शक्ति मॉसफेट

From Vigyanwiki
Power MOSFET
D2PAK.JPG
Two power MOSFETs in the surface-mount package D2PAK. Each of these components can sustain a blocking voltage of 120 volts and a continuous current of 30 amperes with appropriate heatsinking.
Working principleSemiconductor
थ्रू-होल पैकेज में IRLZ24N पावर MOSFET। बाएँ से दाएँ पिन हैं: गेट (तर्क-स्तर), नाली, स्रोत। शीर्ष धातु टैब नाली है, पिन 2 के समान।[1]

विद्युत मॉसफेट एक विशिष्ट प्रकार का धातु-ऑक्साइड अर्धचालक क्षेत्र-प्रभाव ट्रांजिस्टर है जिसे महत्वपूर्ण विद्युत स्तरों को संभालने के लिए प्रारूपित किया गया है। अन्य विद्युत अर्धचालक उपकरणों के सापेक्ष में, जैसे विद्युत रोधित गेट द्विध्रुवी ट्रांजिस्टर या थाइरिस्टर, इसका मुख्य लाभ उच्च स्विचिंग गति और कम ऊर्जा पर उचित प्रदर्शन क्षमता रखता है।

यह IGBT के साथ एक अलग गेट साझा करता है जिससे इसे आसानी से ड्राइव किया जा सकता है।कभी-कभी इन्हें कम गेन का सामना करना पड़ सकता है, कभी-कभी इतनी दर्जा तक कि गेट ऊर्जा नियंत्रण के तहत ऊर्जा से अधिक होनी चाहिए।

पावर मॉसफेट के डिज़ाइन की संभावना मॉसफेट और सीएमओएस प्रौद्योगिकी के विकास के द्वारा संभव बनी है, जो 1960 के दशक से एकीकृत परिप्रेक्ष्यों के निर्माण के लिए प्रयोग की जाती है। पावर मॉसफेट अपने कार्यसिद्धांत को अपने कम-बिजली संस्करण, लेटरल मॉसफेट के साथ साझा करता है। पावर MOSFET, जो आमतौर पर पावर इलेक्ट्रॉनिक्स में प्रयोग होता है, मानक मॉसफेट से अनुकूलित किया गया था और 1970 के दशक में वाणिज्यिक रूप से प्रस्तुत किया गया था।[2] पावर मॉसफेट विश्व में सबसे आम पावर सेमीकंडक्टर उपकरण है, क्योंकि इसे कम गेट ड्राइव पावर, तेज स्विचिंग गति,[3] आसान परालेलिंग क्षमता,[3][4] व्यापक बैंडविड्थ, कठोरता, आसान ड्राइव, सरल बायसिंग, आवेदन करने में आसानी और मरम्मत करने में आसानी के कारण।[4]विशेष रूप से, यह सबसे अधिक प्रयोग होने वाला कम ऊर्जा (200 V से कम) स्विच है। इसे विभिन्न अनुप्रयोगों में पाया जा सकता है, जैसे कि अधिकांश बिजली आपूर्ति, डीसी-टू-डीसी कनवर्टर, लो-ऊर्जा मोटर नियंत्रक, और बहुत सारे अन्य अनुप्रयोगों में।

इतिहास

मॉसफेट का आविष्कार 1959 में बेल लैब्स में मोहम्मद एम. अटाला और दावों कहंग द्वारा किया गया था। यह पावर इलेक्ट्रॉनिक्स में एक सफलता थी। MOSFETs की पीढ़ियों ने पावर डिजाइनरों को प्रदर्शन और घनत्व स्तर प्राप्त करने में सक्षम बनाया जो द्विध्रुवी ट्रांजिस्टर के साथ संभव नहीं है।[5] 1969 में, Hitachi ने पहली ऊर्ध्वाधर शक्ति मॉसफेट पेश की,[6] जिसे बाद में वीएमओएस (वी-ग्रूव एमओएसएफईटी) के नाम से जाना जाएगा।[7] उसी वर्ष, स्व-संरेखित गेट के साथ MOSFET#DMOS (डबल-डिफ्यूज्ड MOSFET) की रिपोर्ट सबसे पहले राष्ट्रीय उन्नत औद्योगिक विज्ञान और प्रौद्योगिकी संस्थान (ETL) के वाई. तारुई, वाई. हयाशी और तोशीहिरो सेकिगावा ने की थी।[8][9] 1974 में, तोहोकू विश्वविद्यालय में आदेश-स्थिति निशिजावा ने ऑडियो के लिए एक पावर मॉसफेट का आविष्कार किया, जिसे जल्द ही यामाहा कॉर्पोरेशन द्वारा उनके उच्च निष्ठा [[ऑडियो पावर एम्पलीफायर]] के लिए निर्मित किया गया था। JVC, पायनियर कॉर्पोरेशन, सोनी और तोशीबा ने भी 1974 में पावर MOSFETs के साथ एम्पलीफायरों का निर्माण शुरू किया।[10] सिलिकॉनिक्स ने 1975 में व्यावसायिक रूप से VMOS पेश किया।[7]

