अंतराल (गणित)

From Vigyanwiki
संख्या रेखा पर x + a का योग। x से बड़ी और x + से कम की सभी संख्याएं उस खुले अंतराल में आती हैं।

गणित में, (वास्तविक) अंतराल वास्तविक संख्या ओं का एक समुच्चय (गणित) होता है जिसमें समुच्चय की किन्हीं दो संख्याओं के बीच स्थित सभी वास्तविक संख्याएँ होती हैं। उदाहरण के लिए, संख्याओं का समुच्चय x संतुष्टि देने वाला 0 ≤ x ≤ 1 एक अंतराल है जिसमें 0, 1, और बीच में सभी नंबर। अंतरालों के अन्य उदाहरण संख्याओं का समुच्चय इस प्रकार हैं कि 0 < x < 1, सभी वास्तविक संख्याओं का समुच्चय , अऋणात्मक वास्तविक संख्याओं का समुच्चय, धनात्मक वास्तविक संख्याओं का समुच्चय, रिक्त समुच्चय और कोई भी सिंगलटन (गणित) (एक तत्व का समुच्चय)।

अभिन्न के सिद्धांत में वास्तविक अंतराल एक महत्वपूर्ण भूमिका निभाते हैं, क्योंकि वे सबसे सरल सेट हैं जिनकी लंबाई (या माप या आकार) को परिभाषित करना आसान है। माप की अवधारणा को वास्तविक संख्याओं के अधिक जटिल सेटों तक बढ़ाया जा सकता है, जिससे बोरेल माप और अंततः लेबेसेग माप तक पहुंच जाता है।

अंतराल अंकगणित के लिए केंद्रीय हैं, एक सामान्य संख्यात्मक विधि तकनीक जो अनिश्चितताओं, गणितीय अनुमानों और गोल त्रुटि की उपस्थिति में भी, मनमाने सूत्रों के लिए स्वचालित रूप से गारंटीकृत संलग्नक प्रदान करती है।

इसी तरह अंतराल को एक मनमाना कुल क्रम सेट पर परिभाषित किया जाता है, जैसे कि पूर्णांक या परिमेय संख्या एं। पूर्णांक अंतरालों का अंकन #पूर्णांक अंतराल माना जाता है।

शब्दावली

एक खुले अंतराल में इसके समापन बिंदु शामिल नहीं होते हैं, और कोष्ठक के साथ इंगित किया जाता है।[1] उदाहरण के लिए, (0,1) मतलब इससे बड़ा 0 और इससे कम 1. इसका मतलब है की (0,1) = {x | 0 < x < 1}. इस अंतराल को ]0,1[ द्वारा भी निरूपित किया जा सकता है, नीचे देखें।

एक बंद अंतराल एक अंतराल है जिसमें इसके सभी सीमा बिंदु शामिल होते हैं, और इसे वर्ग कोष्ठक के साथ दर्शाया जाता है।[1]उदाहरण के लिए, [0,1] का अर्थ है से बड़ा या उसके बराबर 0 और से कम या उसके बराबर 1.

एक आधे-खुले अंतराल में इसके केवल एक समापन बिंदु शामिल होते हैं, और खुले और बंद अंतराल के लिए संकेतन को मिलाकर निरूपित किया जाता है।[2] उदाहरण के लिए, (0,1] मतलब इससे बड़ा 0 और से कम या उसके बराबर 1, जबकि [0,1) का अर्थ है से बड़ा या उसके बराबर 0 और इससे कम 1.

एक पतित अंतराल कोई सिंगलटन सेट होता है (यानी, फॉर्म का अंतराल [a,a]).[2]कुछ लेखक इस परिभाषा में खाली सेट को शामिल करते हैं। एक वास्तविक अंतराल जो न तो खाली होता है और न ही पतित होता है, उसे उचित कहा जाता है, और इसमें असीम रूप से कई तत्व होते हैं।

