जाइरेटर-संधारित्र मॉडल
Articles about |
Electromagnetism |
---|
जाइरेटर-संधारित्र मॉडल[1][2] चुंबकीय परिपथ के लिए एक मॉडल होता है, जिसका उपयोग अधिक सामान्य प्रतिरोध-अरुचि मॉडल के स्थान पर किया जा सकता है। मॉडल विद्युत प्रतिरोध (चुंबकीय अरुचि देखें) के अतिरिक्त पारगम्य तत्वों को विद्युत धारिता (चुंबकीय धारिता अनुभाग देखें) के अनुरूप बनाता है। वाइंडिंग को जाइरेटर के रूप में दर्शाया जाता है, जो विद्युत परिपथ और चुंबकीय मॉडल के बीच इंटरफेस होता है।क्या करना है
चुंबकीय अरुचि मॉडल की तुलना में जाइरेटर-संधारित्र मॉडल का प्राथमिक लाभ यह होता है कि यह मॉडल ऊर्जा प्रवाह, स्टोरेज और अपव्यय के सही मूल्यों को संरक्षित करता है।[3][4] जाइरेटर-संधारित्र मॉडल यांत्रिकी विद्युत ऐनलॉग अन्य ऊर्जा डोमेन का एक उदाहरण है जो विभिन्न डोमेन में ऊर्जा संयुग्म जोड़े को अनुरूप बनाकर ऊर्जा डोमेन में ऊर्जा प्रवाह को संरक्षित करता है। यह यांत्रिक डोमेन के लिए प्रतिबाधा समानता के समान भूमिका निभाता है।
नामकरण
चुंबकीय परिपथ या तो भौतिक चुंबकीय परिपथ या मॉडल चुंबकीय परिपथ को संदर्भित कर सकता है। मॉडल गतिशील प्रणाली सिद्धांत मॉडल चुंबकीय परिपथ का भाग होता है, उनके नाम विशेषण चुंबकीय से प्रारंभ होते है, चूंकि इस सम्मेलन का सख्ती से पालन नहीं किया जाता है। मॉडल चुंबकीय परिपथ में तत्वों या गतिशील चर का भौतिक चुंबकीय परिपथ में घटकों के साथ एक-से-एक पत्राचार नहीं हो सकता है। मॉडल चुंबकीय परिपथ का भाग तत्वों और चर के प्रतीकों को एम की सबस्क्रिप्ट के साथ लिखा जा सकता है। उदाहरण के लिए, मॉडल परिपथ में एक चुंबकीय संधारित्र होता है।
विश्लेषण में आसानी के लिए संबद्ध विद्युत परिपथ में विद्युत तत्वों को चुंबकीय मॉडल में लाया जा सकता है। चुंबकीय परिपथ में मॉडल तत्व जो विद्युत तत्वों का प्रतिनिधित्व करते है, सामान्यतः विद्युत तत्वों के द्वैत (विद्युत परिपथ) होते है। ऐसा इसलिए है क्योंकि इस मॉडल में विद्युत और चुंबकीय डोमेन के बीच ट्रांसड्यूसर सामान्यतः जाइरेटर द्वारा दर्शाए जाते है। एक जाइरेटर एक तत्व को उसके दोहरे तत्व में बदल देता है। उदाहरण के लिए, एक चुंबकीय प्रवर्तन एक विद्युत धारिता का प्रतिनिधित्व कर सकता है।
चुंबकीय परिपथ और विद्युत परिपथ के बीच समानता का सारांश
निम्नलिखित तालिका विद्युत परिपथ सिद्धांत और चुंबकीय परिपथ सिद्धांत के बीच गणितीय समानता का सारांश प्रस्तुत करती है।
चुंबकीय | विद्युत | |||||
---|---|---|---|---|---|---|
नाम | प्रतीक | इकाइयों | नाम | प्रतीक | इकाइयों | |
मैग्नेटोमोटिव बल (एमएमएफ) | एम्पीयर-टर्न | वैद्युतवाहक बल (ईएमएफ) | वोल्ट | |||
चुंबकीय क्षेत्र | H | एम्पीयर/मीटर =
न्यूटन/वेबर |
विद्युत क्षेत्र | E | वोल्ट/मीटर =
न्यूटन/कूलम्ब | |
चुंबकीय प्रवाह | वेबर[lower-alpha 1] | विद्युत का आवेश | Q | कूलम्ब | ||
परिवर्तन की प्रवाह दर | वेबर/सेकंड = | विद्युत प्रवाह | कूलम्ब/सेकंड = एम्पेयर | |||
चुंबकीय प्रवेश | ओम = 1/सीमेंस | विद्युत प्रवेश | siemens = 1/ohm | |||
चुंबकीय चालन | ओम = 1/सीमेंस | विद्युत चालकता | siemens = 1/ohm | |||
