ऑक्सोहालाइड

From Vigyanwiki
Revision as of 14:14, 24 March 2023 by alpha>Neetua08

रसायन विज्ञान में, आणविक ऑक्सोहैलाइड्स (ऑक्सीहैलाइड्स) रासायनिक यौगिकों का एक समूह है जिसमें ऑक्सीजन और हलोजन दोनों परमाणु एक अणु में एक अन्य रासायनिक तत्व A से जुड़े होते हैं। उनके पास सामान्य सूत्र है AOmXn, जहाँ X = एक अधातु तत्त्व (F), क्लोरीन (Cl), ब्रोमिन (Br), और/या आयोडीन (I)। तत्व A एक मुख्य समूह तत्व, एक संक्रमण तत्व या एक्टिनाइड हो सकता है। शब्द ऑक्सोहैलाइड, या ऑक्सीहैलाइड, समान समग्र रासायनिक सूत्र वाले खनिजों और अन्य क्रिस्टलीय पदार्थों को भी संदर्भित कर सकते हैं, लेकिन एक आयनिक क्रिस्टल संरचना रखते हैं।

संश्लेषण

क्रोमाइल क्लोराइड तरल और वाष्प

ऑक्सोhalide ्स को ऑक्साइड और हलाइड्स के बीच मध्यवर्ती यौगिकों के रूप में देखा जा सकता है। संश्लेषण के तीन सामान्य तरीके हैं:[1]

  • हैलाइड का आंशिक ऑक्सीकरण:
    • इस उदाहरण में, ऑक्सीकरण अवस्था दो से बढ़ जाती है और विद्युत आवेश अपरिवर्तित रहता है।
  • एक ऑक्साइड का आंशिक हलोजन:
  • ऑक्साइड प्रतिस्थापन:

इसके अलावा, हैलोजन विनिमय प्रतिक्रियाओं द्वारा विभिन्न ऑक्सोहैलाइड्स बनाए जा सकते हैं और इस प्रतिक्रिया से मिश्रित ऑक्सोहैलाइड्स का निर्माण भी हो सकता है जैसे POFCl2 और CrO2FCl.

गुण

ऑक्साइड या हलाइड के संबंध में, किसी तत्व ए के दिए गए ऑक्सीकरण राज्य के लिए, यदि दो हलोजन परमाणु एक ऑक्सीजन परमाणु को प्रतिस्थापित करते हैं, या इसके विपरीत, अणु पर समग्र प्रभार अपरिवर्तित होता है और केंद्रीय परमाणु की समन्वय संख्या एक से कम हो जाती है . उदाहरण के लिए, दोनों फास्फोरस ऑक्सीक्लोराइड (POCl3) और फास्फोरस पेंटाक्लोराइड, (PCl5) +5 ऑक्सीकरण अवस्था में फास्फोरस के तटस्थ सहसंयोजक यौगिक हैं। यदि एक ऑक्सीजन परमाणु को हलोजन परमाणु द्वारा प्रतिस्थापित किया जाता है तो आवेश +1 से बढ़ जाता है, लेकिन समन्वय संख्या अपरिवर्तित रहती है। यह केंद्रित सल्फ्यूरिक एसिड के साथ क्रोमेट और डाइक्रोमेट नमक और पोटेशियम क्लोराइड के मिश्रण की प्रतिक्रिया से स्पष्ट होता है।

