शीफ (गणित)

From Vigyanwiki
Revision as of 20:22, 13 February 2023 by alpha>Indicwiki (Created page with "{{Short description|Tool to track locally defined data attached to the open sets of a topological space}} {{About|sheaves on topological spaces|sheaves on a site|Grothendi...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक शीफ व्यवस्थित रूप से डेटा को ट्रैक करने के लिए एक उपकरण है (जैसे सेट (गणित) एस, एबेलियन समूह, रिंग (गणित) एस) एक टोपोलॉजिकल स्पेस के खुले सेट से जुड़ा हुआ है और उनके संबंध में स्थानीय रूप से परिभाषित किया गया है। उदाहरण के लिए, प्रत्येक खुले सेट के लिए, डेटा उस खुले सेट पर परिभाषित निरंतर फ़ंक्शन फ़ंक्शन (गणित) की अंगूठी हो सकती है। इस तरह के डेटा को अच्छी तरह से व्यवहार किया जाता है कि इसे छोटे खुले सेटों तक सीमित किया जा सकता है, और एक खुले सेट को सौंपा गया डेटा मूल खुले सेट को कवर करने वाले छोटे खुले सेटों के संग्रह को सौंपे गए संगत डेटा के सभी संग्रहों के बराबर है (सहजता से, हर टुकड़ा) डेटा इसके भागों का योग है)।

गणित का वह क्षेत्र जिसमें शेवों का अध्ययन किया जाता है, शीफ थ्योरी कहलाती है।

Sheaves को अवधारणात्मक रूप से सामान्य और अमूर्त गणितीय वस्तु के रूप में समझा जाता है। उनकी सही परिभाषा बल्कि तकनीकी है। उन्हें विशेष रूप से सेट के ढेर या रिंग के शेफ के रूप में परिभाषित किया जाता है, उदाहरण के लिए, खुले सेट को सौंपे गए डेटा के प्रकार के आधार पर।

एक शीफ से दूसरे में मैप (गणित) (या आकारिकी) भी होते हैं; ढेर (एक विशिष्ट प्रकार के, जैसे कि एबेलियन समूहों के ढेर) एक निश्चित स्थलीय स्थान पर उनके आकारिकी के साथ एक श्रेणी (गणित) बनाते हैं। दूसरी ओर, प्रत्येक निरंतर मानचित्र के लिए एक प्रत्यक्ष छवि फ़ैक्टर दोनों से जुड़ा हुआ है, एक फ़ंक्शन के डोमेन पर शेव और उनके आकारिकी को कोडोमेन पर शेव और आकारिता और विपरीत दिशा में संचालित एक व्युत्क्रम छवि ऑपरेटर दोनों से जुड़ा हुआ है। ये कारक, और उनमें से कुछ प्रकार, शीफ सिद्धांत के आवश्यक भाग हैं।

उनकी सामान्य प्रकृति और बहुमुखी प्रतिभा के कारण, ढेरों में टोपोलॉजी और विशेष रूप से बीजगणितीय ज्यामिति और अंतर ज्यामिति में कई अनुप्रयोग हैं। सबसे पहले, ज्यामितीय संरचनाएं जैसे कि अलग-अलग कई गुना या एक योजना (गणित) को अंतरिक्ष पर छल्ले के एक समूह के रूप में व्यक्त किया जा सकता है। ऐसे संदर्भों में, कई ज्यामितीय निर्माण जैसे वेक्टर बंडल या विभाजक (बीजगणितीय ज्यामिति) स्वाभाविक रूप से शीशों के संदर्भ में निर्दिष्ट होते हैं। दूसरा, ढेर एक बहुत ही सामान्य शेफ कोहोलॉजी के लिए रूपरेखा प्रदान करते हैं, जिसमें सामान्य टोपोलॉजिकल कोहोलॉजी सिद्धांत भी शामिल हैं जैसे कि एकवचन कोहोलॉजी। विशेष रूप से बीजगणितीय ज्यामिति और जटिल मैनिफोल्ड्स के सिद्धांत में, शीफ कॉहोलॉजी रिक्त स्थान के सामयिक और ज्यामितीय गुणों के बीच एक शक्तिशाली लिंक प्रदान करता है। शेव डी-मॉड्यूल के सिद्धांत के लिए आधार भी प्रदान करते हैं 'डी'-मॉड्यूल, जो अंतर समीकरणों के सिद्धांत के लिए आवेदन प्रदान करते हैं। इसके अलावा, टोपोलॉजिकल स्पेस की तुलना में अधिक सामान्य सेटिंग्स के लिए ढेरों के सामान्यीकरण, जैसे कि ग्रोथेंडिक टोपोलॉजी, ने गणितीय तर्क और संख्या सिद्धांत के लिए आवेदन प्रदान किए हैं।

परिभाषाएं और उदाहरण

कई गणितीय शाखाओं में, एक स्थलीय स्थान पर परिभाषित कई संरचनाएं (उदाहरण के लिए, एक अलग-अलग कई गुना) स्वाभाविक रूप से स्थानीयकृत या खुले सेट सबसेट तक सीमित हो सकते हैं : विशिष्ट उदाहरणों में निरंतर कार्य वास्तविक संख्या-मूल्यवान या जटिल संख्या-मूल्यवान कार्य शामिल हैं, -टाइम्स अलग करने योग्य समारोह (रियल-वैल्यू या कॉम्प्लेक्स-वैल्यू) फंक्शन, परिबद्ध समारोह रियल-वैल्यू फंक्शन, वेक्टर क्षेत्र और स्पेस पर किसी भी वेक्टर बंडल का अनुभाग (फाइबर बंडल)। डेटा को छोटे खुले सबसेट तक सीमित करने की क्षमता प्रीशेव्स की अवधारणा को जन्म देती है। मोटे तौर पर कहा जाए तो, शीव वे प्रीशेव होते हैं, जहां स्थानीय डेटा को वैश्विक डेटा से चिपकाया जा सकता है।

प्रीशेव्स

होने देना एक टोपोलॉजिकल स्पेस हो। सेट का एक प्रीशेफ पर निम्नलिखित डेटा के होते हैं:

  • प्रत्येक खुले सेट के लिए का , एक सेट . इस सेट को भी दर्शाया गया है . इस सेट के तत्वों को खंड कहा जाता है ऊपर . के खंड ऊपर के वैश्विक खंड कहलाते हैं .
  • खुले सेट के प्रत्येक समावेशन के लिए , एक समारोह . नीचे दिए गए कई उदाहरणों को ध्यान में रखते हुए, morphisms प्रतिबंध morphisms कहा जाता है। अगर , फिर इसका प्रतिबंध अक्सर निरूपित किया जाता है कार्यों के प्रतिबंध के अनुरूप।

दो अतिरिक्त (फंक्शनल) गुणों को पूरा करने के लिए प्रतिबंध आकारिकी की आवश्यकता होती है:

  • हर खुले सेट के लिए का , प्रतिबंध आकारिकी पहचान रूपवाद चालू है .
  • यदि हमारे पास तीन खुले समुच्चय हैं , फिर फ़ंक्शन संरचना

अनौपचारिक रूप से, दूसरा स्वयंसिद्ध कहता है कि इससे कोई फर्क नहीं पड़ता कि हम एक चरण में डब्ल्यू तक सीमित हैं या पहले वी तक सीमित हैं, फिर डब्ल्यू तक। इस परिभाषा का एक संक्षिप्त कार्यात्मक सुधार आगे नीचे दिया गया है।

प्रीशेव के कई उदाहरण विभिन्न प्रकार के कार्यों से आते हैं: कोई भी, कोई सेट असाइन कर सकता है निरंतर वास्तविक-मूल्यवान कार्यों पर. प्रतिबंध मानचित्र तब केवल एक सतत कार्य को प्रतिबंधित करके दिया जाता हैएक छोटे खुले उपसमुच्चय के लिए, जो फिर से एक सतत कार्य है। दो प्रीशेफ स्वयंसिद्धों की तुरंत जांच की जाती है, जिससे एक प्रीशेफ का उदाहरण मिलता है। इसे होलोमोर्फिक कार्यों के समूह तक बढ़ाया जा सकता है और चिकने कार्यों का एक समूह .

उदाहरणों का एक अन्य सामान्य वर्ग असाइन कर रहा है निरंतर वास्तविक-मूल्यवान कार्यों का सेट . इस प्रीशेफ को कॉन्स्टेंटस प्रीशेफ कहा जाता है और निरूपित किया जाता है .