चुंबकीय धारिता (धैर्य) | हेनरी | विद्युत धारिता | farad |
जाइरेटर
जाइरेटर एक नेटवर्क विश्लेषण में उपयोग किया जाने वाला दो-पोर्ट तत्व है। जाइरेटर ट्रांसफार्मर का पूरक होता है, जबकि एक ट्रांसफॉर्मर में, एक पोर्ट पर वोल्टेज दूसरे पोर्ट पर आनुपातिक वोल्टेज में बदल जाता है, जाइरेटर में, एक पोर्ट से वोल्टेज दूसरे पोर्ट के धारा में बदल जाता है।
जाइरेटर-संधारित्र मॉडल में जाइरेटर की भूमिका विद्युत ऊर्जा डोमेन और चुंबकीय ऊर्जा डोमेन के बीच ट्रांसड्यूसर के रूप में होती है। विद्युत क्षेत्र में एक ईएमएफ चुंबकीय क्षेत्र में एक एमएमएफ के अनुरूप होता है, और ऐसा रूपांतरण करने वाले ट्रांसड्यूसर को एक ट्रांसफार्मर के रूप में दर्शाया जाता है। चूँकि, वास्तविक विद्युत-चुंबकीय ट्रांसड्यूसर सामान्यतः जाइरेटर के रूप में व्यवहार करते है। चुंबकीय डोमेन से विद्युत डोमेन तक एक ट्रांसड्यूसर फैराडे के प्रवर्तन के नियम का पालन करता है, अर्थात, चुंबकीय प्रवाह के परिवर्तन की दर (इस समानता में एक चुंबकीय धारा) विद्युत डोमेन में आनुपातिक ईएमएफ उत्पन्न करती है। इसी तरह, विद्युत डोमेन से चुंबकीय डोमेन तक एक ट्रांसड्यूसर एम्पीयर के परिपथ नियम का पालन करती है, अर्थात, एक विद्युत प्रवाह एक एमएमएफ उत्पन्न करता है।
एन घुमाव की वाइंडिंग को एन ओम के घुमाव प्रतिरोध के साथ एक जाइरेटर द्वारा प्रतिरूपित किया जाता है।[1]: 100
ट्रांसड्यूसर जो चुंबकीय प्रवर्तन पर आधारित नहीं होता है, उन्हें जाइरेटर द्वारा दर्शाया नहीं जा सकता है। उदाहरण के लिए, एक प्रभाव सेंसर को एक ट्रांसफार्मर द्वारा प्रतिरूपित किया जाता है।
चुंबकीय वोल्टेज
चुंबकीय वोल्टेज, , मैग्नेटोमोटिव बल (एमएमएफ) का एक वैकल्पिक नाम है, (एसआई इकाई: एम्पेयर या एम्पेयर-टर्न), जो एक विद्युत परिपथ में विद्युत वोल्टेज के अनुरूप होता है।[4]: 42 [3]: 5 सभी लेखक चुंबकीय वोल्टेज शब्द का उपयोग नहीं करते है। बिंदु A और बिंदु B के बीच एक तत्व पर लगाया गया मैग्नेटोमोटिव बल चुंबकीय क्षेत्र की ऊर्जा के घटक के माध्यम से अभिन्न रेखा के बराबर होता है,
चुंबकीय धारा
चुंबकीय धारा, , प्रवाह के परिवर्तन की समय दर का एक वैकल्पिक नाम है, (SI इकाई: वेबर (इकाई)/सेकंड या वोल्ट), जो एक विद्युत परिपथ में विद्युत धारा के अनुरूप होता है।[2]: 2429 [4]: 37 भौतिक परिपथ में, , चुंबकीय विस्थापन धारा है।[4]: 37 क्रॉस सेक्शन के एक तत्व के माध्यम से बहने वाली चुंबकीय धारा, , चुंबकीय प्रवाह घनत्व का अभिन्न अंग क्षेत्र है
चुंबकीय धारिता
चुंबकीय धारिता पारगम्यता का एक वैकल्पिक नाम होता है, (SI इकाई: हेनरी (इकाई))। इसे मॉडल चुंबकीय परिपथ में एक संधारित्र द्वारा दर्शाया जाता है। कुछ लेखक चुंबकीय धारिता को दर्शाने के लिए का उपयोग करते है जबकि अन्य काउपयोग करते है और धारिता को पारगम्यता के रूप में देखते है। किसी तत्व की पारगम्यता एक व्यापक गुण होता है जिसे चुंबकीय प्रवाह के रूप में परिभाषित किया जाता है, , मैग्नेटोमोटिव बल द्वारा विभाजित तत्व की क्रॉस अनुभागीय सतह के माध्यम से, , है[3]: 6
- पारगम्यता (विद्युत चुंबकत्व) है,
- तत्व क्रॉस-सेक्शन है, और
- तत्व की लंबाई है.