VMOS और DMOS विकसित होकर VDMOS (वर्टिकल DMOS) के नाम से जाने गए।[10]एचपी लैब्स में जॉन एल. मोल की अनुसंधान टीम ने 1977 में डीएमओएस प्रोटोटाइप तैयार किया, और वीएमओएस पर फायदे का प्रदर्शन किया, जिसमें कम ऑन-प्रतिरोध और उच्च ब्रेकडाउन ऊर्जा शामिल थे।[7]उसी वर्ष, हिताची ने एलडीएमओएस (पार्श्व डीएमओएस) पेश किया, जो डीएमओएस का एक समतल प्रकार है। हिताची 1977 और 1983 के बीच एकमात्र एलडीएमओएस निर्माता थी, उस दौरान एलडीएमओएस का उपयोग एचएच इलेक्ट्रॉनिक्स (वी-सीरीज़) और एशली ऑडियो जैसे निर्माताओं के ऑडियो पावर एम्पलीफायरों में किया जाता था, और संगीत और सार्वजनिक संबोधन प्रणालियों के लिए उपयोग किया जाता था।[10]1995 में 2जी डिजिटल सेल्युलर नेटवर्क की शुरुआत के साथ, एलडीएमओएस 2जी, 3जी जैसे मोबाइल नेटवर्क में सबसे व्यापक रूप से इस्तेमाल किया जाने वाला आरएफ पावर एम्पलीफायर बन गया।[11] और 4जी.[12] एलेक्स लिडो ने 1977 में स्टैनफोर्ड विश्वविद्यालय में हेक्सफेट, एक हेक्सागोनल प्रकार की पावर एमओएसएफईटी का सह-आविष्कार किया।[13] टॉम हरमन के साथ।[14] HexFET का 1978 में अंतर्राष्ट्रीय सुधारक द्वारा व्यावसायीकरण किया गया था।[7][14]इंसुलेटेड-गेट बाइपोलर ट्रांजिस्टर (IGBT), जो पावर मॉसफेट और द्विध्रुवी जंक्शन ट्रांजिस्टर (BJT) दोनों के तत्वों को जोड़ता है, 1977 और 1979 के बीच सामान्य विद्युतीय में बी. जयंत बालिगा द्वारा विकसित किया गया था।[15] सुपरजंक्शन मॉसफेट एक प्रकार का पावर मॉसफेट है जो P+ कॉलम का उपयोग करता है जो N-एपिटैक्सी परत में प्रवेश करता है। पी और एन परतों को ढेर करने का विचार पहली बार 1978 में ओसाका विश्वविद्यालय में शोज़ो शिरोटा और शिगियो कनेडा द्वारा प्रस्तावित किया गया था।[16] फिलिप्स में डेविड जे. कोए ने 1984 में एक यूएस पेटेंट दाखिल करके वैकल्पिक पी-टाइप और एन-टाइप परतों के साथ सुपरजंक्शन एमओएसएफईटी का आविष्कार किया, जिसे 1988 में प्रदान किया गया था।[17]


अनुप्रयोग

एनएक्सपी सेमीकंडक्टर्स 7030AL - एन-चैनल ट्रेंचएमओएस लॉजिक लेवल एफईटी

पावर मॉसफेट दुनिया में सबसे अधिक इस्तेमाल किया जाने वाला पावर सेमीकंडक्टर उपकरण है।[3] As of 2010, पावर सेमीकंडक्टर डिवाइस बाजार में पावर मॉसफेट की हिस्सेदारी 53% है, जो इंसुलेटेड-गेट बाइपोलर ट्रांजिस्टर (27%), आरएफ पावर एम्पलीफायर (11%) और बाइपोलर जंक्शन ट्रांजिस्टर (9%) से आगे है।[18] As of 2018, प्रतिवर्ष 50 बिलियन से अधिक पावर MOSFETs भेजे जाते हैं।[19] इनमें ट्रेंच पावर मॉसफेट शामिल है, जिसकी फरवरी 2017 तक 100 बिलियन से अधिक इकाइयाँ बिकीं।[20] और STMicroelectronics का MDmesh (सुपरजंक्शन MOSFET) जिसने 5 बिलियन यूनिट्स बेची हैं as of 2019.[16]

पावर MOSFETs का उपयोग आमतौर पर उपभोक्ता इलेक्ट्रॉनिक्स की एक विस्तृत श्रृंखला के लिए किया जाता है।[21][22] आरएफ डीएमओएस, जिसे आरएफ पावर एमओएसएफईटी के रूप में भी जाना जाता है, आकाशवाणी आवृति (आरएफ) अनुप्रयोगों के लिए डिज़ाइन किया गया एक प्रकार का डीएमओएस पावर ट्रांजिस्टर है। इसका उपयोग विभिन्न रेडियो और आरएफ अनुप्रयोगों में किया जाता है।[23][24] पावर MOSFETs का व्यापक रूप से परिवहन प्रौद्योगिकी में उपयोग किया जाता है,[25][26][27] जिसमें वाहनों की एक विस्तृत श्रृंखला शामिल है।

