सूचक फलन

From Vigyanwiki
Revision as of 09:48, 2 August 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

एक सूचक फ़ंक्शन का त्रि-आयामी प्लॉट, एक वर्गाकार द्वि-आयामी डोमेन (सेट) पर दिखाया गया है X): उठा हुआ भाग उन द्वि-आयामी बिंदुओं को ओवरले करता है जो संकेतित उपसमुच्चय के सदस्य हैं (A).

गणित में एक सूचक फलन या किसी समूह के उपसमुच्चय का एक ऐसा फलन होता है जो उपसमुच्चय के तत्वों को एक में और अन्य सभी तत्वों को शून्य पर दिखाता है अर्थात यदि A किसी समुच्चय X का उपसमुच्चय है तब अगर और जहॉं सूचक फलन के लिए एक सामान्य सूचक व अन्य सामान्य सूचक और है

A का सूचक कार्य A से संबंधित सम्पत्ति का इवरसन कोष्ठक है, जो इस प्रकार है-

उदाहरण के लिए, डिरिचलेट फलन वास्तविक संख्याओं के उपसमूह के रूप में तर्कसंगत संख्याओं का संकेतक फलन है।

The function is sometimes denoted IA, χA, KA, or even just A.[lower-alpha 1][lower-alpha 2]

परिभाषा

उपसमुच्चय X उपसमुच्चय A का सूचक फलन एक फलन है।

के रूप में परिभाषित

इवरसन कोष्ठक समतुल्य अंकन प्रदान करता है या xA, के समष्टि पर उपयोग किया जायेगा कभी-कभी इसे IA, χA, KA,यहाँ तक कि A से दर्शाया जाता है।

सूचक में शब्दावली

सूचक इसका उपयोग उत्तल विश्लेषण में विशेष फलन विश्लेषण को दर्शाने के लिए किया जाता है, जिसे सूचक फलन की मानक परिभाषा के व्युत्क्रम का उपयोग करके परिभाषित किया जाता है।

सांख्यिकी में एक संबंधित अवधारणा एक वास्तविक परिवर्तन शील सांख्यिकी की है (इसे डमी चर के साथ भ्रमित नहीं किया जाना चाहिए क्योंकि यह शब्द अधिकतर गणित में उपयोग किया जाता है जिसे मुक्त चर और बाध्य सिद्धांत कहा जाता है)

विशेषत फलन शब्द का संभाव्यता सिद्धांत में एक असंबंधित अर्थ है इस कारण से संभाव्यवादियों की सूची यहां परिभाषित है जो फलन के लिए सूचक शब्द का उपयोग विशेष रूप से करते हैं, जबकि अन्य क्षेत्रों में गणितज्ञ फलन शब्द का उपयोग करने की अधिक संभावना रखते हैं [lower-alpha 1] उस फलन का वर्णन करने के लिए जो किसी समूह में सदस्यता को दर्शाता है

धुंधला तर्क और आधुनिक बहुमूल्य तर्क में विधेय संभाव्यता वितरण के विशिष्ट कार्य हैं अर्थात् ,विधेय के सत्य/गलत मूल्यांकन को सत्य की घात के रूप में व्याख्या की गई मात्रा से बदल दिया जाता है।

बुनियादी गुण

कुछ समूह X के उपसमुच्चय A का संकेतक या विशेष फलन, X के तत्वों को श्रेणी में प्रदर्शित करता है

यह मानचित्रण केवल तभी विशेषणात्मक होता है जब, A X का एक गैर-रिक्त उपसमुच्चय हो तथा X. अगर तब इसी तरह के तर्क से यदि तब निम्नलिखित बिंदु गुणन का प्रतिनिधित्व करता है तो आदि + और − जोड़ और घटाव का प्रतिनिधित्व करते हैं तथा इसमें औरक्रमशः प्रतिच्छेदन और मिलन बिन्दु हैं

अगर और के दो उपसमुच्चय हैं तब

और इसके पूरक समूह सिद्धांत का सूचक कार्य अर्थात् है जो इस प्रकार है-
सामान्यतः मान लीजिए के उपसमुच्चय का संग्रह है X. किसी संख्या के लिए

यह स्पष्ट रूप से A एक उत्पाद है 1 इस उत्पाद का मान ठीक उन्हीं पर है जहाँ जो किसी भी समूह से संबंधित नहीं है और 0 है वह इस प्रकार है

बायीं ओर उत्पाद का विस्तार करते हुए

जब की प्रमुखता है F यह समावेश-बहिष्करण के सिद्धांत का एक रूप है

जैसा कि पिछले उदाहरण में बताया गया है कि सूचक फलन साहचर्य में उपयोगी सूचक उपकरण है इसमें अंकन का उपयोग अन्य स्थानों पर किया जाता है उदाहरण के लिए संभाव्यता सिद्धांत में यदि X संभाव्यता माप के साथ एक संभाव्यता स्थान है और A तो फिर एक माप गणित है एक यादृच्छिक चर बन जाता है जिसका अपेक्षित मान संभावना के बराबर होता है जैसे A:

इस पहचान का उपयोग मार्कोव की असमानता के सरल प्रमाण में किया जाता है

कई स्थानों में जैसे कि आदेशित सिद्धांत, सूचक फलन के व्युत्क्रम को परिभाषित किया जा सकता है इसे अधिकतर सामान्यीकृत फलन कहा जाता है प्राथमिक संख्या सिद्धांत मोबियस फलन में सूचक व्युत्क्रम के सामान्यीकरण के रूप में शास्त्रीय पुनरावर्तन सिद्धांत में व्युत्क्रम के उपयोग के बारे में नीचे पैराग्राफ में दिया गया है।

