत संपत्ति अधिक महत्वपूर्ण हो जाती है: उदाहरण के लिए, किसी स्थान को सार्वभौमिक कवर स्वीकार करने के लिए इसे कनेक्ट किया जाना चाहिए और स्थानीय रूप से पथ से जुड़ा होना चाहिए। स्थानीय पथ कनेक्टिविटी पर भी चर्चा की जाएगी।
एक स्थान स्थानीय रूप से तभी जुड़ा होता है जब प्रत्येक खुले सेट यू के लिए, यू के जुड़े घटक (सबस्पेस टोपोलॉजी में) खुले हों। उदाहरण के लिए, यह इस प्रकार है कि स्थानीय रूप से जुड़े स्थान से पूरी तरह से डिस्कनेक्ट किए गए स्थान तक निरंतर कार्य स्थानीय रूप से स्थिर होना चाहिए। वास्तव में घटकों का खुलापन इतना स्वाभाविक है कि किसी को यह ध्यान में रखना चाहिए कि यह सामान्य रूप से सच नहीं है: उदाहरण के लिए कैंटर स्पेस पूरी तरह से अलग हो गया है लेकिन अलग स्थान नहीं है।
परिभाषाएँ
होने देना एक टोपोलॉजिकल स्पेस बनें, और रहने दें का एक बिंदु हो एक स्थान स्थानीय रूप से कनेक्टेड कहा जाता है [1] यदि प्रत्येक पड़ोस (गणित) का का एक कनेक्टेड (टोपोलॉजी) खुला पड़ोस शामिल है , अर्थात्, यदि बात है एक पड़ोस का आधार है जिसमें जुड़े हुए खुले सेट शामिल हैं। स्थानीय रूप से जुड़ा हुआ स्थान[2][1]एक ऐसा स्थान है जो अपने प्रत्येक बिंदु पर स्थानीय रूप से जुड़ा हुआ है।
स्थानीय जुड़ाव का मतलब जुड़ाव नहीं है (दो असंयुक्त खुले अंतरालों पर विचार करें)। उदाहरण के लिए); और कनेक्टिविटी का मतलब स्थानीय कनेक्टिविटी नहीं है (टोपोलॉजिस्ट का साइन कर्व देखें)।
एक स्थान स्थानीय रूप से जुड़े हुए पथ को कहा जाता है [1]यदि प्रत्येक पड़ोस के खुले पड़ोस से जुड़ा एक पथ शामिल है , अर्थात्, यदि बात है एक पड़ोस आधार है जिसमें पथ से जुड़े खुले सेट शामिल हैं। एक स्थानीय पथ से जुड़ा स्थान[3][1]एक ऐसा स्थान है जो अपने प्रत्येक बिंदु पर स्थानीय पथ से जुड़ा हुआ है।
स्थानीय रूप से पथ से जुड़े स्थान स्थानीय रूप से जुड़े हुए हैं। उलटा पकड़ में नहीं आता है (इकाई वर्ग पर लेक्सिकोग्राफ़िक ऑर्डर टोपोलॉजी देखें)।
छोटे पैमाने पर जुड़ाव
एक स्थान कनेक्टेड इम क्लेनेन एट कहा जाता है [4][5]या कमजोर रूप से स्थानीय रूप से जुड़ा हुआ है [6] यदि प्रत्येक पड़ोस का एक जुड़ा हुआ पड़ोस शामिल है , अर्थात्, यदि बात है एक पड़ोस आधार है जिसमें जुड़े हुए सेट शामिल हैं। किसी स्थान को कमजोर रूप से स्थानीय रूप से जुड़ा हुआ कहा जाता है यदि वह अपने प्रत्येक बिंदु पर कमजोर रूप से स्थानीय रूप से जुड़ा हुआ है; जैसा कि नीचे बताया गया है, यह अवधारणा वास्तव में स्थानीय रूप से जुड़े होने के समान है।