ऑटोमोटिव उद्योग में,[28][29][30] ऑटोमोटिव इलेक्ट्रॉनिक्स में पावर MOSFETs का व्यापक रूप से उपयोग किया जाता है।[31][32][21]

पावर MOSFETs (DMOS, LDMOS और VMOS सहित) आमतौर पर अन्य अनुप्रयोगों की एक विस्तृत श्रृंखला के लिए उपयोग किए जाते हैं।

मूल संरचना

चित्र 1: वीडीएमओएस का क्रॉस सेक्शन, एक प्राथमिक सेल दिखा रहा है। ध्यान दें कि एक सेल बहुत छोटा होता है (कुछ माइक्रोमीटर से लेकर कुछ दसियों माइक्रोमीटर चौड़ा), और एक पावर मॉसफेट उनमें से कई हजार से बना होता है।

1970 के दशक में, पहले वाणिज्यिक बिजली मॉसफेट के प्रस्तावित होने के समय कई संरचनाएं खोजी गई थीं। यद्यपि, उनमें से अधिकांश को वर्टिकल डिफ्यूज्ड एमओएस संरचना (जिसे डबल-डिफ्यूज्ड एमओएस या बस डीएमओएस भी कहा जाता है) और एलडीएमओएस संरचना के पक्ष में चलाने की प्राथमिकता दी गई है।

वीडीएमओएस का विशेष अंश उपकरण की ऊर्ध्वाधरता को दर्शाता है: जिसमें यह देखा जा सकता है कि स्रोत इलेक्ट्रोड ड्रेन के ऊपर स्थापित होता है, जिसके परिणामस्वरूप ट्रांजिस्टर चालू स्थिति में मुख्य रूप से ऊर्ध्वाधर धारा उत्पन्न होता है। वीडीएमओएस में प्रसार विनिर्माण प्रक्रिया को संदर्भित करता है, P वेल्स प्रसारण प्रक्रिया द्वारा प्राप्त किए जाते हैं जिससे P और N+ क्षेत्र प्राप्त होते हैं, इसलिए द्विगुण प्रसरित नाम दिए जाते है ।

पावर मॉस्फेटस की संरचना पार्श्व मॉसफेट से भिन्न होती है: जैसा कि अधिकांश बिजली उपकरणों की तरह, उनकी संरचना ऊर्ध्वाधर होती है न कि समतलीय । समतल संरचना में, प्रवाह और ब्रेकडाउन वोल्टेज रेटिंग दोनों प्राथमिकतः चैनल आयामों के आधार पर होती हैं, जिससे "सिलिकॉन की भूमि" के अपर्याप्त उपयोग का परिणाम होता है । ऊर्ध्वाधर संरचना के साथ, ट्रांजिस्टर की वोल्टेज रेटिंग N एपिटैक्सियल परत के डोपिंग और मोटाई के आधार पर होती है जबकि प्रवाह रेटिंग चैनल की चौड़ाई के आधार पर होती है।।इससे ट्रांजिस्टर को संकीर्ण सिलिकॉन टुकड़े में उच्च अवरोधी वोल्टेज और उच्च प्रवाह दोनों को सहन करने की संभावना होती है।

एलडीएमओएस पार्श्व संरचना वाले पावर मॉस्फेटस होते हैं। इनका प्रमुख उपयोग उच्च-स्तरीय ऑडियो पावर एम्पलीफायर्स,[10]और वायरलेस सेल्युलर नेटवर्क में आरएफ पावर एम्पलीफायर्स में किया जाता है, जैसे कि 2जी, 3जी,[11]और 4जी।.[12]उनका लाभ यह है कि वे ऊर्ध्वाधर मॉस्फेटस की तुलना में उत्पन्न किए गए संतृप्त क्षेत्र में बेहतर व्यवहार करते हैं। वर्टिकल मॉस्फेटस स्विचिंग एप्लिकेशन्स के लिए डिज़ाइन किए जाते हैं, इसलिए उन्हें केवल चालू या बंद स्थितियों में ही उपयोग किया जाता है।

ऑन-स्टेट प्रतिरोध

चित्र 2: ऑन-स्टेट प्रतिरोध में मॉसफेट के विभिन्न भागों का योगदान।

जब पावर मॉसफेट ऑन-स्टेट में होता है तो यह ड्रेन और स्रोत टर्मिनलों के बीच एक संवेदक व्यवहार प्रदर्शित करता है।चित्र 2 में देखा जा सकता है कि यह प्रतिरोध कई प्राथमिक योगदानों का योग होता है।