एक अंतराल को बाएँ-बाँध या दाएँ-बाँधित कहा जाता है, यदि कोई वास्तविक संख्या है, जो क्रमशः, उसके सभी तत्वों से छोटी या बड़ी है। एक अंतराल को परिबद्ध कहा जाता है, यदि वह बाएँ और दाएँ-बाएँ दोनों हो; और इसे अन्यथा असीमित कहा जाता है। अंतराल जो केवल एक छोर पर बंधे होते हैं, उन्हें आधा-आधा कहा जाता है। रिक्त समुच्चय परिबद्ध है, और सभी वास्तविकों का समुच्चय ही एकमात्र अंतराल है जो दोनों सिरों पर असीमित है। परिबद्ध अंतराल को आमतौर पर परिमित अंतराल के रूप में भी जाना जाता है।

बाउंडेड अंतराल बंधा हुआ सेट हैं, इस अर्थ में कि उनका व्यास (जो कि अंतिम बिंदुओं के बीच पूर्ण अंतर के बराबर है) परिमित है। व्यास को अंतराल की लंबाई, चौड़ाई, माप, सीमा या आकार कहा जा सकता है। असीमित अंतरालों के आकार को आमतौर पर परिभाषित किया जाता है +∞, और खाली अंतराल के आकार को परिभाषित किया जा सकता है 0 (या अपरिभाषित छोड़ दिया)।

समापन बिंदुओं के साथ बंधे हुए अंतराल का केंद्र (मध्य बिंदु) a तथा b है (a + b)/2, और इसकी त्रिज्या आधी लंबाई है |a − b|/2. ये अवधारणाएं खाली या असीमित अंतराल के लिए अपरिभाषित हैं।

एक अंतराल को बायाँ-खुला कहा जाता है यदि और केवल यदि इसमें कोई न्यूनतम नहीं है (एक तत्व जो अन्य सभी तत्वों से छोटा है); राइट-ओपन अगर इसमें अधिकतम नहीं है; और खोलें अगर इसमें दोनों गुण हैं। अंतराल [0,1) = {x | 0 ≤ x < 1}, उदाहरण के लिए, बाएँ-बंद और दाएँ-खुला है। खाली सेट और सभी रियल का सेट खुला अंतराल है, जबकि गैर-नकारात्मक रीयल का सेट, दाएं-खुला है लेकिन बाएं-खुला अंतराल नहीं है। खुले अंतराल अपने मानक बिंदु-सेट टोपोलॉजी में वास्तविक रेखा के खुले सेट होते हैं, और खुले सेटों का आधार (टोपोलॉजी) बनाते हैं।

एक अंतराल को वाम-बंद कहा जाता है यदि इसमें न्यूनतम तत्व होता है, यदि इसमें अधिकतम होता है तो दायां-बंद होता है, और यदि इसमें दोनों होते हैं तो बस बंद हो जाता है। इन परिभाषाओं को आम तौर पर खाली सेट और (बाएं- या दाएं-) असीमित अंतराल को शामिल करने के लिए बढ़ाया जाता है, ताकि बंद अंतराल उस टोपोलॉजी में बंद सेट के साथ मेल खाता हो।

अंतराल का आंतरिक भाग I सबसे बड़ा खुला अंतराल है जो में निहित है I; यह अंकों का समुच्चय भी है I जो के अंतिम बिंदु नहीं हैं I. का बंद होना I सबसे छोटा बंद अंतराल है जिसमें शामिल है I; जो सेट भी है I अपने परिमित समापन बिंदुओं के साथ संवर्धित।

किसी भी सेट के लिए X वास्तविक संख्या, अंतराल संलग्नक या अंतराल अवधि X अद्वितीय अंतराल है जिसमें शामिल है X, और इसमें कोई अन्य अंतराल ठीक से शामिल नहीं है जिसमें भी शामिल है X.

एक अंतराल I अंतराल का उप-अंतराल है J यदि I का एक उपसमुच्चय है J. एक अंतराल I का एक उचित उप-अंतराल है J यदि I का एक उचित उपसमुच्चय है J.