ढेर

एक प्रीशेफ को देखते हुए, एक स्वाभाविक सवाल यह है कि एक खुले सेट पर इसके खंड किस हद तक हैंछोटे खुले सेटों के लिए उनके प्रतिबंधों द्वारा निर्दिष्ट किया गया है एक खुले आवरण का का. एक शीफ एक प्रीशेफ है जो निम्नलिखित दो अतिरिक्त स्वयंसिद्धों को संतुष्ट करता है:

  1. (इलाका) मान लीजिए एक खुला सेट है, का खुला आवरण है , और खंड हैं। अगर सभी के लिए , तब .
  2. (ग्लूइंग स्वयंसिद्ध) मान लीजिए एक खुला सेट है, का खुला आवरण है , और वर्गों का परिवार है। अगर सेक्शन के सभी जोड़े अपने डोमेन के ओवरलैप पर सहमत हैं, यानी अगर सभी के लिए , तो एक खंड मौजूद है ऐसा है कि सभी के लिए .

अनुभागजिनके अस्तित्व की गारंटी स्वयंसिद्ध 2 द्वारा दी जाती है, उन्हें अनुभागों का ग्लूइंग, संघटन या संयोजन कहा जाता हैi. अभिगृहीत 1 के अनुसार यह अद्वितीय है। धाराऔरस्वयंसिद्ध 2 के समझौते की पूर्व शर्त को पूरा करना अक्सर संगत कहा जाता है; इस प्रकार स्वयंसिद्ध 1 और 2 एक साथ बताते हैं कि जोड़ीदार संगत वर्गों के किसी भी संग्रह को एक साथ विशिष्ट रूप से चिपकाया जा सकता है। एक अलग प्रीशेफ, या मोनोप्रेसीफ, एक प्रीशेफ संतोषजनक स्वयंसिद्ध 1 है।[1] ऊपर उल्लिखित निरंतर कार्यों से युक्त प्रेसीफ एक शीफ है। निरंतर कार्यों को देखते हुए, यह दावा जांच करने के लिए कम हो जाता है जो चौराहों पर सहमत हैं , एक अनूठा निरंतर कार्य है जिसका प्रतिबंध बराबर है . इसके विपरीत, स्थिर प्रीशेफ आमतौर पर शीफ नहीं होता है क्योंकि यह खाली सेट पर स्थानीयता स्वयंसिद्ध को संतुष्ट करने में विफल रहता है (इसे निरंतर शीफ में अधिक विस्तार से समझाया गया है)।

प्रीशेव्स और शेव्स को आमतौर पर बड़े अक्षरों से दर्शाया जाता है, विशेष रूप से आम होने के नाते, संभवतः फ्रांसीसी भाषा के शब्द के लिए शीफ, फैसियो। सुलेख पत्रों का उपयोग जैसे भी आम है।

यह दिखाया जा सकता है कि एक शीफ निर्दिष्ट करने के लिए, अंतर्निहित स्थान के टोपोलॉजी के लिए आधार (टोपोलॉजी) के खुले सेटों के लिए अपने प्रतिबंध को निर्दिष्ट करने के लिए पर्याप्त है। इसके अलावा, यह भी दिखाया जा सकता है कि कवरिंग के खुले सेट के सापेक्ष उपरोक्त शीफ सिद्धांतों को सत्यापित करने के लिए पर्याप्त है। इस अवलोकन का उपयोग एक और उदाहरण बनाने के लिए किया जाता है जो बीजगणितीय ज्यामिति में महत्वपूर्ण है, अर्थात् अर्ध-सुसंगत शीफ|अर्ध-सुसंगत शीव। यहाँ विचाराधीन टोपोलॉजिकल स्पेस एक रिंग का स्पेक्ट्रम है। एक कम्यूटेटिव रिंग का स्पेक्ट्रम , जिनके बिंदु प्रमुख आदर्श हैं में . खुला सेट इस स्थान पर जरिस्की टोपोलॉजी के लिए एक आधार तैयार करें। एक दिया -मापांक , एक शीफ है, जिसे निरूपित किया जाता है युक्ति पर , जो संतुष्ट करता है

स्थानीयकरण (कम्यूटेटिव बीजगणित) पर .


ढेरों का एक और लक्षण वर्णन है जो पहले चर्चा के समतुल्य है। एक प्रेसीफ एक पूला है अगर और केवल अगर किसी खुले के लिए और कोई भी खुला कवर का , फाइबर उत्पाद है . यह लक्षण वर्णन ढेरों के निर्माण में उपयोगी है, उदाहरण के लिए, यदि एबेलियन शेव हैं, फिर शेव्स मोर्फिज्म की गिरी एक शीफ है, क्योंकि प्रोजेक्टिव लिमिट्स प्रोजेक्टिव लिमिट्स के साथ चलती हैं। दूसरी ओर, किसी भी उदाहरण पर विचार किए बिना, कोकर्नेल हमेशा एक शीफ नहीं होता है क्योंकि आगमनात्मक सीमा आवश्यक रूप से प्रोजेक्टिव सीमा के साथ नहीं चलती है। इसे ठीक करने का एक तरीका नोथेरियन टोपोलॉजिकल स्पेस पर विचार करना है; प्रत्येक खुले सेट कॉम्पैक्ट होते हैं ताकि कॉकरेल एक शीफ हो, क्योंकि परिमित प्रक्षेपी सीमाएं आगमनात्मक सीमाओं के साथ चलती हैं।

आगे के उदाहरण

एक सतत मानचित्र के अनुभागों का शीफ ​​

कोई भी निरंतर नक्शा टोपोलॉजिकल रिक्त स्थान एक शीफ निर्धारित करता है पर व्यवस्थित करके

ऐसे किसी भी का एक खंड (श्रेणी सिद्धांत) कहा जाता है, और यह उदाहरण ही कारण है कि तत्वों में सामान्यत: खंड कहलाते हैं। यह निर्माण विशेष रूप से महत्वपूर्ण है जब आधार स्थान पर एक फाइबर बंडल का प्रक्षेपण है। उदाहरण के लिए, चिकने कार्यों के ढेर तुच्छ बंडल के वर्गों के ढेर हैं। एक अन्य उदाहरण: वर्गों का पुलिंदा

वह पूला है जो किसी को भी सौंपा जाता हैपर जटिल लघुगणक की शाखाओं का सेट.

एक बिंदु दिया और एक एबेलियन समूह , गगनचुंबी इमारत का पुलिंदा निम्नानुसार परिभाषित किया गया है: यदि युक्त एक खुला सेट है , तब . अगर शामिल नहीं है , तब , तुच्छ समूह। प्रतिबंध मानचित्र या तो पहचान पर हैं , अगर दोनों खुले सेट में शामिल हैं , या शून्य नक्शा अन्यथा।

कई गुना पर ढेर

एक पर आयामी -कई गुना , कई महत्वपूर्ण शीशे हैं, जैसे कि का पुलिया -समय लगातार अलग-अलग कार्यों (साथ ). कुछ पर इसके सेक्शन खुले हैं हैं -कार्य . के लिए , इस शीफ को स्ट्रक्चर शीफ कहा जाता है और इसे निरूपित किया जाता है . अशून्य कार्य भी एक शीफ बनाते हैं, जिसे निरूपित किया जाता है . विभेदक रूप (डिग्री का ) भी एक शीफ बनाते हैं . इन सभी उदाहरणों में, प्रतिबंध रूपात्मक कार्यों या रूपों को प्रतिबंधित करके दिया जाता है।

असाइनमेंट भेज रहा है कॉम्पैक्ट रूप से समर्थित कार्यों के लिए एक शीफ नहीं है, क्योंकि सामान्य तौर पर, छोटे खुले उपसमुच्चय को पास करके इस संपत्ति को संरक्षित करने का कोई तरीका नहीं है। इसके बजाय, यह एक cosheaf, एक द्वैत (गणित) अवधारणा बनाता है जहां प्रतिबंध मानचित्र शीशों की तुलना में विपरीत दिशा में जाते हैं।[2] हालाँकि, इन सदिश स्थानों की दोहरी सदिश समष्टि लेने से एक शीफ मिलता है, वितरण का शीफ ​​(गणित)।

प्रीशेव जो शेव नहीं हैं

ऊपर वर्णित निरंतर प्रीशेफ के अतिरिक्त, जो आम तौर पर एक शीफ नहीं होता है, ऐसे प्रीशेव के और उदाहरण हैं जो शेव नहीं हैं:

  • होने देना असतत दो-बिंदु स्थान बनें | दो-बिंदु स्थलीय स्थान असतत टोपोलॉजी के साथ। प्रीशेफ को परिभाषित कीजिए निम्नलिखित नुसार:
    प्रतिबंध मानचित्र का प्रक्षेपण है इसके पहले निर्देशांक और प्रतिबंध मानचित्र पर का प्रक्षेपण है इसके दूसरे निर्देशांक पर। एक प्रीशेफ है जो अलग नहीं किया गया है: एक वैश्विक खंड तीन संख्याओं द्वारा निर्धारित किया जाता है, लेकिन उस खंड के मान अधिक होते हैं और उन संख्याओं में से केवल दो का निर्धारण करें। तो जबकि हम किन्हीं भी दो वर्गों को गोंद कर सकते हैं और , हम उन्हें विशिष्ट रूप से चिपका नहीं सकते।
  • होने देना वास्तविक रेखा बनो, और चलो परिबद्ध फलन सतत फलन का समुच्चय हो . यह शीफ नहीं है क्योंकि इसे चिपकाना हमेशा संभव नहीं होता है। उदाहरण के लिए, चलो सभी का सेट हो ऐसा है कि . पहचान समारोह प्रत्येक पर बंधा हुआ है . नतीजतन हमें एक खंड मिलता है पर . हालाँकि, ये खंड गोंद नहीं करते हैं, क्योंकि फ़ंक्शन वास्तविक रेखा से बंधा नहीं है। फलस्वरूप पूर्वशेफ है, परन्तु पूला नहीं। वास्तव में, अलग किया जाता है क्योंकि यह निरंतर कार्यों के पूले का एक उप-प्रीशेफ है।

=== जटिल विश्लेषणात्मक रिक्त स्थान और बीजगणितीय ज्यामिति === से ढेरों को प्रेरित करना ढेरों के लिए ऐतिहासिक प्रेरणाओं में से एक जटिल कई गुना अध्ययन से आया है,[3] जटिल विश्लेषणात्मक ज्यामिति,[4] और योजना (गणित) बीजगणितीय ज्यामिति से। ऐसा इसलिए है क्योंकि पिछले सभी मामलों में, हम एक टोपोलॉजिकल स्पेस पर विचार करते हैं एक साथ एक संरचना शीफ ​​के साथ इसे एक जटिल मैनिफोल्ड, जटिल विश्लेषणात्मक स्थान या योजना की संरचना देना। एक टोपोलॉजिकल स्पेस को शीफ से लैस करने का यह परिप्रेक्ष्य स्थानीय रूप से रिंग्ड स्पेस के सिद्धांत के लिए आवश्यक है (नीचे देखें)।

जटिल कई गुना के साथ तकनीकी चुनौतियां

शीशों को पेश करने के लिए मुख्य ऐतिहासिक प्रेरणाओं में से एक उपकरण का निर्माण करना था जो जटिल मैनिफोल्ड्स पर होलोमॉर्फिक फ़ंक्शन का ट्रैक रखता है। उदाहरण के लिए, एक कॉम्पैक्ट जगह कॉम्प्लेक्स मैनिफोल्ड पर (जटिल प्रक्षेप्य स्थान या एक सजातीय बहुपद के गायब होने वाले स्थान की तरह), एकमात्र होलोमोर्फिक फ़ंक्शन <ब्लॉककोट>स्थिर कार्य हैं।[5] इसका मतलब है कि दो कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड मौजूद हो सकते हैं जो आइसोमॉर्फिक नहीं हैं, लेकिन फिर भी वैश्विक होलोमोर्फिक कार्यों की उनकी अंगूठी को निरूपित किया गया है , आइसोमॉर्फिक हैं। इसकी तुलना चिकने मैनिफोल्ड से करें जहां हर मैनिफोल्ड है कुछ के अंदर एम्बेड किया जा सकता है , इसलिए इसके सुचारू कार्यों की अंगूठी से सुचारू कार्यों को प्रतिबंधित करने से आता है . जटिल कई गुना पर होलोमोर्फिक कार्यों की अंगूठी पर विचार करते समय एक और जटिलता काफी छोटा खुला सेट दिया जाता है , होलोमोर्फिक फ़ंक्शंस आइसोमोर्फिक होंगे . शेव इस जटिलता से निपटने के लिए एक प्रत्यक्ष उपकरण हैं क्योंकि वे अंतर्निहित टोपोलॉजिकल स्पेस पर होलोमोर्फिक संरचना का ट्रैक रखना संभव बनाते हैं। मनमाने ढंग से खुले उपसमुच्चय पर . इसका अर्थ है जैसा स्थैतिक रूप से अधिक जटिल हो जाता है, वलय चिपकाने से व्यक्त किया जा सकता है . ध्यान दें कि कभी-कभी इस शीफ को निरूपित किया जाता है या केवल , या और भी जब हम उस स्थान पर जोर देना चाहते हैं जो संरचना शीफ ​​से जुड़ा है।

ढेरों के साथ सबमनीफोल्ड्स को ट्रैक करना

एक जटिल सबमनीफोल्ड पर विचार करके ढेरों का एक और सामान्य उदाहरण बनाया जा सकता है . एक संबद्ध शीफ है जो एक खुला उपसमुच्चय लेता है और होलोमोर्फिक कार्यों की अंगूठी देता है . इस तरह की औपचारिकता बेहद शक्तिशाली पाई गई और बहुत सारे होमोलॉजिकल बीजगणित को प्रेरित करती है जैसे कि शीफ कोहोलॉजी एक प्रतिच्छेदन सिद्धांत के बाद सेरे इंटरसेक्शन फॉर्मूला से चौराहा संख्या

ढेरों के साथ संचालन

आकारिकी

मोटे तौर पर बोलियों के आकारिकी, उनके बीच के कार्यों के अनुरूप हैं। सेट के बीच एक फ़ंक्शन के विपरीत, जिसमें कोई अतिरिक्त संरचना नहीं है, शेवों के morphisms वे कार्य हैं जो शेवों में निहित संरचना को संरक्षित करते हैं। यह विचार निम्नलिखित परिभाषा में सटीक बनाया गया है।

होने देना और दो पूलों पर रहो . एक रूपवाद एक रूपवाद से मिलकर बनता है प्रत्येक खुले सेट के लिए का , इस शर्त के अधीन कि यह रूपवाद प्रतिबंधों के अनुकूल है। दूसरे शब्दों में, प्रत्येक खुले उपसमुच्चय के लिए एक खुले सेट का , निम्न आरेख क्रमविनिमेय आरेख है।

उदाहरण के लिए, व्युत्पन्न लेने से ढेरों का आकार मिलता है : वास्तव में, दिया गया (-समय लगातार अलग-अलग) समारोह (साथ में open), प्रतिबंध (एक छोटे से खुले सबसेट के लिए ) इसके व्युत्पन्न के व्युत्पन्न के बराबर है .

रूपवाद की इस धारणा के साथ, एक निश्चित स्थलीय स्थान पर ढेर हो जाता है एक श्रेणी (गणित) बनाएँ। एकरूपता की सामान्य स्पष्ट धारणाएं | मोनो-, अधिरूपता | एपी- और समाकृतिकता इसलिए ढेरों पर लागू किए जा सकते हैं। एक शीफ मोर्फिज्म एक समरूपता है (प्रतिक्रिया मोनोमोर्फिज्म) यदि और केवल यदि प्रत्येक एक आक्षेप (प्रतिक्रिया अंतःक्षेपी नक्शा) है। इसके अलावा, शीशों का एक रूपवाद एक समरूपता है अगर और केवल अगर वहाँ एक खुला आवरण मौजूद है ऐसा है कि सभी के लिए शीशों के समरूपता हैं . यह कथन, जो मोनोमोर्फिज़्म के लिए भी है, लेकिन प्रीशेव्स के लिए नहीं है, इस विचार का एक और उदाहरण है कि शेव एक स्थानीय प्रकृति के हैं।

संबंधित कथन एपिमोर्फिज्म (शेव के) के लिए नहीं हैं, और उनकी विफलता को शीफ कोहोलॉजी द्वारा मापा जाता है।

पूले का डंठल

डंठल एक पूले का एक बिंदु के चारों ओर एक पूले के गुणों को कैप्चर करता है , रोगाणु (गणित) का सामान्यीकरण। यहाँ, चारों ओर का अर्थ है कि, वैचारिक रूप से, बिंदु के छोटे और छोटे पड़ोस (गणित) को देखता है। बेशक, कोई भी पड़ोस काफी छोटा नहीं होगा, जिसके लिए किसी प्रकार की सीमा पर विचार करने की आवश्यकता होती है। अधिक सटीक रूप से, डंठल द्वारा परिभाषित किया गया है

के सभी खुले उपसमुच्चय पर सीधी सीमा दिए गए बिंदु से युक्त . दूसरे शब्दों में, डंठल का एक तत्व एक खंड द्वारा कुछ खुले पड़ोस के ऊपर दिया जाता है , और ऐसे दो वर्गों को समान माना जाता है यदि उनके प्रतिबंध एक छोटे पड़ोस पर सहमत हों।

प्राकृतिक रूपवाद एक खंड लेता है में इसके रोगाणु पर . यह रोगाणु (गणित) की सामान्य परिभाषा को सामान्य करता है।