एक स्थान जो स्थानीय रूप से जुड़ा हुआ है छोटे से में जुड़ा हुआ है जैसा कि उदाहरण के लिए घटते झाड़ू स्थानों के एक निश्चित अनंत संघ द्वारा दिखाया गया है, यह उलटा नहीं है, जो एक विशेष बिंदु पर जुड़ा हुआ है, लेकिन उस बिंदु पर स्थानीय रूप से जुड़ा नहीं है।[7][8][9] हालाँकि, यदि कोई स्थान अपने प्रत्येक बिंदु पर जुड़ा हुआ है, तो यह स्थानीय रूप से जुड़ा हुआ है।[10] एक स्थान कहा जाता है कि पथ जुड़ा हुआ है [5] यदि प्रत्येक पड़ोस के पड़ोस से जुड़ा एक पथ शामिल है , अर्थात्, यदि बात है एक पड़ोस आधार है जिसमें पथ से जुड़े सेट शामिल हैं।
एक स्थान जो स्थानीय रूप से पथ से जुड़ा हुआ है पथ छोटे से जुड़ा हुआ है जैसा कि ऊपर बताए गए घटते झाड़ू स्थानों के समान अनंत संघ द्वारा दिखाया गया है, इसका उलटा असर नहीं करता है। हालाँकि, यदि कोई स्थान अपने प्रत्येक बिंदु पर पथ से जुड़ा हुआ है, तो यह स्थानीय रूप से पथ से जुड़ा हुआ है।[11]
पहले उदाहरण
- किसी भी सकारात्मक पूर्णांक n के लिए, यूक्लिडियन स्पेस स्थानीय पथ से जुड़ा हुआ है, इस प्रकार स्थानीय रूप से जुड़ा हुआ है; यह भी जुड़ा हुआ है.
- अधिक सामान्यतः, प्रत्येक स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस स्थानीय रूप से जुड़ा होता है, क्योंकि प्रत्येक बिंदु पर उत्तल सेट (और इसलिए जुड़ा हुआ) पड़ोस का एक स्थानीय आधार होता है।
- उपस्थान असली लाइन का स्थानीय रूप से पथ कनेक्टेड है लेकिन कनेक्टेड नहीं है.
- टोपोलॉजिस्ट का साइन वक्र यूक्लिडियन विमान का एक उपस्थान है जो जुड़ा हुआ है, लेकिन स्थानीय रूप से जुड़ा नहीं है।[12]
- अंतरिक्ष मानक यूक्लिडियन टोपोलॉजी से संपन्न परिमेय संख्याएँ, न तो जुड़ी हुई हैं और न ही स्थानीय रूप से जुड़ी हुई हैं।
- कंघी स्थान पथ से जुड़ा है लेकिन स्थानीय रूप से पथ से जुड़ा नहीं है, और स्थानीय रूप से भी जुड़ा नहीं है।
- सहपरिमित टोपोलॉजी से संपन्न एक अनगिनत अनंत सेट स्थानीय रूप से जुड़ा हुआ है (वास्तव में, हाइपरकनेक्टेड) लेकिन स्थानीय रूप से पथ से जुड़ा नहीं है।[13]
- यूनिट स्क्वायर पर लेक्सिकोग्राफ़िक ऑर्डर टोपोलॉजी कनेक्टेड और स्थानीय रूप से कनेक्टेड है, लेकिन पथ कनेक्टेड नहीं है, न ही स्थानीय पथ कनेक्टेड है।[14]
- किर्च स्थान जुड़ा हुआ है और स्थानीय रूप से जुड़ा हुआ है, लेकिन पथ से जुड़ा नहीं है, और किसी भी बिंदु पर पथ से जुड़ा नहीं है। वास्तव में यह पूरी तरह से पथ विच्छेदित है।
प्रथम-गणनीय हॉसडॉर्फ़ स्थान स्थानीय रूप से पथ से जुड़ा हुआ है यदि और केवल यदि पर अंतिम टोपोलॉजी के बराबर है सेट से प्रेरित सभी सतत पथों का
गुण
Theorem — A space is locally connected if and only if it is weakly locally connected.[10]