परस्पर विरोधी शब्दावली पर टिप्पणी

शब्द खंड और अंतराल को साहित्य में दो अनिवार्य रूप से विपरीत तरीकों से नियोजित किया गया है, जिसके परिणामस्वरूप जब इन शब्दों का उपयोग किया जाता है तो अस्पष्टता होती है। गणित का विश्वकोश[3] दोनों समापन बिंदुओं (यानी, बंद अंतराल) को शामिल करने के लिए दोनों समापन बिंदुओं (यानी, खुले अंतराल) और खंड को बाहर करने के लिए अंतराल (एक क्वालीफायर के बिना) को परिभाषित करता है, जबकि रुडिन के गणितीय विश्लेषण के सिद्धांत[4] फॉर्म के सेट [ए, बी] अंतराल और फॉर्म के सेट (ए, बी) सेगमेंट भर में कॉल करता है। ये शब्द पुराने कार्यों में प्रकट होते हैं; आधुनिक ग्रंथ तेजी से अंतराल (खुले, बंद, या आधे खुले द्वारा योग्य) के पक्ष में हैं, भले ही समापन बिंदु शामिल हों या नहीं।

अंतराल के लिए सूचनाएं

के बीच संख्याओं का अंतराल a तथा b, समेत a तथा b, अक्सर निरूपित किया जाता है [a, b]. दो संख्याओं को अंतराल का अंतिम बिंदु कहा जाता है। उन देशों में जहां संख्याएं दशमलव अल्पविराम से लिखी जाती हैं, अस्पष्टता से बचने के लिए अर्धविराम का उपयोग विभाजक के रूप में किया जा सकता है।

समापन बिंदुओं को शामिल करना या छोड़ना

यह इंगित करने के लिए कि समापन बिंदुओं में से एक को सेट से बाहर रखा जाना है, संबंधित वर्ग ब्रैकेट को या तो कोष्ठक से बदला जा सकता है, या उलट दिया जा सकता है। दोनों नोटेशन अंतरराष्ट्रीय मानक आईएसओ 31-11 में वर्णित हैं। इस प्रकार, बिल्डर नोटेशन सेट करें में,

प्रत्येक अंतराल (a, a), [a, a), तथा (a, a] खाली सेट का प्रतिनिधित्व करता है, जबकि [a, a] सिंगलटन सेट को दर्शाता है{a}. कब a > b, सभी चार नोटेशन आमतौर पर खाली सेट का प्रतिनिधित्व करने के लिए लिए जाते हैं।

गणित में कोष्ठक और कोष्ठक के अन्य उपयोगों के साथ दोनों संकेतन ओवरलैप हो सकते हैं। उदाहरण के लिए, संकेतन (a, b) अक्सर सेट सिद्धांत में एक टपल को इंगित करने के लिए प्रयोग किया जाता है, विश्लेषणात्मक ज्यामिति और रैखिक बीजगणित में एक बिंदु (ज्यामिति) या वेक्टर (गणित) के निर्देशांक, या (कभी-कभी) बीजगणित में एक जटिल संख्या । यही कारण है कि निकोलस बॉरबाकि ने संकेतन की शुरुआत की ]a, b[ खुले अंतराल को निरूपित करने के लिए।[5] संकेतन [a, b] भी कभी-कभी आदेशित जोड़े के लिए उपयोग किया जाता है, खासकर कंप्यूटर विज्ञान में।

कुछ लेखक[who?] उपयोग ]a, b[ अंतराल के पूरक को निरूपित करने के लिए(a, b); अर्थात्, सभी वास्तविक संख्याओं का समुच्चय जो या तो से कम या उसके बराबर है a, या इससे अधिक या के बराबर b.

अनंत समापन बिंदु

कुछ संदर्भों में, एक अंतराल को विस्तारित वास्तविक संख्या रेखा के उपसमुच्चय के रूप में परिभाषित किया जा सकता है, सभी वास्तविक संख्याओं का समुच्चय −∞ तथा +∞.