कई स्थितियों में, पूले के डंठल को जानना ही पूले को नियंत्रित करने के लिए पर्याप्त होता है। उदाहरण के लिए, क्या ढेरों का एक रूपवाद एक मोनोमोर्फिज्म है या नहीं, एपिमोर्फिज्म, या आइसोमोर्फिज्म का परीक्षण डंठल पर किया जा सकता है। इस अर्थ में, एक पूला उसके डंठल से निर्धारित होता है, जो एक स्थानीय डेटा है। इसके विपरीत, एक शीफ में मौजूद वैश्विक जानकारी, यानी वैश्विक खंड, यानी अनुभाग पूरे अंतरिक्ष पर , आमतौर पर कम जानकारी रखते हैं। उदाहरण के लिए, एक कॉम्पैक्ट स्पेस कॉम्प्लेक्स मैनिफोल्ड के लिए , होलोमोर्फिक कार्यों के शीफ के वैश्विक खंड न्यायसंगत हैं , किसी भी होलोमोर्फिक फ़ंक्शन के बाद से

लिउविल के प्रमेय (जटिल विश्लेषण) द्वारा स्थिर है | लिउविल का प्रमेय।[5]


प्रीशेफ को शीफ में बदलना

प्रीशेफ में निहित डेटा को लेना और इसे शीफ के रूप में व्यक्त करना अक्सर उपयोगी होता है। यह पता चला है कि ऐसा करने का सबसे अच्छा तरीका है। यह एक प्रीशेफ लेता है और एक नया पूला उत्पन्न करता है शीफिफिकेशन या प्रीशेफ से जुड़ा शीफ ​​कहा जाता है . उदाहरण के लिए, स्थिर प्रीशेफ (ऊपर देखें) के शेफिफिकेशन को निरंतर शीफ कहा जाता है। इसके नाम के बावजूद, इसके खंड स्थानीय रूप से स्थिर कार्य हैं।

पुलिया के étalé स्थान का उपयोग करके बनाया जा सकता है , अर्थात् मानचित्र के अनुभागों के समूह के रूप में

पुली का एक और निर्माण एक कारक के माध्यम से आगे बढ़ता है प्रीशेव से प्रीशेव तक जो प्रीशेफ के गुणों में धीरे-धीरे सुधार करता है: किसी भी प्रीशेफ के लिए , एक अलग किया गया प्रीशेफ़ है, और किसी भी अलग किए गए प्रीशेफ़ के लिए , एक पुलिया है। संबद्ध पुलिया द्वारा दिया गया है .[6] विचार यह है कि शेफ का सर्वोत्तम संभव सन्निकटन है एक पुली द्वारा निम्नलिखित सार्वभौमिक संपत्ति का उपयोग करके सटीक बनाया गया है: पूर्वशेव का एक प्राकृतिक रूप है ताकि किसी भी शेफ के लिए और प्रीशेव्स का कोई भी आकार , ढेरों का एक अनूठा आकार है ऐसा है कि . वास्तव में शेव्स की श्रेणी से प्रीशेव्स की श्रेणी में शामिल करने वाले फ़ैक्टर (या भुलक्कड़ फ़ंक्टर) के लिए बाएं आसन्न फ़ैक्टर है, और आसन्न फलक # इकाई और संयोजन की सह-इकाई है। इस प्रकार, ढेरों की श्रेणी पूर्व-शीवों की जिराउड उपश्रेणी में बदल जाती है। यह स्पष्ट स्थिति यही कारण है कि शीफ मोर्फिज्म या शेव के टेंसर उत्पादों के कोकर्नेल के निर्माण में शीफिफिकेशन फंक्टर दिखाई देता है, लेकिन गुठली के लिए नहीं, कहते हैं।

उपशेव, भागफल ढेर

अगर एक शेफ का एक सबऑब्जेक्ट है एबेलियन समूहों का, फिर भागफल शीफ प्रीशेफ से संबंधित पूला है ; दूसरे शब्दों में, भागफल शीफ एबेलियन समूहों के ढेरों के सटीक अनुक्रम में फिट बैठता है;

(इसे शीफ एक्सटेंशन भी कहा जाता है।)

होने देना एबेलियन समूहों के ढेर बनो। सेट से ढेरों के morphisms की को एक एबेलियन समूह बनाता है (एबेलियन समूह संरचना द्वारा ). का पुलिया और , द्वारा चिह्नित,

एबेलियन समूहों का पूला है कहाँ पुलिया चालू है द्वारा दिए गए (ध्यान दें कि यहां शेफिफिकेशन की जरूरत नहीं है)। का प्रत्यक्ष योग और द्वारा दिया गया शीफ ​​है , और टेंसर उत्पाद और प्रीशेफ से संबंधित पूला है .

ये सभी ऑपरेशन रिंग्स के शीफ के ऊपर मॉड्यूल्स के शीफ तक फैले हुए हैं ; उपरोक्त विशेष मामला है जब निरंतर शीफ है .

मूल कार्यात्मकता

चूंकि (पूर्व-) शेफ का डेटा आधार स्थान के खुले उपसमुच्चय पर निर्भर करता है, इसलिए अलग-अलग टोपोलॉजिकल रिक्त स्थान पर ढेर एक-दूसरे से इस अर्थ में असंबंधित हैं कि उनके बीच कोई morphisms नहीं है। हालांकि, एक सतत नक्शा दिया दो टोपोलॉजिकल स्पेस के बीच, पुशफॉरवर्ड और पुलबैक रिलेटेड शेव ऑन उन लोगों के लिए और इसके विपरीत।

प्रत्यक्ष छवि

एक शीफ का पुशफॉरवर्ड (प्रत्यक्ष छवि फ़ैक्टर के रूप में भी जाना जाता है)। पर द्वारा परिभाषित शेफ है

यहाँ का खुला उपसमुच्चय है , ताकि इसकी प्रीइमेज इन ओपन हो की निरंतरता से . यह निर्माण गगनचुंबी इमारत के शीफ को ठीक करता है उपर्युक्त:

कहाँ समावेशन है, और सिंगलटन (गणित) पर एक शीफ के रूप में माना जाता है (द्वारा .

स्थानीय रूप से कॉम्पैक्ट रिक्त स्थान के बीच एक मानचित्र के लिए, कॉम्पैक्ट समर्थन वाली प्रत्यक्ष छवि प्रत्यक्ष छवि का उपशेफ है।[7] परिभाषा से, उन से मिलकर बनता है जिसका समर्थन (गणित) उचित मानचित्र पर है . अगर उचित है, फिर , लेकिन सामान्य तौर पर वे असहमत हैं।

उलटी छवि

पुलबैक या उलटा छवि फ़ैक्टर दूसरे तरीके से जाता है: यह एक शीफ बनाता है , निरूपित एक पूले से बाहर पर . अगर एक खुले उपसमुच्चय का समावेश है, तो उलटा छवि सिर्फ एक प्रतिबंध है, यानी, यह द्वारा दिया गया है एक खुले के लिए में . एक पुलिया (किसी जगह पर ) को स्थानीय रूप से स्थिर शीफ कहा जाता है यदि कुछ खुले उपसमुच्चय द्वारा ऐसा है कि का प्रतिबंध इन सभी खुले उपसमुच्चय स्थिर हैं। टोपोलॉजिकल रिक्त स्थान की एक विस्तृत श्रृंखला , इस तरह के ढेर मूल समूह के समूह प्रतिनिधित्व के लिए श्रेणियों की समानता हैं .

सामान्य मानचित्रों के लिए , की परिभाषा अधिक शामिल है; यह उलटा छवि फ़ैक्टर पर विस्तृत है। डंठल एक प्राकृतिक पहचान के मद्देनजर पुलबैक का एक आवश्यक विशेष मामला है, जहां ऊपर जैसा है:

अधिक आम तौर पर, डंठल संतुष्ट होते हैं .