style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:left; " | Proof
|
---|
गैर-तुच्छ दिशा के लिए, मान लें स्थानीय रूप से कमजोर रूप से जुड़ा हुआ है। यह दिखाने के लिए कि यह स्थानीय रूप से जुड़ा हुआ है, यह दिखाना पर्याप्त है कि खुले सेट के जुड़े घटक (टोपोलॉजी) खुले हैं। होने देना में खुले रहो और जाने का एक जुड़ा हुआ घटक बनें होने देना का एक तत्व बनें तब का पड़ोस है ताकि एक जुड़ा हुआ पड़ोस हो का में निहित तब से जुड़ा हुआ है और शामिल है का एक उपसमुच्चय होना चाहिए (जुड़ा हुआ घटक युक्त ). इसलिए का एक आंतरिक बिंदु है तब से का एक मनमाना बिंदु था में खुला है इसलिए, स्थानीय रूप से जुड़ा हुआ है. |
- स्थानीय जुड़ाव, परिभाषा के अनुसार, टोपोलॉजिकल रिक्त स्थान की एक स्थानीय संपत्ति है, यानी, एक टोपोलॉजिकल संपत्ति पी जैसे कि एक स्थान , स्थानीय संपत्ति द्वारा धारित सभी मेटाप्रॉपर्टी स्थानीय कनेक्टिविटी के लिए मान्य हैं। विशेष रूप से:
- कोई स्थान स्थानीय रूप से तभी जुड़ा होता है जब वह (खुले) जुड़े उपसमुच्चय के आधार (टोपोलॉजी) को स्वीकार करता है।
- असंयुक्त संघ (टोपोलॉजी) एक परिवार का रिक्त स्थान स्थानीय रूप से जुड़ा हुआ है यदि और केवल यदि प्रत्येक स्थानीय रूप से जुड़ा हुआ है. विशेष रूप से, चूंकि एक बिंदु निश्चित रूप से स्थानीय रूप से जुड़ा हुआ है, इसका मतलब यह है कि कोई भी अलग स्थान स्थानीय रूप से जुड़ा हुआ है। दूसरी ओर, एक अलग स्थान पूरी तरह से डिस्कनेक्ट हो गया है, इसलिए केवल तभी जुड़ा हुआ है जब इसमें अधिकतम एक बिंदु हो।
- इसके विपरीत, एक पूरी तरह से अलग किया गया स्थान स्थानीय रूप से तभी जुड़ा होता है जब वह अलग हो। इसका उपयोग उपरोक्त तथ्य को समझाने के लिए किया जा सकता है कि तर्कसंगत संख्याएँ स्थानीय रूप से जुड़ी नहीं हैं।
- एक गैर-रिक्त उत्पाद स्थान स्थानीय रूप से जुड़ा हुआ है यदि और केवल यदि प्रत्येक स्थानीय रूप से जुड़ा हुआ है और सीमित रूप से बहुत सारे को छोड़कर सभी जुड़े हुए हैं।[15]
- प्रत्येक हाइपरकनेक्टेड स्पेस स्थानीय रूप से जुड़ा हुआ है, और जुड़ा हुआ है।
घटक और पथ घटक
निम्नलिखित परिणाम परिभाषाओं से लगभग तुरंत मिलता है लेकिन काफी उपयोगी होगा:
लेम्मा: मान लीजिए कि X एक स्थान है, और X के उपसमुच्चय का एक परिवार। मान लीजिए कि गैर-रिक्त है. फिर, यदि प्रत्येक जुड़ा हुआ है (क्रमशः, पथ जुड़ा हुआ) फिर संघ जुड़ा हुआ है (क्रमशः, पथ जुड़ा हुआ है)।[16] अब टोपोलॉजिकल स्पेस X: for पर दो संबंधों पर विचार करें लिखना:
- यदि X का एक जुड़ा हुआ उपसमुच्चय है जिसमें x और y दोनों हैं; और