माध्य, प्रसरण और सहप्रसरण

एक संभाव्यता स्थान दिया गया है साथ सूचक यादृच्छिक चर द्वारा परिभाषित किया गया है अगर अन्यथा

अर्थ
मौलिक मुक्त भी कहा जाता है
विचरण
सहप्रसरण


पुनरावर्तन सिद्धांत में अभिलक्षणिक कार्य और क्लेन का प्रतिनिधित्व कार्य

कर्ट गोडेल ने अपने 1934 के पेपर में औपचारिक गणितीय प्रणालियों के प्रस्तावों पर प्रतिनिधित्व फलन का वर्णन किया जिसमें तार्किक उलटा इंगित करता है [1]

प्रत्येक वर्ग या संबंध आर के अनुरूप एक प्रतिनिधित्व करने वाला कार्य होगा

स्टीफन क्लेन एक फलन के रूप में आदिम पुनरावर्ती कार्य के संदर्भ में समान परिभाषा प्रस्तुत करते हैं φ एक विधेय का P मान ग्रहण करता है 0 यदि विधेय सत्य है और 1 यदि विधेय गलत है तो [2]उदाहरण के लिए विशिष्ट कार्यों का उत्पाद जब भी कोई एक फलन के बराबर होता है तो 0 यह तार्किक OR: IF की भूमिका निभाता है या या या फिर उनका उत्पाद है 0. आधुनिक पाठ को जो प्रतिनिधित्व करने वाले फलन के तार्किक व्युत्क्रम के रूप में दिखाई देता है जबकि यह प्रतिनिधित्व करने वाला फलन 0 है जब फलन R सत्य या संतुष्ट है तो कुल के तार्किक कार्यों OR, AND और IMPLY की परिभाषा में उपयोगी भूमिका निभाता है [2] परिबद्ध- और असीमित- चालक में और CASE फलन है।

उपसमुच्चय समूह सिद्धांत में फलन

शास्त्रीय गणित में समूह के विशिष्ट कार्य मान लेते हैं इसमें 1 सदस्य या 0 गैर-सदस्य उपसमुच्चय समूह सिद्धांत में वास्तविक इकाई अंतराल में मान लेने के लिए विशिष्ट कार्यों को सामान्यीकृत किया जाता है तथा [0, 1]या अधिक सामान्यतः कुछ सार्वभौमिक बीजगणित या संरचना गणितीय तर्क में अधिकतर कम से कम आंशिक रूप से आदेशित किया गया समूह होना आवश्यक है ऐसे सामान्यीकृत विशिष्ट कार्यों को अधिकतर फलन गणित कहा जाता है और संबंधित समूहों को उपसमुच्चय समूह कहा जाता है उपसमुच्चय समूह कई वास्तविक दुनिया विधेय गणित जैसे लंबा, गर्म आदि में देखी गई सदस्यता की घात में क्रमिक परिवर्तन प्राप्त करते हैं।

सूचक फलन के व्युत्पन्न

एक विशेष सूचक फलन हेविसाइड फलन है

हेविसाइड फलन का वितरणात्मक व्युत्पन्न डिराक डेल्टा फलन के बराबर है
और इसी तरह का वितरणात्मक व्युत्पन्न
है
इस प्रकार हेविसाइड फलन के व्युत्पन्न को धनात्मक अर्ध-रेखा द्वारा दिए गए डोमेन की सीमा पर आवश्यक सामान्य व्युत्पन्न के रूप में देखा जा सकता है उच्च आयामों में व्युत्पन्न स्वाभाविक रूप से आंतरिक सामान्य व्युत्पन्न के लिए सामान्यीकृत होता है जबकि हेविसाइड चरण फलन स्वाभाविक रूप से कुछ डोमेन के सूचक फलन के लिए समान्यीकृत होता है जबकि D की सतह को D द्वारा निरूपित किया जाता है तथा S में आगे बढ़ते हुए यह निष्कर्ष निकाला जाता है कि सूचक डिराक सतह डेल्टा फलन का एक सतह डेल्टा है या नहीं जिसे इस चिन्ह द्वारा दर्शाया जाता है
जहॉं n सतह S का बाहरी सामान्य ज्यामिति है S इस सतह डेल्टा फलन में निम्नलिखित गुण हैं [3]
फलन समूह f के बराबर है यह इस प्रकार है कि सूचक डिराक सतह डेल्टा फलन का लाप्लासियन सतह क्षेत्र के संख्यात्मक मान से एकीकृत होता है।

संदर्भ

  1. Davis, Martin, ed. (1965). अनिर्णीत. New York, NY: Raven Press Books. pp. 41–74.
  2. 2.0 2.1 Kleene, Stephen (1971) [1952]. मेटामैथेमेटिक्स का परिचय (Sixth reprint, with corrections ed.). Netherlands: Wolters-Noordhoff Publishing and North Holland Publishing Company. p. 227.
  3. Lange, Rutger-Jan (2012). "संभावित सिद्धांत, पथ इंटीग्रल और संकेतक का लाप्लासियन". Journal of High Energy Physics. 2012 (11): 29–30. arXiv:1302.0864. Bibcode:2012JHEP...11..032L. doi:10.1007/JHEP11(2012)032. S2CID 56188533.


स्रोत

  1. 1.0 1.1 The Greek letter χ appears because it is the initial letter of the Greek word χαρακτήρ, which is the ultimate origin of the word characteristic.
  2. The set of all indicator functions on X can be identified with the power set of X. Consequently, both sets are sometimes denoted by This is a special case () of the notation for the set of all functions