शून्य से विस्तार

शामिल करने के लिए एक खुले उपसमुच्चय का, एबेलियन समूहों के एक समूह के शून्य से विस्तार परिभाषित किया जाता है

अगर और अन्यथा।

एक पुलाव के लिए पर , यह निर्माण एक अर्थ में पूरक है , कहाँ के पूरक का समावेश है :

के लिए में , और डंठल शून्य है, जबकि
के लिए में , और बराबर अन्यथा।

इसलिए ये कारक शीफ-सैद्धांतिक प्रश्नों को कम करने में उपयोगी होते हैं एक स्तरीकरण (गणित) के स्तर पर, यानी, एक अपघटन छोटे, स्थानीय रूप से बंद उपसमुच्चय में।

पूरक

अधिक सामान्य श्रेणियों में ढेर

ऊपर पेश किए गए (पूर्व-) ढेरों के अलावा, जहां केवल एक सेट है, कई मामलों में इन वर्गों पर अतिरिक्त संरचना का ट्रैक रखना महत्वपूर्ण है। उदाहरण के लिए, निरंतर कार्यों के शीफ के खंड स्वाभाविक रूप से एक वास्तविक सदिश स्थान बनाते हैं, और प्रतिबंध इन सदिश स्थानों के बीच एक रैखिक नक्शा है।

मनमानी श्रेणी में मूल्यों के साथ प्रीशेव करता है पहले खुले सेट की श्रेणी पर विचार करके परिभाषित किया गया है पोसेटल श्रेणी होना जिनकी वस्तुएं खुले सेट हैं और जिनके morphisms शामिल हैं। फिर एक -वैल्यूड प्रीशेफ ऑन से एक प्रतिपरिवर्ती फ़ैक्टर के समान है को . फ़ंक्शंस की इस श्रेणी में morphisms, जिसे प्राकृतिक परिवर्तनों के रूप में भी जाना जाता है, ऊपर परिभाषित morphisms के समान हैं, जैसा कि परिभाषाओं को उजागर करके देखा जा सकता है।

यदि लक्ष्य श्रेणी सभी सीमा (श्रेणी सिद्धांत) को स्वीकार करता है, ए -वैल्यूड प्रीशेफ एक शीफ है यदि निम्न आरेख प्रत्येक खुले कवर के लिए एक तुल्यकारक (गणित) है किसी भी खुले सेट का:

यहां पहला नक्शा प्रतिबंध मानचित्रों का उत्पाद है

और तीरों की जोड़ी प्रतिबंधों के दो सेटों के उत्पाद हैं

और

अगर एक एबेलियन श्रेणी है, इस स्थिति को एक सटीक अनुक्रम की आवश्यकता के द्वारा भी दोहराया जा सकता है

इस शीफ स्थिति का एक विशेष मामला होता है खाली सेट और इंडेक्स सेट होना खाली भी हो रहा है। इस मामले में, शेफ की स्थिति की आवश्यकता होती है में टर्मिनल वस्तु होना .

रिंग्ड स्पेस और मॉड्यूल के ढेर

कई ज्यामितीय विषयों में, बीजगणितीय ज्यामिति और अंतर ज्यामिति सहित, रिक्त स्थान छल्ले के एक प्राकृतिक शीफ के साथ आते हैं, जिसे अक्सर संरचना शीफ ​​कहा जाता है और इसके द्वारा निरूपित किया जाता है। . ऐसी जोड़ी चक्राकार स्थान कहा जाता है। कई प्रकार के रिक्त स्थान को निश्चित प्रकार के चक्राकार स्थान के रूप में परिभाषित किया जा सकता है। आमतौर पर, सभी डंठल संरचना शीफ ​​स्थानीय छल्ले हैं, इस मामले में जोड़ी को स्थानीय रूप से चक्राकार स्थान कहा जाता है।

उदाहरण के लिए, ए आयामी कई गुना एक स्थानीय रूप से चक्राकार स्थान है जिसकी संरचना शीफ ​​में होती है -के खुले उपसमुच्चय पर कार्य करता है . स्थानीय रूप से रिंग वाली जगह होने की संपत्ति इस तथ्य में अनुवाद करती है कि ऐसा फ़ंक्शन, जो एक बिंदु पर गैर-शून्य है , के पर्याप्त रूप से छोटे खुले पड़ोस पर भी गैर-शून्य है . कुछ लेखक वास्तव में वास्तविक (या जटिल) मैनिफोल्ड को स्थानीय रूप से रिंग वाले स्थान के रूप में परिभाषित करते हैं जो कि जोड़ी के लिए स्थानीय रूप से आइसोमॉर्फिक होते हैं जिसमें एक खुला उपसमुच्चय होता है (प्रति. ) एक साथ के पूले के साथ (प्रतिक्रिया। होलोमोर्फिक) कार्य।[8] इसी तरह, योजना (गणित), बीजगणितीय ज्यामिति में रिक्त स्थान की मूलभूत धारणा, स्थानीय रूप से चक्राकार स्थान हैं जो स्थानीय रूप से एक अंगूठी के स्पेक्ट्रम के लिए आइसोमोर्फिक हैं।

एक रिंग वाली जगह दी गई है, मॉड्यूल का एक शीफ एक शीफ है ऐसा कि हर खुले सेट पर का , एक -मॉड्यूल और खुले सेट के प्रत्येक समावेशन के लिए , प्रतिबंध मानचित्र प्रतिबंध मानचित्र के साथ संगत है : fs का प्रतिबंध किसका प्रतिबंध है से कई गुना किसी के लिए में और में .

सबसे महत्वपूर्ण ज्यामितीय वस्तुएँ मॉड्यूल के ढेर हैं। उदाहरण के लिए, वेक्टर बंडलों और स्थानीय रूप से मुक्त शीफ के बीच एक-से-एक पत्राचार होता है -मॉड्यूल। यह प्रतिमान वास्तविक वेक्टर बंडलों, जटिल वेक्टर बंडलों, या बीजगणितीय ज्यामिति में वेक्टर बंडलों पर लागू होता है (जहां इसमें सुचारू कार्य, होलोमोर्फिक कार्य या नियमित कार्य शामिल हैं)। विभेदक समीकरणों के समाधान के ढेर डी-मॉड्यूल हैं-मॉड्यूल, यानी अंतर ऑपरेटर के शीफ के ऊपर मॉड्यूल। किसी भी टोपोलॉजिकल स्पेस पर, निरंतर शीफ पर मॉड्यूल ऊपर के अर्थ में एबेलियन शीफ के समान हैं।

छल्लों के ढेरों पर मॉड्यूल के ढेरों के लिए एक अलग उलटा छवि फ़ैक्टर है। यह फ़ंक्टर आमतौर पर निरूपित किया जाता है और यह से अलग है . रिवर्स इमेज फंक्शन देखें।

मॉड्यूल के ढेरों के लिए परिमितता की स्थिति

क्रमविनिमेय अंगूठीों पर मॉड्यूल के लिए परिमितता की स्थिति मॉड्यूल के शीशों के लिए समान परिमितता की स्थिति को जन्म देती है: प्रत्येक बिंदु के लिए, यदि अंतिम रूप से उत्पन्न (प्रतिनिधि रूप से प्रस्तुत किया गया) कहा जाता है का , एक खुला पड़ोस मौजूद है का , एक प्राकृतिक संख्या (संभवतः निर्भर करता है ), और ढेरों का एक विशेषण रूपवाद (क्रमशः, इसके अलावा एक प्राकृतिक संख्या , और एक सटीक क्रम ।) एक सुसंगत मॉड्यूल की धारणा के समानांतर, एक सुसंगत शीफ कहा जाता है यदि यह परिमित प्रकार का है और यदि प्रत्येक खुले सेट के लिए है और ढेरों का हर आकार (आवश्यक रूप से विशेषण नहीं), की गिरी परिमित प्रकार का है। सुसंगत है अगर यह अपने आप में एक मॉड्यूल के रूप में सुसंगत है। मॉड्यूल की तरह, सुसंगतता सामान्य रूप से परिमित प्रस्तुति की तुलना में एक सख्त मजबूत स्थिति है। ओका जुटना प्रमेय में कहा गया है कि एक जटिल मैनिफोल्ड पर होलोमोर्फिक कार्यों का पुलिया सुसंगत है।

पूले का फैला हुआ स्थान

उपरोक्त उदाहरणों में यह नोट किया गया था कि कुछ ढेर स्वाभाविक रूप से खंडों के ढेर के रूप में होते हैं। वास्तव में, सेट के सभी ढेरों को फ्रेंच शब्द étalé से étalé स्पेस नामक एक टोपोलॉजिकल स्पेस के वर्गों के शेवों के रूप में दर्शाया जा सकता है। [etale], मतलब मोटे तौर पर फैला हुआ। अगर एक पुला खत्म हो गया है , फिर étalé अंतरिक्ष की एक टोपोलॉजिकल स्पेस है एक साथ एक स्थानीय होमोमोर्फिज्म के साथ ऐसा है कि वर्गों का पुलिंदा का है . अंतरिक्षआम तौर पर बहुत अजीब है, और भले ही पूलाएक प्राकृतिक सामयिक स्थिति से उत्पन्न होता है,कोई स्पष्ट सामयिक व्याख्या नहीं हो सकती है। उदाहरण के लिए, अगरएक सतत कार्य के वर्गों का समूह है , तब अगर और केवल अगर एक स्थानीय होमोमोर्फिज्म है।