- यदि X का एक पथ से जुड़ा उपसमुच्चय है जिसमें x और y दोनों हैं।
जाहिर तौर पर दोनों संबंध प्रतिवर्ती और सममित हैं। इसके अलावा, यदि x और y एक जुड़े हुए (क्रमशः, पथ से जुड़े) उपसमुच्चय A में समाहित हैं और y और z एक जुड़े हुए (क्रमशः, पथ से जुड़े) उपसमुच्चय B में जुड़े हुए हैं, तो लेम्मा का तात्पर्य है कि एक जुड़ा हुआ (क्रमशः, पथ जुड़ा हुआ) उपसमुच्चय है जिसमें x, y और z शामिल हैं। इस प्रकार प्रत्येक संबंध एक समतुल्य संबंध है, और एक्स के विभाजन को समतुल्य वर्गों में परिभाषित करता है। हम इन दोनों विभाजनों पर बारी-बारी से विचार करते हैं।
एक्स में एक्स के लिए, सेट सभी बिंदुओं में से y ऐसा है x का कनेक्टेड कंपोनेंट (टोपोलॉजी) कहलाता है।[17] लेम्मा का तात्पर्य यह है एक्स युक्त एक्स का अद्वितीय अधिकतम जुड़ा उपसमुच्चय है।[18] चूंकि का समापन यह एक जुड़ा हुआ उपसमुच्चय भी है जिसमें x शामिल है,[19] यह इस प्रकार है कि बन्द है।[20] यदि एक्स में केवल सीमित रूप से कई जुड़े हुए घटक हैं, तो प्रत्येक घटक बंद सेटों के एक सीमित संघ का पूरक है और इसलिए खुला है। सामान्य तौर पर, जुड़े हुए घटकों को खुला होने की आवश्यकता नहीं है, क्योंकि, उदाहरण के लिए, पूरी तरह से डिस्कनेक्ट किए गए स्थान मौजूद हैं (यानी, सभी बिंदुओं के लिए x) जो अलग-अलग नहीं हैं, जैसे कैंटर स्पेस। हालाँकि, स्थानीय रूप से जुड़े स्थान के जुड़े घटक भी खुले हैं, और इस प्रकार क्लोपेन सेट हैं।[21] यह इस प्रकार है कि स्थानीय रूप से जुड़ा हुआ स्थान X एक टोपोलॉजिकल असंयुक्त संघ है इसके विशिष्ट जुड़े घटकों की। इसके विपरीत, यदि X के प्रत्येक खुले उपसमुच्चय U के लिए, U के जुड़े हुए घटक खुले हैं, तो X जुड़े हुए सेटों का एक आधार स्वीकार करता है और इसलिए स्थानीय रूप से जुड़ा हुआ है।[22] इसी तरह एक्स में एक्स, सेट सभी बिंदुओं में से y ऐसा है x का पथ घटक कहलाता है।[23] ऊपरोक्त अनुसार, एक्स के सभी पथ से जुड़े उपसमूहों का संघ भी है जिसमें एक्स शामिल है, इसलिए लेम्मा द्वारा स्वयं पथ जुड़ा हुआ है। क्योंकि पथ से जुड़े सेट जुड़े हुए हैं, हमारे पास है सभी के लिए हालाँकि, पथ से जुड़े सेट को बंद करने के लिए पथ से जुड़े होने की आवश्यकता नहीं है: उदाहरण के लिए, टोपोलॉजिस्ट का साइन वक्र खुले उपसमुच्चय U का बंद होना है जिसमें x > 0 के साथ सभी बिंदु (x, y) शामिल हैं, और U, एक के लिए होमोमोर्फिक है। वास्तविक रेखा पर अंतराल निश्चित रूप से पथ से जुड़ा हुआ है। इसके अलावा, टोपोलॉजिस्ट के साइन वक्र सी के पथ घटक यू हैं, जो खुला है लेकिन बंद नहीं है, और जो बंद है लेकिन खुला नहीं है.