इस व्याख्या में, संकेतन [−∞, b] , (−∞, b] , [a, +∞] , तथा [a, +∞) सभी अर्थपूर्ण और विशिष्ट हैं। विशेष रूप से, (−∞, +∞) सभी सामान्य वास्तविक संख्याओं के समुच्चय को दर्शाता है, जबकि [−∞, +∞] विस्तारित वास्तविकताओं को दर्शाता है।

साधारण वास्तविकताओं के संदर्भ में भी, कोई यह इंगित करने के लिए अनंत (गणित) समापन बिंदु का उपयोग कर सकता है कि उस दिशा में कोई सीमा नहीं है। उदाहरण के लिए, (0, +∞) धनात्मक वास्तविक संख्याओं का समुच्चय है, जिसे इस प्रकार भी लिखा जाता है . संदर्भ उपरोक्त कुछ परिभाषाओं और शब्दावली को प्रभावित करता है। उदाहरण के लिए, अंतराल (−∞, +∞) =  साधारण वास्तविकताओं के दायरे में बंद है, लेकिन विस्तारित वास्तविकताओं के दायरे में नहीं।

पूर्णांक अंतराल

कब a तथा b पूर्णांक हैं, संकेतन a, b⟧, or [a .. b] या {a .. b} या केवल a .. b, कभी-कभी के बीच सभी पूर्णांकों के अंतराल को इंगित करने के लिए प्रयोग किया जाता है a तथा b शामिल। संकेतन [a .. b] कुछ प्रोग्रामिंग भाषा ओं में उपयोग किया जाता है; पास्कल प्रोग्रामिंग भाषा में, उदाहरण के लिए, इसका उपयोग औपचारिक रूप से एक उपश्रेणी प्रकार को परिभाषित करने के लिए किया जाता है, जिसका उपयोग अक्सर एक ऐरे डेटा प्रकार के वैध अनुक्रमित परिवार की निचली और ऊपरी सीमा को निर्दिष्ट करने के लिए किया जाता है।

एक पूर्णांक अंतराल जिसमें एक परिमित निचला या ऊपरी समापन बिंदु होता है, उसमें हमेशा वह समापन बिंदु शामिल होता है। इसलिए, समापन बिंदुओं के बहिष्करण को स्पष्ट रूप से लिखकर दर्शाया जा सकता है a .. b − 1 , a + 1 .. b , या a + 1 .. b − 1. वैकल्पिक-कोष्ठक संकेतन जैसे [a .. b) या [a .. b[ पूर्णांक अंतराल के लिए शायद ही कभी उपयोग किया जाता है।[citation needed]


अंतराल का वर्गीकरण

वास्तविक संख्याओं के अंतरालों को नीचे सूचीबद्ध ग्यारह विभिन्न प्रकारों में वर्गीकृत किया जा सकता है[citation needed], कहाँ पे a तथा b वास्तविक संख्याएं हैं, और :

  • खाली:
  • पतित:
  • उचित और बाध्य:
    • खुला हुआ:
    • बंद किया हुआ:
    • बाएँ-बंद, दाएँ-खुले:
    • बाएँ-खुले, दाएँ-बंद:
  • बाएँ-बाध्य और दाएँ-अनबाउंड:
    • खुला छोड़ देना:
    • बाएं बंद:
  • बाएँ-अनबाउंड और राइट-बाउंडेड:
    • राइट-ओपन:
    • राइट-बंद:
  • दोनों सिरों पर असीम (एक साथ खुला और बंद): :

अंतराल के गुण

अंतराल ठीक के जुड़ाव उपसमुच्चय हैं . यह इस प्रकार है कि किसी भी निरंतर कार्य (टोपोलॉजी) द्वारा अंतराल की छवि भी एक अंतराल है। यह मध्यवर्ती मूल्य प्रमेय का एक सूत्रीकरण है।

अंतराल भी के उत्तल सेट हैं . एक उपसमुच्चय का अंतराल संलग्नक का उत्तल पतवार भी है .

अंतराल के किसी भी संग्रह का प्रतिच्छेदन हमेशा एक अंतराल होता है। दो अंतरालों का मिलन एक अंतराल होता है यदि और केवल यदि उनके पास एक गैर-रिक्त चौराहा है या एक अंतराल का एक खुला अंत-बिंदु दूसरे का एक बंद अंत-बिंदु है (उदाहरण के लिए, )

यदि एक मीट्रिक स्थान के रूप में देखा जाता है, इसकी खुली गेंद ें खुले बाउंडेड सेट हैं(c + r, c − r), और इसकी बंद गेंद ें बंद परिबद्ध सेट हैं[c + r, c − r].