  • आरS स्रोत प्रतिरोध है. यह पैकेज के स्रोत टर्मिनल से मॉसफेट के चैनल के बीच सभी प्रतिरोधों का प्रतिनिधित्व करता है: तार का जोड़ का प्रतिरोध, स्रोत धातुकरण का, और N+ वेल की प्रतिरोध।
  • आरch. यह चैनल प्रतिरोध है. यह चैनल की चौड़ाई और किसी दिए गए डाई आकार के लिए चैनल घनत्व के व्युत्क्रमानुपाती होता है। चैनल प्रतिरोध आर के मुख्य योगदानकर्ताओं में से एक हैDSon कम ऊर्जा वाले MOSFETs, और चैनल घनत्व को बढ़ाने के लिए सेल का आकार कम करने के लिए प्रयास किए गए हैं।
  • आरa सक्रिय प्रतिरोध है। यह गेट इलेक्ट्रोड के नीचे सीधे उपचयी क्षेत्र के प्रतिरोध का प्रतिनिधित्व करता है, जहां धारा की दिशा क्षैतिज से ऊर्ध्वाधर में बदलती है;
  • आरJFET ऊपर उल्लिखित सेल आकार में कमी के हानिकारक प्रभाव को दर्शाता है: पी इम्प्लांटेशन (चित्र 1 देखें) एक परजीवी जेएफईटी ट्रांजिस्टर का गठन करते हैं, जो धारा की चौड़ाई को कम करने की प्रवृत्ति रखते हैं।
  • आरn सक्रिय परत की प्रतिरोध है। इस परत का कार्य ब्लॉकिंग वोल्टेज को सहन करना होता है, इसलिए आरएन उपकरण के वोल्टेज रेटिंग से सीधे संबंधित होता है। एक उच्च वोल्टेज MOSFET को एक मोटी, कम डोप वाली परत की आवश्यकता होती है, अर्थात इसकी प्रतिरोध अधिक होती है, जबकि एक निम्न वोल्टेज ट्रांजिस्टर को केवल एक पतली परत की आवश्यकता होती है जिसमें अधिक डोपिंग स्तर होता है, अर्थात कम प्रतिरोध होती है। इस परिणामस्वरूप, आरएन उच्च वोल्टेज MOSFET की प्रतिरोध के लिए प्रमुख कारक है।
  • आरD ड्रेन के लिए आरएस के समकक्ष है। यह ट्रांजिस्टर सबस्ट्रेट (चित्र 1 में संकेत दिखाए गए संचारण के स्वरूप में नहीं होता है, नीचे की N+ परत वास्तव में सबसे मोटी होती है) और पैकेज कनेक्शन की प्रतिरोध को प्रतिष्ठित करता है।

ब्रेकडाउन ऊर्जा /ऑन-स्टेट प्रतिरोध ट्रेड-ऑफ

चित्र 3: आरDSon MOSFETs की संख्या उनकी ऊर्जा रेटिंग के साथ बढ़ती है।

जब ऑफ-स्टेट में, पावर मॉसफेट एक पिन डायोड (पी द्वारा गठित) के बराबर होता है+प्रसार, एनएपिटैक्सियल परत और एन+सब्सट्रेट). जब यह अत्यधिक गैर-सममित संरचना रिवर्स-बायस्ड होती है, तो स्पेस-चार्ज क्षेत्र मुख्य रूप से प्रकाश-डोप्ड पक्ष पर, यानी एन के ऊपर फैलता है।परत. इसका मतलब यह है कि इस परत को मॉसफेट के अधिकांश ऑफ-स्टेट ड्रेन-टू-सोर्स ऊर्जा का सामना करना पड़ता है।

हालाँकि, जब मॉसफेट चालू स्थिति में होता है, तो यह Nपरत का कोई कार्य नहीं है। इसके अलावा, चूंकि यह हल्का डोप किया गया क्षेत्र है, इसकी आंतरिक प्रतिरोधकता नगण्य है और मॉसफेट के ऑन-स्टेट ड्रेन-टू-सोर्स प्रतिरोध (R) में जुड़ जाती है।DSon) (यह आर हैn चित्र 2 में प्रतिरोध)।

दो मुख्य पैरामीटर ब्रेकडाउन ऊर्जा और आर दोनों को नियंत्रित करते हैंDSon ट्रांजिस्टर का: डोपिंग स्तर और एन की मोटाईएपिटैक्सियल परत. परत जितनी मोटी होगी और इसका डोपिंग स्तर जितना कम होगा, ब्रेकडाउन ऊर्जा उतना ही अधिक होगा। इसके विपरीत, परत जितनी पतली होगी और डोपिंग स्तर जितना अधिक होगा, आर उतना ही कम होगाDSon (और इसलिए मॉसफेट की चालन हानि जितनी कम होगी)। इसलिए, यह देखा जा सकता है कि मॉसफेट के डिज़ाइन में इसकी ऊर्जा रेटिंग और इसके ऑन-स्टेट प्रतिरोध के बीच एक समझौता है।[citation needed] यह चित्र 3 में कथानक द्वारा प्रदर्शित किया गया है।