एक स्थान स्थानीय रूप से पथ से जुड़ा होता है यदि और केवल तभी जब सभी खुले उपसमुच्चय यू के लिए, यू के पथ घटक खुले हों।[23] इसलिए स्थानीय पथ से जुड़े स्थान के पथ घटक एक्स को जोड़ीदार असंयुक्त खुले सेटों में विभाजित करते हैं। इसका तात्पर्य यह है कि स्थानीय रूप से पथ से जुड़े स्थान का एक खुला जुड़ा उपस्थान आवश्यक रूप से पथ से जुड़ा हुआ है।[24] इसके अलावा, यदि कोई स्थान स्थानीय रूप से पथ से जुड़ा हुआ है, तो वह स्थानीय रूप से भी जुड़ा हुआ है, इसलिए सभी के लिए जुड़ा हुआ और खुला है, इसलिए पथ जुड़ा हुआ है, अर्थात, अर्थात्, स्थानीय रूप से पथ से जुड़े स्थान के लिए घटक और पथ घटक मेल खाते हैं।
उदाहरण
- सेट (कहाँ ) शब्दावली क्रम में टोपोलॉजी में बिल्कुल एक घटक होता है (क्योंकि यह जुड़ा हुआ है) लेकिन इसमें अनगिनत पथ घटक होते हैं। दरअसल, फॉर्म का कोई भी सेट I से संबंधित प्रत्येक a के लिए एक पथ घटक है।
- होने देना से एक सतत मानचित्र बनें को (जो है निचली सीमा टोपोलॉजी में)। तब से जुड़ा हुआ है, और एक सतत मानचित्र के अंतर्गत जुड़े स्थान की छवि जुड़ी होनी चाहिए, की छवि अंतर्गत जुड़ा होना चाहिए. इसलिए, की छवि अंतर्गत के एक घटक का उपसमुच्चय होना चाहिए चूँकि यह छवि गैर-रिक्त है, 'से एकमात्र सतत मानचित्र को स्थिर मानचित्र हैं. वास्तव में, किसी जुड़े हुए स्थान से पूरी तरह से असंबद्ध स्थान तक का कोई भी निरंतर मानचित्र स्थिर होना चाहिए।
अर्धघटक
एक्स को टपॉलजी का मूल्य रहने दें। हम X पर तीसरा संबंध परिभाषित करते हैं: यदि X को खुले सेट A और B में इस प्रकार अलग नहीं किया गया है कि x, A का एक तत्व है और y, B का एक तत्व है। यह X और समतुल्य वर्ग पर एक तुल्यता संबंध है x युक्त को x का 'अर्धघटक' कहा जाता है।[18]
इसे एक्स के सभी क्लोपेन उपसमुच्चय के प्रतिच्छेदन के रूप में भी चित्रित किया जा सकता है जिसमें एक्स शामिल है।[18]इसलिए बन्द है; सामान्यतः इसे खुला रखने की आवश्यकता नहीं है।
ज़रूर सभी के लिए [18] कुल मिलाकर हमारे पास x पर पथ घटकों, घटकों और अर्धघटकों के बीच निम्नलिखित सामग्रियां हैं:
उदाहरण
- किसी स्थान का एक उदाहरण जिसके अर्धघटक उसके घटकों के बराबर नहीं हैं, दोहरे सीमा बिंदु वाला एक अनुक्रम है। यह स्थान पूरी तरह से अलग हो गया है, लेकिन दोनों सीमा बिंदु एक ही अर्धघटक में स्थित हैं, क्योंकि उनमें से किसी एक वाले क्लोपेन सेट में अनुक्रम की एक पूंछ होनी चाहिए, और इस प्रकार दूसरा बिंदु भी होना चाहिए।
- अंतरिक्ष स्थानीय रूप से कॉम्पैक्ट और हॉसडॉर्फ लेकिन सेट हैं और दो अलग-अलग घटक हैं जो एक ही अर्धघटक में निहित हैं।
- एरेन्स-फोर्ट स्थान स्थानीय रूप से जुड़ा नहीं है, लेकिन फिर भी घटक और अर्धघटक मेल खाते हैं: वास्तव में सभी बिंदुओं के लिए x.[26]
यह भी देखें
टिप्पणियाँ
- ↑ 1.0 1.1 1.2 1.3 Munkres, p. 161