कोई भी तत्वx एक अंतराल केI के विभाजन को परिभाषित करता हैI तीन अलग-अलग अंतरालों में I1, I2, I3: क्रमशः, के तत्वI से कम हैंx, सिंगलटन, और तत्व जो . से बड़े हैंx. भागों I1 तथा I3 दोनों गैर-रिक्त हैं (और गैर-रिक्त अंदरूनी हैं), यदि और केवल यदि x के इंटीरियर में हैI. यह ट्राइकोटॉमी (गणित) का अंतराल संस्करण है।

डायडिक अंतराल

एक dyadic अंतराल एक परिबद्ध वास्तविक अंतराल है जिसका समापन बिंदु हैं तथा , कहाँ पे तथा पूर्णांक हैं। संदर्भ के आधार पर, अंतराल में या तो समापन बिंदु शामिल हो सकता है या नहीं भी हो सकता है।

डायडिक अंतराल में निम्नलिखित गुण होते हैं:

  • एक डायडिक अंतराल की लंबाई हमेशा दो की पूर्णांक शक्ति होती है।
  • प्रत्येक dyadic अंतराल लंबाई के दुगुने के ठीक एक dyadic अंतराल में समाहित होता है।
  • प्रत्येक dyadic अंतराल आधा लंबाई के दो dyadic अंतराल द्वारा फैलाया जाता है।
  • यदि दो खुले डायडिक अंतराल ओवरलैप करते हैं, तो उनमें से एक दूसरे का सबसेट है।

dyadic अंतरालों में परिणामस्वरूप एक संरचना होती है जो एक अनंत बाइनरी ट्री को दर्शाती है।

डायडिक अंतराल संख्यात्मक विश्लेषण के कई क्षेत्रों के लिए प्रासंगिक हैं, जिनमें अनुकूली जाल शोधन , मल्टीग्रिड विधियों और तरंगिका शामिल हैं। ऐसी संरचना का प्रतिनिधित्व करने का एक अन्य तरीका पी-एडिक विश्लेषण है (के लिए p = 2).[6]


सामान्यीकरण

बहुआयामी अंतराल

कई संदर्भों में, एक-आयामी अंतराल को के सबसेट के रूप में परिभाषित किया गया है वह कार्तीय उत्पाद है अंतराल, , प्रत्येक समन्वय अक्ष पर एक।

के लिये , इसे एक वर्ग या आयत से घिरा क्षेत्र माना जा सकता है, जिसकी भुजाएँ निर्देशांक अक्षों के समानांतर होती हैं, जो इस बात पर निर्भर करता है कि अंतराल की चौड़ाई समान है या नहीं; इसी तरह, के लिए , इसे एक अक्ष-संरेखित घन या एक आयताकार घनाभ से घिरे क्षेत्र के रूप में माना जा सकता है। उच्च आयामों में, का कार्टेशियन उत्पाद अंतराल एक एन-आयामी अंतरिक्ष से घिरा है | एन-आयामी अतिविम या हाइपररेक्टेंगल

ऐसे अंतराल का एक पहलू किसी गैर-पतित अंतराल कारक को बदलने का परिणाम है एक परिमित अंतराल से युक्त एक पतित अंतराल द्वारा . के चेहरे समावेश खुद और उसके सभी पहलुओं के चेहरे। के कोने वे फलक हैं जिनमें का एक बिंदु होता है .

जटिल अंतराल

सम्मिश्र संख्याओं के अंतराल को जटिल तल के क्षेत्रों के रूप में परिभाषित किया जा सकता है, या तो आयत या डिस्क (गणित) [7]


टोपोलॉजिकल बीजगणित

अंतराल को विमान के बिंदुओं से जोड़ा जा सकता है, और इसलिए अंतराल के क्षेत्रों को विमान के क्षेत्र (गणितीय विश्लेषण) से जोड़ा जा सकता है। आम तौर पर, गणित में एक अंतराल वास्तविक संख्याओं के प्रत्यक्ष उत्पाद R × R से लिए गए एक क्रमबद्ध जोड़े (x, y) से मेल खाता है, जहां अक्सर यह माना जाता है कि y> x। गणितीय संरचना के प्रयोजनों के लिए, इस प्रतिबंध को त्याग दिया गया है,[8] और उलटे अंतराल जहां y - x <0 की अनुमति है। फिर, सभी अंतरालों के संग्रह [x, y] को मॉड्यूल के प्रत्यक्ष योग द्वारा गठित टोपोलॉजिकल रिंग के साथ पहचाना जा सकता है # स्वयं के साथ R के बीजगणित का प्रत्यक्ष योग, जहां जोड़ और गुणा को घटक-वार परिभाषित किया गया है।