फैली हुई जगहके डंठल से बनाया गया हैऊपर. एक सेट के रूप में, यह उनका असंयुक्त संघ है औरस्पष्ट नक्शा है जो मूल्य लेता है के डंठल पर ऊपर . की टोपोलॉजीनिम्नानुसार परिभाषित किया गया है। प्रत्येक तत्व के लिए और प्रत्येक , हमें एक रोगाणु मिलता है पर , निरूपित या . ये कीटाणु बिंदु निर्धारित करते हैं. किसी के लिए और , इन बिंदुओं का मिलन (सभी के लिए ) में खुला घोषित किया गया है. ध्यान दें कि प्रत्येक डंठल में असतत टोपोलॉजी सबस्पेस टोपोलॉजी के रूप में होती है। शीशों के बीच दो रूपवाद संबंधित étélé रिक्त स्थान का एक निरंतर मानचित्र निर्धारित करते हैं जो प्रक्षेपण मानचित्रों के साथ संगत है (इस अर्थ में कि प्रत्येक रोगाणु को एक ही बिंदु पर एक रोगाणु के लिए मैप किया जाता है)। यह निर्माण को एक मज़ेदार बनाता है।

उपरोक्त निर्माण सेट के ढेरों की श्रेणी के बीच श्रेणियों की समानता निर्धारित करता हैऔर étalé रिक्त स्थान की श्रेणी. एक ईटेल स्पेस का निर्माण एक प्रीशेफ पर भी लागू किया जा सकता है, इस मामले में ईटेल स्पेस के वर्गों का शीफ ​​दिए गए प्रीशेफ से जुड़े शीफ को पुनः प्राप्त करता है।

यह निर्माण सभी ढेरों को टोपोलॉजिकल स्पेस की कुछ श्रेणियों पर प्रतिनिधित्व योग्य फ़ंक्टर में बनाता है। ऊपर के रूप में, चलोएक पुला बनो, होने देनाइसका फैला हुआ स्थान हो, और रहने दो प्राकृतिक प्रक्षेपण हो। अतिश्रेणी पर विचार करें टोपोलॉजिकल स्पेस ओवर , अर्थात्, निश्चित निरंतर मानचित्रों के साथ टोपोलॉजिकल रिक्त स्थान की श्रेणी . इस श्रेणी की प्रत्येक वस्तु एक सतत मानचित्र है , और एक रूपवाद से को एक सतत नक्शा है जो दो मानचित्रों के साथ यात्रा करता है . एक functor

है

ऑब्जेक्ट भेजना को . उदाहरण के लिए, अगर एक खुले उपसमुच्चय का समावेश है, फिर

और एक बिंदु को शामिल करने के लिए , फिर

का डंठल है पर . एक प्राकृतिक समरूपता <ब्लॉककोट> है,जो यह दर्शाता है (प्रसारित स्थान के लिए) कारक का प्रतिनिधित्व करता है .निर्माण किया जाता है ताकि प्रक्षेपण मानचित्रएक कवरिंग मैप है। बीजगणितीय ज्यामिति में, एक आच्छादन मानचित्र के प्राकृतिक अनुरूप को ईटेल आकारिकी कहा जाता है। étalé से समानता के बावजूद, étale शब्द [etal] फ्रेंच में एक अलग अर्थ है। मुड़ना संभव है एक योजना (गणित) में औरयोजनाओं के एक रूपवाद में इस तरह सेएक ही सार्वभौमिक संपत्ति को बरकरार रखता है, लेकिनसामान्य रूप से एक ईटेल आकारिकी नहीं है क्योंकि यह अर्ध-परिमित नहीं है। हालाँकि, यह औपचारिक रूप से étale है।

एटेल स्पेस द्वारा शेव की परिभाषा लेख में पहले दी गई परिभाषा से पुरानी है। यह अभी भी गणित के कुछ क्षेत्रों जैसे गणितीय विश्लेषण में आम है।

शीफ कोहोलॉजी

संदर्भों में जहां खुला सेट निश्चित है, और शीफ को एक चर, सेट के रूप में माना जाता है भी अक्सर दर्शाया जाता है

जैसा कि ऊपर उल्लेख किया गया था, यह फ़ैक्टर एपिमोर्फिज्म को संरक्षित नहीं करता है। इसके बजाय, शीशों का एक एपिमोर्फिज्म निम्नलिखित संपत्ति वाला नक्शा है: किसी भी खंड के लिए एक आवरण है जहां <ब्लॉककोट> खुले उपसमुच्चय, जैसे कि प्रतिबंध की छवि में हैं . हालाँकि, स्वयं की छवि में होने की आवश्यकता नहीं है . इस घटना का एक ठोस उदाहरण घातीय मानचित्र है

होलोमोर्फिक कार्यों और गैर-शून्य होलोमोर्फिक कार्यों के समूह के बीच। यह नक्शा एक एपिमोर्फिज्म है, जो किसी भी गैर-शून्य होलोमोर्फिक फ़ंक्शन को कहने के बराबर है (कुछ खुले उपसमुच्चय पर , कहते हैं), स्थानीय रूप से एक जटिल लघुगणक को स्वीकार करता है, अर्थात, प्रतिबंधित करने के बाद उपयुक्त खुले उपसमुच्चय के लिए। हालाँकि, विश्व स्तर पर लघुगणक की आवश्यकता नहीं है।

शेफ कोहोलॉजी इस घटना को पकड़ती है। अधिक सटीक रूप से, एबेलियन समूहों के शीशों के सटीक अनुक्रम के लिए

(एनआई, अगर शिक्षा कर्नेल किसका है ), एक लंबा सटीक क्रम है

इस क्रम के माध्यम से, पहला कोहोलॉजी समूह के वर्गों के बीच मानचित्र की गैर-आक्षेपकता के लिए एक उपाय है और .

शीफ कोहोलॉजी के निर्माण के कई अलग-अलग तरीके हैं। Grothendieck (1957) शेफ कोहोलॉजी को परिभाषित करने के द्वारा उन्हें पेश किया गया है . यह विधि सैद्धांतिक रूप से संतोषजनक है, लेकिन, इंजेक्शन के प्रस्तावों पर आधारित होने के कारण, ठोस संगणनाओं में बहुत कम उपयोग होता है। ईश्वरीय समाधान एक अन्य सामान्य, लेकिन व्यावहारिक रूप से दुर्गम दृष्टिकोण है।

कम्प्यूटिंग शीफ कोहोलॉजी

विशेष रूप से मैनिफोल्ड्स पर ढेरों के संदर्भ में, शीफ कोहोलॉजी की गणना अक्सर मुलायम शीफ, ठीक पुलिया और पिलपिला पुलिया (फ्रेंच फ्लैस्क अर्थ फ्लैबी से फ्लैस्क शेव्स के रूप में भी जाना जाता है) द्वारा संकल्पों का उपयोग करके की जा सकती है। उदाहरण के लिए, एकता तर्क के विभाजन से पता चलता है कि कई गुना पर चिकनी कार्यों का शीफ ​​नरम होता है। उच्च कोहोलॉजी समूह के लिए मुलायम शीशों के लिए गायब हो जाते हैं, जो अन्य ढेरों के कोहोलॉजी की गणना करने का एक तरीका देता है। उदाहरण के लिए, डे रम परिसर निरंतर शीफ का एक संकल्प है किसी भी चिकने मैनिफोल्ड पर, इसलिए शीफ कोहोलॉजी इसके डॉ कहलमज गर्भाशय के बराबर है।

चेक कोहोलॉजी द्वारा एक अलग दृष्टिकोण है। सीच कोहोलॉजी शेव्स के लिए विकसित पहला कोहोलॉजी सिद्धांत था और यह ठोस गणनाओं के लिए उपयुक्त है, जैसे जटिल प्रोजेक्टिव स्पेस के सुसंगत शीफ कोहोलॉजी की गणना करना .[9] यह अंतरिक्ष के खुले उपसमुच्चय पर अनुभागों को अंतरिक्ष पर कोहोलॉजी कक्षाओं से संबंधित करता है। ज्यादातर मामलों में, सीच कोहोलॉजी एक ही कोहोलॉजी समूह की गणना करता है, जो कि व्युत्पन्न फ़ंक्टर कोहोलॉजी के रूप में होता है। हालांकि, कुछ पैथोलॉजिकल स्पेस के लिए, चेक कोहोलॉजी सही देगी लेकिन गलत उच्च कोहोलॉजी समूह। इसके आसपास पाने के लिए, जीन लुइस वेर्डियर ने hypercoverिंग विकसित की। हाइपरकवरिंग्स न केवल सही उच्च कोहोलॉजी समूह देते हैं बल्कि ऊपर उल्लिखित खुले उपसमुच्चय को किसी अन्य स्थान से कुछ morphisms द्वारा प्रतिस्थापित करने की अनुमति भी देते हैं। कुछ अनुप्रयोगों में यह लचीलापन आवश्यक है, जैसे कि पियरे डेलिग्ने की मिश्रित हॉज संरचनाओं का निर्माण।