बॉडी डायोड

चित्र 1 में देखा जा सकता है कि स्रोत धातुकरण दोनों एन को जोड़ता है+और पी+प्रत्यारोपण, हालांकि मॉसफेट के संचालन सिद्धांत के लिए केवल स्रोत को N से कनेक्ट करने की आवश्यकता होती है+ज़ोन. हालाँकि, यदि ऐसा होता, तो इसके परिणामस्वरूप एन-डोप्ड स्रोत और ड्रेन के बीच एक फ्लोटिंग पी ज़ोन बन जाता, जो एक गैर-कनेक्टेड बेस वाले बाइपोलर जंक्शन ट्रांजिस्टर#एनपीएन के बराबर है। कुछ शर्तों के तहत (उच्च ड्रेन करंट के तहत, जब ऑन-स्टेट ड्रेन टू सोर्स ऊर्जा कुछ वोल्ट के क्रम में होता है), यह परजीवी एनपीएन ट्रांजिस्टर चालू हो जाएगा, जिससे एमओएसएफईटी अनियंत्रित हो जाएगा। स्रोत धातुकरण के लिए पी इम्प्लांटेशन का कनेक्शन परजीवी ट्रांजिस्टर के आधार को उसके उत्सर्जक (एमओएसएफईटी के स्रोत) से छोटा कर देता है और इस प्रकार नकली लैचिंग को रोकता है। हालाँकि, यह समाधान मॉसफेट के ड्रेन (कैथोड) और स्रोत (एनोड) के बीच एक डायोड बनाता है, जिससे यह केवल एक दिशा में करंट को अवरुद्ध करने में सक्षम होता है।

बॉडी डायोड का उपयोग एच ब्रिज या हाफ ब्रिज जैसे कॉन्फ़िगरेशन में आगमनात्मक भार के लिए फ्लाईबैक डायोड के रूप में किया जा सकता है। हालांकि इन डायोडों में आम तौर पर उच्च फॉरवर्ड ऊर्जा ड्रॉप होता है, वे बड़ी धाराओं को संभाल सकते हैं और कई अनुप्रयोगों में पर्याप्त होते हैं, जिससे भाग की संख्या कम हो जाती है, और इस प्रकार, डिवाइस की लागत और बोर्ड स्थान कम हो जाता है। दक्षता बढ़ाने के लिए, बॉडी डायोड द्वारा करंट प्रवाहित करने के समय को कम करने के लिए अक्सर तुल्यकालिक सुधार का उपयोग किया जाता है।

स्विचिंग ऑपरेशन

चित्र 4: पावर मॉसफेट की आंतरिक कैपेसिटेंस का स्थान।

उनकी एकध्रुवीय प्रकृति के कारण, पावर मॉसफेट बहुत तेज़ गति से स्विच कर सकता है। वास्तव में, द्विध्रुवी उपकरणों की तरह अल्पसंख्यक वाहकों को हटाने की कोई आवश्यकता नहीं है। कम्यूटेशन गति में एकमात्र आंतरिक सीमा मॉसफेट की आंतरिक कैपेसिटेंस के कारण है (चित्र 4 देखें)। ट्रांजिस्टर स्विच होने पर इन कैपेसिटेंस को चार्ज या डिस्चार्ज किया जाना चाहिए। यह अपेक्षाकृत धीमी प्रक्रिया हो सकती है क्योंकि गेट कैपेसिटेंस के माध्यम से प्रवाहित होने वाली धारा बाहरी ड्राइवर सर्किट द्वारा सीमित होती है। यह सर्किट वास्तव में ट्रांजिस्टर की कम्यूटेशन गति को निर्देशित करेगा (यह मानते हुए कि पावर सर्किट में पर्याप्त रूप से कम प्रेरकत्व है)।

धारिता

मॉसफेट डेटा शीट में, कैपेसिटेंस को अक्सर C नाम दिया जाता हैiss (इनपुट कैपेसिटेंस, ड्रेन और सोर्स टर्मिनल छोटा), सीoss (आउटपुट कैपेसिटेंस, गेट और स्रोत छोटा), और सीrss (रिवर्स ट्रांसफर कैपेसिटेंस, जमीन से जुड़ा स्रोत)। इन कैपेसिटेंस और नीचे वर्णित कैपेसिटेंस के बीच संबंध है:

जहां सीGS, सीGD और सीDS क्रमशः गेट-टू-सोर्स, गेट-टू-ड्रेन और ड्रेन-टू-सोर्स कैपेसिटेंस हैं (नीचे देखें)। निर्माता सी को उद्धृत करना पसंद करते हैंiss, सीoss और सीrss क्योंकि इन्हें सीधे ट्रांजिस्टर पर मापा जा सकता है। हालाँकि, जैसा कि सीGS, सीGD और सीDS भौतिक अर्थ के करीब हैं, उनका उपयोग इस लेख के शेष भाग में किया जाएगा।