चरण विश्लेषण के लिए, चुंबकीय पारगम्यता[5] और परमीन्स जटिल मूल्य होते है।[5][6]
धैर्य (विद्युत परिपथ) अरुचि का व्युत्क्रम है।
चुंबकीय प्रवर्तन
चुंबकीय परिपथ के जाइरेटर-संधारित्र मॉडल के संदर्भ में, चुंबकीय प्रवर्तन (एसआई इकाई: फैराड) एक विद्युत परिपथ में प्रवर्तन की समानता होती है।
चरण विश्लेषण के लिए चुंबकीय प्रवर्तन प्रतिक्रिया है:
- चुंबकीय प्रवर्तन है
- चुंबकीय परिपथ की कोणीय आवृत्ति है
सम्मिश्र रूप में यह एक धनात्मक काल्पनिक संख्या है:
चुंबकीय अधिष्ठापन की धारणा विद्युत परिपथ में अधिष्ठापन के अनुरूप जाइरेटर-संधारित्र मॉडल में परिपथ व्यवहार के विश्लेषण और गणना में नियोजित होती है।
एक चुंबकीय ऊर्जा प्रारंभ करनेवाला एक विद्युत संधारित्र का प्रतिनिधित्व कर सकता है।[4]: 43 विद्युत परिपथ में एक शंट संधारित्र, जैसे इंट्रा-वाइंडिंग संधारित्र को चुंबकीय परिपथ में एक श्रृंखला अधिष्ठापन के रूप में दर्शाया जा सकता है।
उदाहरण
तीन चरण ट्रांसफार्मर
यह उदाहरण जाइरेटर-संधारित्र दृष्टिकोण द्वारा तैयार किए गए तीन-चरण ट्रांसफार्मर को दिखाता है। इस उदाहरण में ट्रांसफार्मर में तीन प्राथमिक वाइंडिंग और तीन माध्यमिक वाइंडिंग है। चुंबकीय परिपथ सात अरुचि या अनुज्ञा तत्वों में विभाजित है। प्रत्येक वाइंडिंग को जाइरेटर द्वारा प्रतिरूपित किया जाता है। प्रत्येक जाइरेटर का घुमाव प्रतिरोध संबंधित वाइंडिंग पर घुमावों की संख्या के बराबर होता है। प्रत्येक पारगम्य तत्व को एक संधारित्र द्वारा प्रतिरूपित किया जाता है। फैराड में प्रत्येक संधारित्र का मान हेनरी (इकाई) के प्रवर्तन के समान होता है।
n1, n2, और n3 यह तीन प्राथमिक वाइंडिंग्स में घुमावों की संख्या होती है। n4, n5, और n6 यह तीन द्वितीयक वाइंडिंग्स में घुमावों की संख्या होती है। Φ1, पीएचआई2, और Φ3 तीन ऊर्ध्वाधर तत्वों में प्रवाह के समान होते है। वेबर्स में प्रत्येक पारगम्य तत्व में चुंबकीय प्रवाह संख्यात्मक रूप से कूलम्ब में सहयोगी धारिता में आवेश के बराबर होता है। प्रत्येक पारगम्य तत्व में ऊर्जा संबंधित संधारित्र ऊर्जा के समान होती है।
योजनाबद्ध ट्रांसफार्मर मॉडल एक तीन चरण जनरेटर और एक तीन चरण लोड दिखाता है।
गैप और लीकेज प्रवाह वाला ट्रांसफार्मर
जाइरेटर-संधारित्र दृष्टिकोण चुंबकीय परिपथ में रिसाव अधिष्ठापन और वायु अंतराल को समायोजित कर सकता है। अंतराल और रिसाव प्रवाह में एक पारगम्यता होती है जिसे संधारित्र के रूप में समकक्ष परिपथ में जोड़ा जा सकता है। अंतराल की पारगम्यता की गणना मूल तत्वों की तरह ही की जाती है, यदि एकता की सापेक्ष पारगम्यता का उपयोग किया जाता है। जटिल ज्यामिति के कारण रिसाव प्रवाह की पारगम्यता की गणना करना कठिन हो सकता है। इसकी गणना अन्य विचारों जैसे माप या विशिष्टताओं से की जा सकती है।