कई अन्य सुसंगत शीफ कोहोलॉजी समूह एक एम्बेडिंग का उपयोग करते हुए पाए जाते हैं एक स्थान का ज्ञात कोहोलॉजी के साथ एक अंतरिक्ष में, जैसे , या कुछ भारित भारित प्रक्षेप्य स्थान प्रकार, इन परिवेशी स्थानों पर ज्ञात शीफ कोहोलॉजी समूहों को शेवों से संबंधित किया जा सकता है , दे रहा है . उदाहरण के लिए, समतल-वक्रों के सुसंगत शीफ कोहोलॉजी#शीफ कोहोलॉजी की गणना आसानी से मिल जाती है। इस स्थान में एक बड़ा प्रमेय हॉज संरचना है जो एक लेरे वर्णक्रमीय अनुक्रम का उपयोग करके पाया जाता है, जो डेलिग्ने द्वारा सिद्ध किया गया है।[10][11] अनिवार्य रूप से, -पृष्ठ शर्तों के साथ <ब्लॉककोट>शेफ कोहोलॉजी ऑफ़ ए चिकनी किस्म अनुमानित किस्म पतित, अर्थ . यह कोहोलॉजी समूहों पर विहित हॉज संरचना देता है . यह बाद में पाया गया कि इन कोहोलॉजी समूहों को पोंकारे अवशेष का उपयोग करके आसानी से स्पष्ट रूप से गणना की जा सकती है। जैकोबियन आदर्श देखें। इस प्रकार के प्रमेय बीजगणितीय किस्मों, अपघटन प्रमेय के कोहोलॉजी के बारे में सबसे गहरे प्रमेयों में से एक हैं, जो मिश्रित हॉज मॉड्यूल के लिए मार्ग प्रशस्त करते हैं।

कुछ कोहोलॉजी समूहों की गणना के लिए एक और स्वच्छ दृष्टिकोण बोरेल-बॉट-वील प्रमेय है, जो झूठ समूहों के इरेड्यूसिबल प्रतिनिधित्व के साथ झंडा कई गुना पर कुछ लाइन बंडलों के कोहोलॉजी समूहों की पहचान करता है। उदाहरण के लिए, इस प्रमेय का उपयोग प्रोजेक्टिव स्पेस और ग्रासमैन कई गुना पर सभी लाइन बंडलों के कोहोलॉजी समूहों की आसानी से गणना करने के लिए किया जा सकता है।

कई मामलों में ढेरों के लिए एक द्वैत सिद्धांत है जो पोंकारे द्वैत को सामान्य करता है। सुसंगत द्वैत और वर्डीयर द्वैत देखें।

ढेरों की व्युत्पन्न श्रेणियां

कुछ स्थान X पर, एबेलियन समूहों के ढेरों की श्रेणी की व्युत्पन्न श्रेणी, यहाँ के रूप में निरूपित की गई है निम्नलिखित संबंध के आधार पर, शीफ कोहोलॉजी के लिए वैचारिक आश्रय है:

के बीच का जोड़ , जो का बायाँ सन्निकट है (पहले से ही एबेलियन समूहों के शीशों के स्तर पर) एक संयोजन को जन्म देता है

(के लिए ),

कहाँ व्युत्पन्न कारक है। यह बाद वाला फंक्‍टर शीफ कोहोलॉजी की धारणा को समाहित करता है के लिए .

पसंद , कॉम्पैक्ट समर्थन के साथ प्रत्यक्ष छवि भी निकाला जा सकता है। निम्नलिखित समरूपतावाद के आधार पर के फाइबर (गणित) के कॉम्पैक्ट समर्थन के साथ कोहोलॉजी को पैरामीट्रिज करता है :

[12]

यह तुल्याकारिता आधार परिवर्तन प्रमेय का एक उदाहरण है। एक और संधि है

ऊपर दिए गए सभी फ़ैक्टरों के विपरीत, मुड़ (या असाधारण) उलटा छवि फ़ैक्टर सामान्य रूप से केवल व्युत्पन्न श्रेणी के स्तर पर परिभाषित किया गया है, अर्थात, फ़ैक्टर को एबेलियन श्रेणियों के बीच कुछ फ़ंक्टर के व्युत्पन्न फ़ंक्टर के रूप में प्राप्त नहीं किया जाता है। अगर और X आयाम n का एक चिकना कुंडा कई गुना है, फिर

[13]

यह संगणना, और द्वैत के साथ फ़ैक्टरों की अनुकूलता (वर्डियर द्वैत देखें) का उपयोग पोंकारे द्वैत की उच्च-भौंह स्पष्टीकरण प्राप्त करने के लिए किया जा सकता है। योजनाओं पर अर्ध-सुसंगत ढेरों के संदर्भ में, एक समान द्वैत है जिसे सुसंगत द्वैत के रूप में जाना जाता है।

विकृत शीफ में कुछ वस्तुएं हैं , यानी, ढेरों के परिसर (लेकिन सामान्य रूप से उचित नहीं)। वे विलक्षणता (गणित) की ज्यामिति का अध्ययन करने के लिए एक महत्वपूर्ण उपकरण हैं।[14]


सुसंगत ढेरों और ग्रोथेंडिक समूह की व्युत्पन्न श्रेणियां

पुलों की व्युत्पन्न श्रेणियों का एक अन्य महत्वपूर्ण अनुप्रयोग एक योजना पर सुसंगत शेफ की व्युत्पन्न श्रेणी के साथ है लक्षित . इसका उपयोग ग्रोथेंडिक ने अपने प्रतिच्छेदन सिद्धांत के विकास में किया था[15] व्युत्पन्न श्रेणियों और के-सिद्धांत का उपयोग करते हुए, कि उप-योजनाओं का प्रतिच्छेदन उत्पाद Grothendieck group|K-theory में

के रूप में दर्शाया गया है

कहाँ द्वारा परिभाषित सुसंगत ढेर हैं - उनके संरचना शीफ द्वारा दिए गए मॉड्यूल।

साइट्स और टोपोई

आंद्रे वील के वेइल अनुमानों ने कहा कि परिमित क्षेत्रों पर बीजगणितीय विविधता के लिए एक वेइल कोहोलॉजी सिद्धांत था जो रीमैन परिकल्पना का एक एनालॉग देगा। एक जटिल मैनिफोल्ड के कोहोलॉजी को स्थानीय रूप से स्थिर शीफ के शीफ कोहोलॉजी के रूप में परिभाषित किया जा सकता है यूक्लिडियन टोपोलॉजी में, जो एक निरंतर शीफ के शीफ कोहोलॉजी के रूप में सकारात्मक विशेषता में वेल कोहोलॉजी सिद्धांत को परिभाषित करने का सुझाव देता है। लेकिन इस तरह की विविधता पर एकमात्र शास्त्रीय टोपोलॉजी ज़ारिस्की टोपोलॉजी है, और ज़ारिस्की टोपोलॉजी में बहुत कम खुले सेट हैं, इतने कम हैं कि किसी भी ज़ारिस्की-निरंतर शीफ की कोहोलॉजी एक इरेड्यूसिबल किस्म पर गायब हो जाती है (डिग्री शून्य को छोड़कर)। एलेक्जेंडर ग्रोथेंडिक ने ग्रोथेंडिक टोपोलॉजी की शुरुआत करके इस समस्या को हल किया, जो कवरिंग की धारणा को स्वयंसिद्ध करता है। ग्रोथेंडिक की अंतर्दृष्टि यह थी कि शेफ की परिभाषा केवल एक टोपोलॉजिकल स्पेस के खुले सेट पर निर्भर करती है, व्यक्तिगत बिंदुओं पर नहीं। एक बार जब उन्होंने आवरण की धारणा को स्वयंसिद्ध कर लिया, तो खुले सेट को अन्य वस्तुओं द्वारा प्रतिस्थापित किया जा सकता था। एक प्रीशेफ इन वस्तुओं में से प्रत्येक को पहले की तरह डेटा में ले जाता है, और एक शीफ एक प्रीशेफ होता है जो कवर करने की हमारी नई धारणा के संबंध में ग्लूइंग स्वयंसिद्ध को संतुष्ट करता है। इसने ग्रोथेंडिक को ईटेल कोहोलॉजी और ℓ-एडिक कोहोलॉजी को परिभाषित करने की अनुमति दी, जो अंततः वील अनुमानों को साबित करने के लिए इस्तेमाल किया गया था।

ग्रोथेंडिक टोपोलॉजी वाली श्रेणी को साइट कहा जाता है। किसी साइट पर ढेरों की एक श्रेणी को टोपोस या ग्रोथेंडिक टोपोस कहा जाता है। एक टोपोस की धारणा को बाद में विलियम लॉवरे और माइल्स टियरनी द्वारा प्राथमिक टोपोस को परिभाषित करने के लिए अमूर्त किया गया था, जिसका गणितीय तर्क से संबंध है।