प्रत्यक्ष योग बीजगणित इसके दो आदर्श (रिंग थ्योरी) हैं, { [x,0] : x ∈ R } और { [0,y] : y ∈ R }। इस बीजगणित का पहचान तत्व संघनित अंतराल [1,1] है। यदि अंतराल [x,y] किसी एक आदर्श में नहीं है, तो इसका गुणन प्रतिलोम [1/x, 1/y] है। सामान्य टोपोलॉजी से संपन्न, अंतराल का बीजगणित एक टोपोलॉजिकल रिंग बनाता है। इस वलय की इकाइयों के समूह में चार चतुर्भुज (प्लेन ज्योमेट्री) होते हैं जो इस मामले में कुल्हाड़ियों, या आदर्शों द्वारा निर्धारित होते हैं। इस समूह का पहचान घटक चतुर्थांश I है।

प्रत्येक अंतराल को उसके मध्य बिंदु के चारों ओर एक सममित अंतराल माना जा सकता है। एम वार्मस द्वारा 1956 में प्रकाशित एक पुनर्विन्यास में, संतुलित अंतरालों की धुरी [x, -x] का उपयोग अंतरालों के अक्ष के साथ किया जाता है [x,x] जो एक बिंदु तक कम हो जाता है। प्रत्यक्ष योग के बजाय , अंतराल की अंगूठी की पहचान की गई है[9] पहचान के माध्यम से एम। वार्मस और डी। एच। लेहमर द्वारा विभाजित-जटिल संख्या विमान के साथ

z = (x + y)/2 + j (x - y)/2.

विमान का यह रैखिक मानचित्रण, जो एक वलय समरूपता की मात्रा है, विमान को एक गुणक संरचना प्रदान करता है जिसमें सामान्य जटिल अंकगणित के कुछ समानताएं होती हैं, जैसे ध्रुवीय अपघटन#वैकल्पिक तलीय अपघटन।

यह भी देखें

संदर्भ

  1. 1.0 1.1 "अंतराल". www.mathsisfun.com. Retrieved 2020-08-23.
  2. 2.0 2.1 Weisstein, Eric W. "मध्यान्तर". mathworld.wolfram.com (in English). Retrieved 2020-08-23.
  3. "अंतराल और खंड - गणित का विश्वकोश". www.encyclopediaofmath.org. Archived from the original on 2014-12-26. Retrieved 2016-11-12.
  4. Rudin, Walter (1976). गणितीय विश्लेषण के सिद्धांत. New York: McGraw-Hill. pp. 31. ISBN 0-07-054235-X.
  5. "खुले अंतराल (x, y) और के लिए अमेरिकी और फ्रेंच संकेतन अलग क्यों है। ]x, y'[?". hsm.stackexchange.com. Retrieved 28 April 2018.
  6. Kozyrev, Sergey (2002). "तरंगिका सिद्धांत [[:Template:Mvar . के रूप में]]-adic spectral analysis". Izvestiya RAN. Ser. Mat. 66 (2): 149–158. arXiv:math-ph/0012019. Bibcode:2002IzMat..66..367K. doi:10.1070/IM2002v066n02ABEH000381. S2CID 16796699. Retrieved 2012-04-05. {{cite journal}}: URL–wikilink conflict (help)
  7. Complex interval arithmetic and its applications, Miodrag Petković, Ljiljana Petković, Wiley-VCH, 1998, ISBN 978-3-527-40134-5
  8. Kaj Madsen (1979) Review of "Interval analysis in the extended interval space" by Edgar Kaucher[permanent dead link] from Mathematical Reviews
  9. D. H. Lehmer (1956) Review of "Calculus of Approximations"[permanent dead link] from Mathematical Reviews


ग्रन्थसूची


बाहरी संबंध