CPL और CSL क्रमशः प्राथमिक और द्वितीयक रिसाव प्रवर्तन का प्रतिनिधित्व करते है। CGAP वायु अंतराल अनुमति का प्रतिनिधित्व करता है।
चुंबकीय प्रतिबाधा
चुंबकीय जटिल प्रतिबाधा
चुंबकीय जटिल प्रतिबाधा, जिसे पूर्ण चुंबकीय प्रतिरोध भी कहा जाता है, एक जटिल सिनसुसॉइडल चुंबकीय (मैग्नेटोमोटिव बल) का भागफल है ) परिपथ पर और परिणामी जटिल सिनसुसॉइडल चुंबकीय धारा () परिपथ में चुंबकीय प्रतिबाधा विद्युत प्रतिबाधा के समान होता है। चुंबकीय जटिल प्रतिबाधा एसआई इकाई: सीमेंस (इकाई) द्वारा निर्धारित की जाती है:
जटिल चुंबकीय प्रतिबाधा को निम्नलिखित रूप में प्रस्तुत किया जा सकता है:
चुंबकीय प्रतिबाधा के बराबर है
चुंबकीय प्रभावी प्रतिरोध
चुंबकीय प्रभावी प्रतिरोध जटिल चुंबकीय प्रतिबाधा का वास्तविक विश्लेषण घटक होता है। इससे चुंबकीय परिपथ की चुंबकीय स्थितिज ऊर्जा खराब हो जाती है।[7][8] चुंबकीय परिपथ में सक्रिय ऊर्जा प्रभावी चुंबकीय प्रतिरोध के उत्पाद के बराबर होती है और चुंबकीय धारा का वर्ग है
चुंबकीय प्रतिक्रिया
चुंबकीय प्रतिक्रिया एक निष्क्रिय चुंबकीय परिपथ, या परिपथ के एक तत्व का पैरामीटर होता है, जो चुंबकीय जटिल प्रतिबाधा और चुंबकीय धारा के चुंबकीय प्रभावी प्रतिरोध के वर्गों के अंतर के वर्गमूल के बराबर होता है, जिसे प्लस चिह्न के साथ रेखांकित किया जा सकता है, यदि चुंबकीय धारा चरण में चुंबकीय तनाव से पीछे होते है, और चिह्न ऋण के साथ, यदि चुंबकीय धारा चरण में चुंबकीय तनाव से आगे होते है।
चुंबकीय प्रतिक्रिया [7][6][8] प्रत्यावर्ती धारा परिपथ के चुंबकीय जटिल प्रतिबाधा का घटक होता है, जो परिपथ में चुंबकीय धारा और चुंबकीय तनाव के बीच चरण बदलाव उत्पन्न करता है। इसे इकाइयों में मापा जाता है और द्वारा दर्शाया गया है (या ) यह प्रवर्तन हो सकता है या संधारित्र , जहाँ चुंबकीय धारा की कोणीय आवृत्ति है, एक परिपथ की चुंबकीय प्रवर्तनशीलता है, किसी परिपथ की चुंबकीय धारिता है श्रृंखला में जुड़े प्रवर्तन और धारिता के साथ एक अविकसित परिपथ की चुंबकीय प्रतिक्रिया इसके बराबर होती है: यदि , फिर प्रतिक्रिया और परिपथ में प्रतिध्वनि होती है। सामान्य स्थिति में जब कोई ऊर्जा अनुपस्थित होती है (), और चुंबकीय परिपथ में चरण बदलाव का कोण होता है तब चुंबकीय प्रतिक्रिया एक प्रत्यावर्ती धारा के परिपथ के लिए प्रतिरोध त्रिकोण के किनारे के रूप में उत्पन्न होती है।
समानता की सीमाएँ
चुंबकीय परिपथ और विद्युत परिपथ के बीच समानता की सीमाएँ निम्नलिखित सम्मलित है,