उत्पादित क्रोमाइल क्लोराइड में कोई विद्युत आवेश नहीं होता है और यह एक वाष्पशील सहसंयोजक अणु होता है जिसे प्रतिक्रिया मिश्रण से आसवित किया जा सकता है।[2] उच्च ऑक्सीकरण राज्यों में तत्वों के ऑक्सोहैलाइड मजबूत ऑक्सीकरण एजेंट होते हैं, जिनके ऑक्सीकरण शक्ति संबंधित ऑक्साइड या हैलाइड के समान होती है। अधिकांश ऑक्सोहैलाइड आसानी से हाइड्रोलिसिस होते हैं। उदाहरण के लिए, क्रोमाइल क्लोराइड को ऊपर सिंथेटिक प्रतिक्रिया के विपरीत क्रोमेट में हाइड्रोलाइज्ड किया जाता है। इस प्रतिक्रिया के लिए प्रेरक बल ए-ओ बॉन्ड का निर्माण होता है जो ए-सीएल बॉन्ड से अधिक मजबूत होते हैं। यह प्रतिक्रिया के लिए गिब्स मुक्त ऊर्जा परिवर्तन में अनुकूल तापीय धारिता योगदान देता है[3] कई ऑक्सोहैलाइड लुईस एसिड के रूप में कार्य कर सकते हैं। यह विशेष रूप से समन्वय संख्या 3 या 4 के ऑक्सोहैलाइड्स के साथ होता है, जो लुईस बेस से एक या एक से अधिक इलेक्ट्रॉन जोड़े को स्वीकार करते हुए 5- या 6-निर्देशांक बन जाते हैं। ऑक्सोहैलाइड आयन जैसे [VOCl4]2− को ऑक्सोहैलाइड के एसिड-बेस कॉम्प्लेक्स के रूप में देखा जा सकता है (VOCl2) लुईस बेस के रूप में कार्य करने वाले अधिक हलाइड आयनों के साथ। एक और उदाहरण है VOCl2 जो त्रिकोणीय द्विध्रुवीय परिसर बनाता है VOCl2(N(CH3)3)2 बेस ट्राइमिथाइलमाइन के साथ।[4] कई ऑक्सोहैलाइड्स की कंपन स्पेक्ट्रोस्कोपी को विस्तार से सौंपा गया है। वे आपेक्षिक बंध सामर्थ्य पर उपयोगी जानकारी देते हैं। उदाहरण के लिए, में CrO2F2, Cr–O स्ट्रेचिंग कंपन 1006 सेमी पर हैं-1 और 1016 सेमी−1 और Cr–F स्ट्रेचिंग कंपन 727 सेमी पर हैं-1 और 789 सेमी-1. O और F परमाणुओं के विभिन्न द्रव्यमानों के कारण यह अंतर बहुत अधिक है। बल्कि, यह दर्शाता है कि Cr-O बंध Cr-F बंध की तुलना में अधिक प्रबल है। एम-ओ बॉन्ड को आम तौर पर डबल बॉन्ड माना जाता है और यह एम-ओ बॉन्ड लंबाई के मापन द्वारा समर्थित है। इसका तात्पर्य है कि तत्व ए और ओ एक σ बंधन और एक π बंधन द्वारा एक साथ रासायनिक बंधन हैं।[5] उच्च ऑक्सीकरण अवस्थाओं में तत्वों के ऑक्सोहैलाइड लिगैंड से धातु चार्ज-ट्रांसफर कॉम्प्लेक्स (एलएमसीटी) संक्रमणों के कारण तीव्रता से रंगीन होते हैं।[6]

बोरॉन टेफलेट।
  Boron
  Oxygen
  Tellurium
  Fluorine

मुख्य समूह तत्व

सल्फ्यूरिल फ्लोराइड
F5AOAF5 (ए = एस, से, ते)

*कार्बन समूह: कार्बन कार्बन ऑक्सोहैलाइड COX2, X = कार्बोनिल फ्लोराइड, कार्बोनिल ब्रोमाइड, और अत्यधिक विषैला एक विषैली गैस (X = Cl), जो क्लोरीन के साथ कार्बन मोनोआक्साइड की कार्बन-उत्प्रेरित प्रतिक्रिया द्वारा औद्योगिक रूप से उत्पादित होता है। कार्बोनिल यौगिकों के निर्माण के लिए कार्बनिक रसायन विज्ञान में यह एक उपयोगी अभिकर्मक है।[7] उदाहरण के लिए,

सेलेनियम और टेल्यूरियम समान यौगिक बनाते हैं और ऑक्सो-ब्रिजिड प्रजातियां भी F5AOAF5 (ए = एस, से, ते)। वे S, Se और Te के लिए क्रमशः 142.5, 142.4 और 145.5° के A-O-A कोण के साथ गैर-रैखिक हैं।[11]टेल्यूरियम आयन [TeOF5], जिसे टेफ्लिक एसिड के रूप में जाना जाता है, एक बड़ा और बल्कि स्थिर आयन है, जो बड़े धनायनों के साथ स्थिर लवण बनाने के लिए उपयोगी है।[10]* हैलोजन: हैलोजन सूत्र के साथ विभिन्न ऑक्सीफ्लोराइड्स बनाते हैं XO2F (क्लोरिल फ्लोराइड), XO3F (पर्क्लोरिल फ्लोराइड) और XOF3 X = Cl, Br और I के साथ। IO2F3 और IOF5 भी जाने जाते हैं।[12]

संक्रमण धातुएं और एक्टिनाइड्स

क्रिस्टल की संरचना Ti[ClO4]4.[13]
  Titanium
  Fluorine
  Oxygen

संक्रमण धातुओं के ज्ञात ऑक्सोहैलाइड्स का चयन नीचे दिखाया गया है, और अधिक विस्तृत सूचियाँ साहित्य में उपलब्ध हैं।[14] X विभिन्न हैलाइडों को इंगित करता है, अक्सर F और Cl।