इतिहास

शीफ थ्योरी की पहली उत्पत्ति को पिन करना कठिन है - वे विश्लेषणात्मक निरंतरता के विचार के साथ सह-व्यापक हो सकते हैं[clarification needed]. सह-समरूपता पर आधारभूत कार्य से उभरने के लिए एक पहचानने योग्य, मुक्त खड़े सिद्धांत के लिए लगभग 15 साल लग गए।

  • 1936 एडुअर्ड चेक ने ओपन कवरिंग कंस्ट्रक्शन के नर्व का परिचय दिया, एक साधारण कॉम्प्लेक्स को ओपन कवरिंग से जोड़ने के लिए।
  • 1938 हस्लर व्हिटनी ने कोहोलॉजी की एक 'आधुनिक' परिभाषा दी, जेम्स वैडेल अलेक्जेंडर II|जे. डब्ल्यू अलेक्जेंडर और Kolmogorov ने सबसे पहले cochain को परिभाषित किया।
  • 1943 नॉर्मन स्टीनरोड ने स्थानीय गुणांकों के साथ होमोलॉजी पर प्रकाशित किया।
  • 1945 जॉन लेरे ने युद्ध के कैदी के रूप में किए गए काम को प्रकाशित किया, जो निश्चित बिंदु (गणित) को साबित करने से प्रेरित था। आंशिक अंतर समीकरण सिद्धांत के लिए आवेदन के लिए निश्चित बिंदु प्रमेय; यह शीफ थ्योरी और वर्णक्रमीय अनुक्रम की शुरुआत है।[16] (1955 में प्रकाशित) बीजगणितीय ज्यामिति में ढेरों का परिचय देता है। फ्रेडरिक हिर्जेब्रुक द्वारा इन विचारों का तुरंत उपयोग किया जाता है, जो टोपोलॉजिकल विधियों पर 1956 की एक प्रमुख पुस्तक लिखते हैं।
  • 1955 कान्सास में व्याख्यान में अलेक्जेंडर ग्रोथेंडिक एबेलियन श्रेणी और प्रीशेफ को परिभाषित करता है, और इंजेक्शन के प्रस्तावों का उपयोग करके सभी टोपोलॉजिकल रिक्त स्थान पर शीफ कोहोलॉजी के सीधे उपयोग की अनुमति देता है, जैसा कि व्युत्पन्न फ़ंक्टर हैं।
  • 1956 ऑस्कर ज़ारिस्की की रिपोर्ट बीजगणितीय शीफ सिद्धांत रेफरी>Zariski, Oscar (1956), "Scientific report on the second summer institute, several complex variables. Part III. Algebraic sheaf theory", Bulletin of the American Mathematical Society, 62 (2): 117–141, doi:10.1090/S0002-9904-1956-10018-9, ISSN 0002-9904</रेफरी>
  • 1957 ग्रोथेंडिक का ग्रोथेंडिक का तोहोकू पेपर

रेफरी>Grothendieck, Alexander (1957), "Sur quelques points d'algèbre homologique", The Tohoku Mathematical Journal, Second Series, 9 (2): 119–221, doi:10.2748/tmj/1178244839, ISSN 0040-8735, MR 0102537</ref> समजातीय बीजगणित को फिर से लिखता है; वह सुसंगत द्वैत को सिद्ध करता है (अर्थात, संभवतः गणितीय विलक्षणता बीजगणितीय किस्मों के लिए सेरे द्वैत)।

  • 1957 के बाद: ग्रोथेंडिक बीजगणितीय ज्यामिति की जरूरतों के अनुरूप शीफ सिद्धांत का विस्तार करता है, पेश करता है: योजना (गणित) और उन पर सामान्य ढेर, स्थानीय कोहोलॉजी, व्युत्पन्न श्रेणी (वर्डियर के साथ), और ग्रोथेंडिक टोपोलॉजी। होमोलॉजिकल बीजगणित में 'ग्रोथेंडिक के छह संचालन' के उनके प्रभावशाली योजनाबद्ध विचार भी सामने आते हैं।
  • 1958 शीफ थ्योरी पर रोजर गॉडमेंट की किताब प्रकाशित हुई। इस समय के आसपास मिकियो सातो ने अपने hyperfunction का प्रस्ताव दिया, जो कि शीफ-सैद्धांतिक प्रकृति का होगा।

इस बिंदु पर ढेर गणित का एक मुख्य धारा का हिस्सा बन गया था, जिसका उपयोग किसी भी तरह से बीजगणितीय टोपोलॉजी तक सीमित नहीं था। बाद में यह पता चला कि शीशों की श्रेणियों में तर्क अंतर्ज्ञानवादी तर्क है (इस अवलोकन को अब अक्सर क्रिपके-जॉयल सिमेंटिक्स के रूप में संदर्भित किया जाता है, लेकिन शायद इसे कई लेखकों के लिए जिम्मेदार ठहराया जाना चाहिए)।

यह भी देखें

टिप्पणियाँ

  1. Tennison, B. R. (1975), Sheaf theory, Cambridge University Press, MR 0404390
  2. Bredon (1997, Chapter V, §1)
  3. Demailly, Jean-Pierre. "Complex Analytic and Differential Geometry" (PDF). Archived (PDF) from the original on 4 Sep 2020. {{cite web}}: |archive-date= / |archive-url= timestamp mismatch (help)
  4. Cartan, Henri. "Variétés analytiques complexes et cohomologie" (PDF). Archived (PDF) from the original on 8 Oct 2020.
  5. 5.0 5.1 "differential geometry - Holomorphic functions on a complex compact manifold are only constants". Mathematics Stack Exchange. Retrieved 2020-10-07.
  6. SGA 4 II 3.0.5
  7. Iversen (1986, Chapter VII)
  8. Ramanan (2005)
  9. Hartshorne (1977), Theorem III.5.1.
  10. Deligne, Pierre (1971). "Théorie de Hodge : II". Publications Mathématiques de l'IHÉS (in English). 40: 5–57. doi:10.1007/BF02684692. S2CID 118967613.
  11. Deligne, Pierre (1974). "Théorie de Hodge : III". Publications Mathématiques de l'IHÉS (in English). 44: 5–77. doi:10.1007/BF02685881. S2CID 189777706.
  12. Iversen (1986, Chapter VII, Theorem 1.4)
  13. Kashiwara & Schapira (1994, Chapter III, §3.1)
  14. de Cataldo & Migliorini (2010)
  15. Grothendieck. "Formalisme des intersections sur les schema algebriques propres".
  16. Dieudonné, Jean (1989). बीजगणितीय और विभेदक टोपोलॉजी का इतिहास 1900-1960. Birkhäuser. pp. 123–141. ISBN 978-0-8176-3388-2.</रेफरी>
    • 1947 हेनरी कर्तन ने डे राम प्रमेय को शीफ विधियों द्वारा, आंद्रे वील के साथ पत्राचार में (डी राम-वेल प्रमेय देखें) पुन: सुधार किया। लेरे अपने पाठ्यक्रमों में बंद सेटों (बाद के कैरपेस) के माध्यम से एक शीफ परिभाषा देता है।
    • 1948 कार्टन संगोष्ठी में पहली बार शीफ सिद्धांत लिखा गया।
    • 1950 कार्टन संगोष्ठी से दूसरा संस्करण शीफ सिद्धांत: शीफ स्पेस (एस्पेस एटले) परिभाषा का उपयोग डंठल की संरचना के साथ किया जाता है। समर्थन (गणित) पेश किए जाते हैं, और सह-विज्ञान समर्थन के साथ। निरंतर मानचित्रण वर्णक्रमीय अनुक्रमों को जन्म देते हैं। उसी समय कियोशी हिल कई जटिल चरों के कार्य में आदर्शों के समूह के एक विचार (उसके निकट) का परिचय देता है।
    • 1951 कार्टन संगोष्ठी ओका के काम के आधार पर प्रमेयों ए और बी को सिद्ध करती है।
    • 1 9 53 विश्लेषणात्मक सिद्धांत में सुसंगत शीफ कोहोलॉजी # परिमित-आयामीता के लिए परिमितता प्रमेय कार्टन और जीन पियरे सेरे द्वारा सिद्ध किया गया है, जैसा कि सेरे द्वैत है।
    • 1954 सेरे का पेपर List_of_important_publications_in_mathematics#Faisceaux_Algébriques_Cohérents|Faisceaux algébriques cohérents
    रेफरी>Serre, Jean-Pierre (1955), "Faisceaux algébriques cohérents" (PDF), Annals of Mathematics, Second Series, 61 (2): 197–278, doi:10.2307/1969915, ISSN 0003-486X, JSTOR 1969915, MR 0068874


संदर्भ