- ↑ Willard, Definition 27.7, p. 199
- ↑ Willard, Definition 27.4, p.199
- ↑ Willard, Definition 27.14, p. 201
- ↑ 5.0 5.1 Björn, Anders; Björn, Jana; Shanmugalingam, Nageswari (2016). "माजुरकिविज़ दूरी और सेट जो सीमा पर अंतिम रूप से जुड़े हुए हैं". Journal of Geometric Analysis. 26 (2): 873–897. arXiv:1311.5122. doi:10.1007/s12220-015-9575-9. S2CID 255549682., section 2
- ↑ Munkres, exercise 6, p. 162
- ↑ Steen & Seebach, example 119.4, p. 139
- ↑ Munkres, exercise 7, p. 162
- ↑ "दिखाएँ कि X, p पर स्थानीय रूप से जुड़ा नहीं है". Math StackExchange.
- ↑ 10.0 10.1 Willard, Theorem 27.16, p. 201
- ↑ "स्थानीय रूप से पथवार जुड़े की परिभाषा". Math StackExchange.
- ↑ Steen & Seebach, pp. 137–138
- ↑ Steen & Seebach, pp. 49–50
- ↑ Steen & Seebach, example 48, p. 73
- ↑ Willard, theorem 27.13, p. 201
- ↑ Willard, Theorem 26.7a, p. 192
- ↑ Willard, Definition 26.11, p.194
- ↑ 18.0 18.1 18.2 18.3 विलार्ड, समस्या 26बी, पीपी. 195-196
- ↑ Kelley, Theorem 20, p. 54; Willard, Theorem 26.8, p.193
- ↑ Willard, Theorem 26.12, p. 194
- ↑ Willard, Corollary 27.10, p. 200
- ↑ Willard, Theorem 27.9, p. 200
- ↑ 23.0 23.1 Willard, Problem 27D, p. 202
- ↑ Willard, Theorem 27.5, p. 199
- ↑ Engelking, Theorem 6.1.23, p. 357
- ↑ Steen & Seebach, pp. 54-55
संदर्भ
- Engelking, Ryszard (1989). General Topology. Heldermann Verlag, Berlin. ISBN 3-88538-006-4.
- John L. Kelley; General Topology; ISBN 0-387-90125-6
- Munkres, James (1999), Topology (2nd ed.), Prentice Hall, ISBN 0-13-181629-2.
- Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978], Counterexamples in Topology (Dover reprint of 1978 ed.), Mineola, NY: Dover Publications, Inc., ISBN 978-0-486-68735-3, MR 1382863
- Stephen Willard; General Topology; Dover Publications, 2004.
अग्रिम पठन
- Coppin, C. A. (1972), "Continuous Functions from a Connected Locally Connected Space into a Connected Space with a Dispersion Point", Proceedings of the American Mathematical Society, American Mathematical Society, 32 (2): 625–626, doi:10.1090/S0002-9939-1972-0296913-7, JSTOR 2037874. For Hausdorff spaces, it is shown that any continuous function from a connected locally connected space into a connected space with a dispersion point is constant
- Davis, H. S. (1968), "A Note on Connectedness Im Kleinen", Proceedings of the American Mathematical Society, American Mathematical Society, 19 (5): 1237–1241, doi:10.1090/s0002-9939-1968-0254814-3, JSTOR 2036067.