गेट टू सोर्स कैपेसिटेंस

सीGS कैपेसिटेंस का गठन C के समानांतर कनेक्शन से होता हैoxN+, सीoxP और सीoxm (चित्र 4 देखें)। जैसा कि एन+ और पी क्षेत्र अत्यधिक डोप किए गए हैं, दो पूर्व कैपेसिटेंस को स्थिर माना जा सकता है। सीoxm (पॉलीसिलिकॉन) गेट और (धातु) स्रोत इलेक्ट्रोड के बीच की धारिता है, इसलिए यह भी स्थिर है। इसलिए, सी पर विचार करना आम बात हैGS एक स्थिर धारिता के रूप में, अर्थात इसका मान ट्रांजिस्टर की स्थिति पर निर्भर नहीं करता है।

गेट टू ड्रेन कैपेसिटेंस

सीGD कैपेसिटेंस को दो प्राथमिक कैपेसिटेंस की श्रृंखला में कनेक्शन के रूप में देखा जा सकता है। पहला है ऑक्साइड कैपेसिटेंस (CoxD), गेट इलेक्ट्रोड, सिलिकॉन डाइऑक्साइड और एन एपिटैक्सियल परत के शीर्ष द्वारा गठित। इसका एक स्थिर मूल्य है. दूसरी धारिता (CGDj) जब मॉसफेट ऑफ-स्टेट में होता है तो डिप्लेशन क्षेत्र|स्पेस-चार्ज ज़ोन के विस्तार के कारण होता है। इसलिए, यह ड्रेन टू गेट ऊर्जा पर निर्भर है। इससे C का मान ज्ञात होता हैGD है:

स्पेस-चार्ज क्षेत्र की चौड़ाई किसके द्वारा दी गई है?[33]

कहाँ सिलिकॉन की पारगम्यता है, q इलेक्ट्रॉन आवेश है, और N डोपिंग (अर्धचालक) स्तर है। C का मानGDj कैपेसिटर#समानांतर-प्लेट कैपेसिटर की अभिव्यक्ति का उपयोग करके अनुमान लगाया जा सकता है:

जहाँ एकGD गेट-ड्रेन ओवरलैप का सतह क्षेत्र है। इसलिए, यह आता है:

यह देखा जा सकता है कि सीGDj (और इस प्रकार सीGD) एक धारिता है जिसका मान गेट टू ड्रेन ऊर्जा पर निर्भर करता है। जैसे-जैसे यह ऊर्जा बढ़ता है, धारिता कम होती जाती है। जब मॉसफेट ऑन-स्टेट में होता है, तो CGDj शंट किया जाता है, इसलिए निकास क्षमता का गेट C के बराबर रहता हैoxD, एक स्थिर मान.

निकास से स्रोत धारिता

चूंकि स्रोत धातुकरण पी-कुओं को ओवरलैप करता है (चित्र 1 देखें), नाली और स्रोत टर्मिनलों को पी-एन जंक्शन द्वारा अलग किया जाता है। इसलिए, सीDS जंक्शन धारिता है. यह एक गैर-रैखिक धारिता है, और इसके मान की गणना C के समान समीकरण का उपयोग करके की जा सकती हैGDj.

अन्य गतिशील तत्व

पावर मॉसफेट का समतुल्य सर्किट, जिसमें गतिशील तत्व (कैपेसिटर, इंडक्टर्स), परजीवी प्रतिरोधक, बॉडी डायोड शामिल हैं।

पैकेजिंग अधिष्ठापन

संचालित करने के लिए, मॉसफेट को बाहरी सर्किट से जोड़ा जाना चाहिए, ज्यादातर समय वायर बॉन्डिंग का उपयोग करते हुए (हालांकि वैकल्पिक तकनीकों की जांच की जाती है)। ये कनेक्शन एक परजीवी अधिष्ठापन प्रदर्शित करते हैं, जो किसी भी तरह से मॉसफेट तकनीक के लिए विशिष्ट नहीं है, लेकिन उच्च कम्यूटेशन गति के कारण इसका महत्वपूर्ण प्रभाव पड़ता है। परजीवी अधिष्ठापन अपने वर्तमान स्थिरांक को बनाए रखते हैं और ट्रांजिस्टर बंद होने के दौरान ओवरवॉल्टेज उत्पन्न करते हैं, जिसके परिणामस्वरूप कम्यूटेशन घाटे में वृद्धि होती है।

मॉसफेट के प्रत्येक टर्मिनल के साथ एक परजीवी अधिष्ठापन जोड़ा जा सकता है। उनके अलग-अलग प्रभाव हैं:

  • गेट इंडक्शन का बहुत कम प्रभाव होता है (यह मानते हुए कि यह कुछ सैकड़ों नैनोहेनरीज़ से कम है), क्योंकि गेट पर वर्तमान ग्रेडिएंट अपेक्षाकृत धीमे हैं। हालाँकि, कुछ मामलों में, गेट इंडक्शन और ट्रांजिस्टर की इनपुट कैपेसिटेंस एक इलेक्ट्रॉनिक थरथरानवाला का निर्माण कर सकते हैं। इससे बचना चाहिए, क्योंकि इसके परिणामस्वरूप बहुत अधिक कम्यूटेशन हानि (डिवाइस के नष्ट होने तक) होती है। एक विशिष्ट डिज़ाइन पर, इस घटना को रोकने के लिए परजीवी अधिष्ठापन को काफी कम रखा जाता है;
  • मॉसफेट चालू होने पर ड्रेन इंडक्शन ड्रेन ऊर्जा को कम कर देता है, इसलिए यह टर्न ऑन घाटे को कम करता है। हालाँकि, चूंकि यह टर्न-ऑफ के दौरान ओवरवॉल्टेज पैदा करता है, इससे टर्न-ऑफ नुकसान बढ़ जाता है;
  • स्रोत परजीवी इंडक्शन का व्यवहार ड्रेन इंडक्शन के समान होता है, साथ ही एक प्रतिक्रिया प्रभाव होता है जो कम्यूटेशन को लंबे समय तक बनाए रखता है, जिससे कम्यूटेशन हानि बढ़ जाती है।
    • तेज़ टर्न-ऑन की शुरुआत में, स्रोत अधिष्ठापन के कारण, स्रोत पर ऊर्जा (डाई पर) गेट ऊर्जा के साथ-साथ ऊपर कूदने में सक्षम होगा; आंतरिक वीGS ऊर्जा लंबे समय तक कम रहेगा, इसलिए चालू करने में देरी होगी।
    • तेजी से टर्न-ऑफ की शुरुआत में, जैसे ही स्रोत इंडक्शन के माध्यम से करंट तेजी से घटता है, परिणामी ऊर्जा नकारात्मक हो जाता है (पैकेज के बाहर लीड के संबंध में) आंतरिक वी बढ़ जाता हैGS ऊर्जा , मॉसफेट को चालू रखता है, और इसलिए टर्न-ऑफ में देरी करता है।

संचालन की सीमाएं

गेट ऑक्साइड टूटना

गेट ऑक्साइड बहुत पतला (100 एनएम या उससे कम) है, इसलिए यह केवल सीमित ऊर्जा ही बनाए रख सकता है। डेटाशीट में, निर्माता अक्सर अधिकतम गेट टू सोर्स ऊर्जा , लगभग 20 वी बताते हैं, और इस सीमा से अधिक होने पर घटक नष्ट हो सकता है। इसके अलावा, उच्च गेट टू सोर्स ऊर्जा मॉसफेट के जीवनकाल को काफी कम कर देता है, जिससे R पर कोई लाभ नहीं होता हैDSon कमी।

इस समस्या से निपटने के लिए अक्सर गेट ड्राइवर सर्किट का उपयोग किया जाता है।

स्रोत ऊर्जा के लिए अधिकतम निकास

पावर MOSFETs में अधिकतम निर्दिष्ट ड्रेन टू सोर्स ऊर्जा (बंद होने पर) होता है, जिसके परे हिमस्खलन टूटना हो सकता है। ब्रेकडाउन ऊर्जा से अधिक होने से उपकरण संचालन में बाधा उत्पन्न करता है, संभावित रूप से अत्यधिक बिजली अपव्यय के कारण इसे और अन्य सर्किट तत्वों को नुकसान पहुंचता है।

अधिकतम नाली धारा

ड्रेन करंट आम तौर पर एक निश्चित निर्दिष्ट मान (अधिकतम निरंतर ड्रेन करंट) से नीचे रहना चाहिए। यह बहुत कम समय के लिए उच्च मूल्यों तक पहुंच सकता है (अधिकतम स्पंदित नाली धारा, कभी-कभी विभिन्न पल्स अवधि के लिए निर्दिष्ट)। वायर बॉन्डिंग जैसे आंतरिक घटकों में जूल तापन और धातु की परत में इलेक्ट्रोमाइग्रेशन जैसी अन्य घटनाओं के कारण ड्रेन करंट सीमित होता है।

अधिकतम तापमान

जंक्शन तापमान (टीJ) डिवाइस के विश्वसनीय रूप से कार्य करने के लिए मॉसफेट का एक निर्दिष्ट अधिकतम मान के अंतर्गत रहना चाहिए, जो मॉसफेट डाई लेआउट और पैकेजिंग सामग्री द्वारा निर्धारित किया जाता है। मोल्डिंग कंपाउंड और (जहां उपयोग किया जाता है) एपॉक्सी विशेषताओं के कारण पैकेजिंग अक्सर अधिकतम जंक्शन तापमान को सीमित करती है।

अधिकतम परिचालन तापमान का तापमान बिजली अपव्यय और थर्मल प्रतिरोध द्वारा निर्धारित किया जाता है। जंक्शन-टू-केस थर्मल प्रतिरोध डिवाइस और पैकेज के लिए आंतरिक है; केस-टू-एम्बिएंट थर्मल प्रतिरोध काफी हद तक बोर्ड/माउंटिंग लेआउट, हीटसिंकिंग क्षेत्र और वायु/द्रव प्रवाह पर निर्भर है।