- सामान्य विद्युत परिपथों में धारा बहुत कम रिसाव के साथ परिपथ तक ही सीमित होती है। विशिष्ट चुंबकीय परिपथ में संपूर्ण चुंबकीय क्षेत्र चुंबकीय परिपथ तक ही सीमित नहीं होता है क्योंकि चुंबकीय पारगम्यता वैक्यूम पारगम्यता के बाहर भी उपस्थित होती है (वैक्यूम पारगम्यता देखें)। इस प्रकार, चुंबकीय प्रवाह के बाहर महत्वपूर्ण रिसाव प्रवाह हो सकता है। यदि मुख्य परिपथ की तुलना में रिसाव प्रवाह छोटा होता है, तो इसे अधिकांशतः अतिरिक्त तत्वों के रूप में दर्शाया जा सकता है। कठिन स्थितियों में, एक स्थानीकृत-तत्व मॉडल बिल्कुल भी उपयुक्त नहीं हो सकता है, और इसके अतिरिक्त फील्ड सिद्धांत (भौतिकी) का उपयोग किया जाता है।
- चुंबकीय परिपथ एक अरेखीय तत्व होता है, विद्युत परिपथ में धारिता के विपरीत, चुंबकीय परिपथ में पारगम्यता स्थिर नहीं होती है, लेकिन चुंबकीय क्षेत्र के आधार पर यह भिन्न होते है। उच्च चुंबकीय प्रवाह पर चुंबकीय परिपथ के लिए फेरोमैग्नेटिक सामग्री का उपयोग किया जाता है, जो चुंबकीय प्रवाह की वृद्धि को सीमित करता है, इसलिए इस स्तर पर पारगम्यता तेजी से कम हो जाती है। इसके अतिरिक्त, चुंबकीय सामग्रियों में प्रवाह हिस्टैरिसीस के अधीन होता है, यह एमएमएफ के इतिहास पर निर्भर होता है। चुंबकीय प्रवाह के स्रोत को बंद करने के बाद, अवशेष चुंबकत्व को चुंबकीय सामग्रियों में छोड़ दिया जाता है, जिससे बिना एमएमएफ के प्रवाह बनता है।
संदर्भ
- ↑ 1.0 1.1 1.2 Hamill, D.C. (1993). "Lumped equivalent circuits of magnetic components: the gyrator-capacitor approach". IEEE Transactions on Power Electronics. 8 (2): 97–103. Bibcode:1993ITPE....8...97H. doi:10.1109/63.223957.
- ↑ 2.0 2.1 Lambert, M.; Mahseredjian, J.; Martı´nez-Duró, M.; Sirois, F. (2015). "Magnetic Circuits Within Electric Circuits: Critical Review of Existing Methods and New Mutator Implementations". IEEE Transactions on Power Delivery. 30 (6): 2427–2434. doi:10.1109/TPWRD.2015.2391231. S2CID 38890643.
- ↑ 3.0 3.1 3.2 González, Guadalupe G.; Ehsani, Mehrdad (2018-03-12). "पावर-इनवेरिएंट मैग्नेटिक सिस्टम मॉडलिंग". International Journal of Magnetics and Electromagnetism. 4 (1): 1–9. doi:10.35840/2631-5068/6512. ISSN 2631-5068.
- ↑ 4.0 4.1 4.2 4.3 4.4 4.5 Mohammad, Muneer (2014-04-22). मल्टी-डोमेन एनर्जी डायनेमिक्स की एक जांच (PhD thesis).
- ↑ 5.0 5.1 Arkadiew W. Eine Theorie des elektromagnetischen Feldes in den ferromagnetischen Metallen. – Phys. Zs., H. 14, No 19, 1913, S. 928-934.
- ↑ 6.0 6.1 Popov, V. P. (1985). सर्किट के सिद्धांत के सिद्धांत (in Russian). M.: Higher School.
{{cite book}}
: CS1 maint: unrecognized language (link) - ↑ 7.0 7.1 Pohl, R. W. (1960). Elektrizitätslehre (in German). Berlin-Gottingen-Heidelberg: Springer-Verlag.
{{cite book}}
: CS1 maint: unrecognized language (link) - ↑ 8.0 8.1 कार्ल कुप्फमुलर|कुपफमुलर के. सैद्धांतिक विद्युत इंजीनियरिंग का परिचय, स्प्रिंगर-वेरलाग, 1959।