Oxidation state oxohalides
3 VOCl, VOBr,[15] FeOCl
4 [TiOCl4]2−, Cl3TiOTiCl3, VOCl2, [VOCl4]2−
5 VOX3, {{chem2|VO2X, [CrOF4], [CrOF5]2−, MnOCl3, TcOCl3, VOF3, VOCl3, NbOCl3
6 CrO2Cl2, [CrO3Cl], ReOX4, ReO2F2, OsOF4, CrO2F2, MoOCl4, MoO2Cl2, WO2Cl2, WOCl4
7 MnO3Cl, ReOF5, ReO2F3, ReO3Cl, OsOF5
8 OsO2F4, OsO3F2
की संरचना [Ta2OCl10]2−. आरयू, ओएस समान परिसरों का निर्माण करते हैं।
[AgOTeF5-(C6H5CH3)2]2 अणु।[16](हाइड्रोजन परमाणु नहीं दिखाए गए।)
  Carbon
  Fluorine
  Oxygen
  Tellurium
  Silver (Ag)

धातु के उच्च ऑक्सीकरण राज्य इस तथ्य से निर्धारित होते हैं कि फ्लोरीन के रूप में ऑक्सीजन एक मजबूत ऑक्सीकरण एजेंट है। ब्रोमीन और आयोडीन अपेक्षाकृत कमजोर ऑक्सीकरण एजेंट हैं, इसलिए कम ऑक्सोब्रोमाइड्स और ऑक्सियोडाइड्स ज्ञात हैं। डी के साथ यौगिकों के लिए संरचनाएं0 कॉन्फ़िगरेशन VSEPR सिद्धांत द्वारा अनुमानित है। इस प्रकार, CrO2Cl2 चतुष्फलकीय है, OsO3F2 त्रिकोणीय द्विपक्षीय है, XeOF4 वर्ग पिरामिडल है और OsOF5 अष्टफलकीय है।[17] डी1 जटिल ReOCl4 वर्ग पिरामिडल है।

यौगिक [Ta2OX10]2− और [M2OCl10]4− (M = W, Ru, Os) में दो हैं MX5 समूह एक ब्रिजिंग ऑक्सीजन परमाणु द्वारा जुड़े हुए हैं।[18] प्रत्येक धातु में एक अष्टफलकीय वातावरण होता है। असामान्य रैखिक M−O−M संरचना को आणविक कक्षीय सिद्धांत के संदर्भ में युक्तिसंगत बनाया जा सकता है, जो d की उपस्थिति का संकेत देता हैπ - पीπ धातु और ऑक्सीजन परमाणुओं के बीच संबंध।[19] ऑक्सीजन ब्रिज जैसे अधिक जटिल विन्यास में मौजूद हैं M(cp)2(OTeF5)2 (M = Ti, Zr, Hf, Mo या W; cp = cyclopentadienyl complex, η5-C5H5)[20]या [AgOTeF5-(C6H5CH3)2]2.[16]

एक्टिनाइड श्रृंखला में, यूरेनिल यौगिक जैसे यूरेनिल क्लोराइड (UO2Cl2) और [UO2Cl4]2− अच्छी तरह से जाना जाता है और इसमें रैखिक होते हैं UO2 आधा भाग। इसी तरह की प्रजातियां नेपच्यून और प्लूटोनियम के लिए मौजूद हैं।

खनिज और आयनिक यौगिक

बिस्मोक्लाइट की क्रिस्टल संरचना। रंग: लाल - ओ, हरा - सीएल, ग्रे - द्वि।

बिस्मथ ऑक्सीक्लोराइड (बायोसीएल, bismoclites ) खनिज ऑक्सोहैलाइड का एक दुर्लभ उदाहरण है। क्रिस्टल संरचना में एक चतुष्कोणीय समरूपता होती है और इसे Cl की परतों से युक्त माना जा सकता है-, आज3+ और ओ2− आयन, क्रम में Cl-Bi-O-Bi-Cl-Cl-Bi-O-Bi-Cl। यह स्तरित, ग्रेफाइट जैसी संरचना के परिणामस्वरूप बिस्मोक्लाइट की अपेक्षाकृत कम कठोरता (खनिज कठोरता 2-2.5 का मोह पैमाने) और अधिकांश अन्य ऑक्सोहैलाइड खनिज होते हैं।[21]उन अन्य खनिजों में टेर्लिंग्वाइट एचजी शामिल हैं2OCl पारा युक्त खनिजों के अपक्षय से बनता है।[22] मेंडिपाइट, पंजाब3O2क्लोरीन2, कई चरणों में लेड (II) सल्फाइड के मूल निक्षेप से निर्मित, द्वितीयक ऑक्सोहैलाइड खनिज का एक और उदाहरण है।

लोहा, सुरमा, विस्मुट और लेण्टेनियुम तत्व सामान्य सूत्र MOCl के ऑक्सोक्लोराइड बनाते हैं। MOBr और MOI को Sb और Bi के लिए भी जाना जाता है। उनकी कई क्रिस्टल संरचनाएं निर्धारित की गई हैं।[23]


यह भी देखें

संदर्भ

  1. Synthesis of individual compounds can be found in Housecroft & Sharpe and Greenwood & Earnshaw in sections relating to the specific element, A
  2. Sisler, H. H. "Chromyl Chloride" Inorganic Synthesis McGraw-Hill: New York, 1946; Vol. 2, pp. 205–207.
  3. Greenwood & Earnshaw, p. 1023
  4. Greenwood & Earnshaw, p. 996.
  5. K. Nakamoto Infrared and Raman spectra of inorganic and coordination compounds, 5th. edition, Part A, Wiley, 1997 ISBN 0-471-19406-9, Tables II-4c, II-6g, II-6h, II-7b, II-8c
  6. Shriver & Atkins, Figure 13.8, p. 447
  7. Shriver & Atkins, p. 358
  8. Housecroft & Sharpe, pp. 329–330
  9. Housecroft & Sharpe, pp. 365–367
  10. 10.0 10.1 Shriver & Atkins, p. 397
  11. Oberhammer, Heinz; Seppelt, Konrad (1978). "Molecular Structure of F5SOSF5, F5SeOSeF5, and F5TeOTeF5: d-Orbital Participation in Bonds between Main Group Elements". Angewandte Chemie International Edition. 17 (1): 69–70. doi:10.1002/anie.197800691.
  12. Housecroft & Sharpe, p. 395
  13. Fourati, Mohieddine; Chaabouni, Moncef; Belin, Claude Henri; Charbonnel, Monique; Pascal, Jean Louis; Potier, Jacqueline (1986). "A strongly chelating bidentate CLO4. New synthesis route and crystal structure determination of Ti(CLO4)". Inorg. Chem. 25 (9): 1386–1390. doi:10.1021/ic00229a019.
  14. Greenwood & Earnshaw, Chapters 22–25, section halides and oxohalides
  15. Greenwood & Earnshaw p. 993.
  16. 16.0 16.1 Strauss, Steven H.; Noirot, Mark D.; Anderson, Oren P. (1985). "Preparation and characterization of silver(I) teflate complexes: bridging OTeF5 groups in the solid state and in solution". Inorg. Chem. 24 (25): 4307–4311. doi:10.1021/ic00219a022.
  17. Housectroft & Sharpe, Chapters 21 and 22 illustrate many structures, including M-O and M-Cl bond lengths.
  18. Dewan, John. C.; Edwards, Anthony J.; Calves, Jean Y.; Guerchais, Jacques E. (1997). "Fluoride crystal structures. Part 28. Bis(tetraethylammonium)µ-oxo-bis[pentafluorotantalate(V)]". J. Chem. Soc., Dalton Trans. (10): 978–980. doi:10.1039/DT9770000978.{{cite journal}}: CS1 maint: multiple names: authors list (link). The structure is illustrated in Housectroft & Sharpe, Figure 22.5.
  19. Housectroft & Sharpe, Figure 22.15.
  20. Crossman, Martin C.; Hope, Eric G.; Saunders, Graham C. (1996). "Cyclopentadienyl metal teflate (OTeF5) complexes". J. Chem. Soc., Dalton Trans. (4): 509–511. doi:10.1039/DT9960000509.
  21. Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. (eds.). "Bismoclite". Handbook of Mineralogy (PDF). Vol. III (Halides, Hydroxides, Oxides). Chantilly, VA: Mineralogical Society of America. ISBN 0-9622097-2-4. Retrieved December 5, 2011.
  22. Hillebrand, W. F.; W. T. Schaller (1907). "Art. XXVI. The Mercury Minerals from Terlingua, Texas: Kleinite, Terlinguaite, Eglestonite, Montroydite, Calomel, Mercury". The American Journal of Science. s4-24 (139): 259–274. doi:10.2475/ajs.s4-24.141.259. Retrieved 2009-05-21.
  23. Wells, pp. 390–392


ग्रन्थसूची