बिजली अपव्यय का प्रकार, चाहे निरंतर या स्पंदित, थर्मल द्रव्यमान विशेषताओं के कारण अधिकतम ऑपरेटिंग तापमान को प्रभावित करता है; सामान्य तौर पर, किसी दिए गए बिजली अपव्यय के लिए दालों की आवृत्ति जितनी कम होगी, डिवाइस को ठंडा होने के लिए लंबे अंतराल की अनुमति के कारण अधिकतम ऑपरेटिंग परिवेश का तापमान उतना अधिक होगा। मॉडल, जैसे कि फोस्टर की प्रतिक्रिया प्रमेय, का उपयोग शक्ति क्षणकों से तापमान की गतिशीलता का विश्लेषण करने के लिए किया जा सकता है।

सुरक्षित परिचालन क्षेत्र

सुरक्षित परिचालन क्षेत्र ड्रेन करंट और ड्रेन टू सोर्स ऊर्जा की संयुक्त रेंज को परिभाषित करता है जिसे पावर मॉसफेट बिना किसी क्षति के संभालने में सक्षम है। इसे इन दो मापदंडों द्वारा परिभाषित विमान में एक क्षेत्र के रूप में रेखांकन द्वारा दर्शाया गया है। ड्रेन करंट और ड्रेन-टू-सोर्स ऊर्जा दोनों को उनके संबंधित अधिकतम मूल्यों से नीचे रहना चाहिए, लेकिन उनका उत्पाद उस अधिकतम बिजली अपव्यय से भी नीचे रहना चाहिए जिसे डिवाइस संभालने में सक्षम है। इस प्रकार, डिवाइस को उसके अधिकतम करंट और अधिकतम ऊर्जा पर एक साथ संचालित नहीं किया जा सकता है।[34]


लैच-अप

पावर मॉसफेट के समतुल्य सर्किट में एक परजीवी BJT के समानांतर एक मॉसफेट होता है। यदि BJT चालू हो जाता है, तो इसे बंद नहीं किया जा सकता, क्योंकि गेट का इस पर कोई नियंत्रण नहीं है। इस घटना को लैच-अप के रूप में जाना जाता है, जिससे उपकरण नष्ट हो सकता है। पी-टाइप बॉडी क्षेत्र में ऊर्जा ड्रॉप के कारण BJT को चालू किया जा सकता है। लैच-अप से बचने के लिए, डिवाइस पैकेज के भीतर बॉडी और स्रोत को आमतौर पर शॉर्ट-सर्किट किया जाता है।

प्रौद्योगिकी

इस पावर मॉसफेट में एक जालीदार गेट है, जिसमें वर्गाकार सेल हैं
इस मॉसफेट का गेट लेआउट समानांतर पट्टियों से बना है।

लेआउट

सेलुलर संरचना

जैसा कि ऊपर बताया गया है, पावर मॉसफेट की वर्तमान हैंडलिंग क्षमता उसके गेट चैनल की चौड़ाई से निर्धारित होती है। गेट चैनल की चौड़ाई चित्रित क्रॉस-सेक्शन का तीसरा (जेड-अक्ष) आयाम है।

लागत और आकार को कम करने के लिए, ट्रांजिस्टर के डाई क्षेत्र के आकार को यथासंभव छोटा रखना मूल्यवान है। इसलिए, चैनल सतह क्षेत्र की चौड़ाई बढ़ाने, यानी चैनल घनत्व बढ़ाने के लिए अनुकूलन विकसित किए गए हैं। इनमें मुख्य रूप से मॉसफेट डाई के पूरे क्षेत्र में दोहराई जाने वाली सेलुलर संरचनाएं बनाना शामिल है। इन कोशिकाओं के लिए कई आकार प्रस्तावित किए गए हैं, जिनमें से सबसे प्रसिद्ध अंतर्राष्ट्रीय रेक्टिफायर के HEXFET उपकरणों में उपयोग किया जाने वाला हेक्सागोनल आकार है।

चैनल घनत्व बढ़ाने का दूसरा तरीका प्राथमिक संरचना के आकार को कम करना है। यह किसी दिए गए सतह क्षेत्र में अधिक कोशिकाओं की अनुमति देता है, और इसलिए अधिक चैनल चौड़ाई। हालाँकि, जैसे-जैसे कोशिका का आकार सिकुड़ता है, प्रत्येक कोशिका का उचित संपर्क सुनिश्चित करना अधिक कठिन हो जाता है। इसे दूर करने के लिए अक्सर एक पट्टी संरचना का उपयोग किया जाता है (चित्र देखें)। यह चैनल घनत्व के संदर्भ में समकक्ष रिज़ॉल्यूशन की सेलुलर संरचना से कम कुशल है, लेकिन छोटी पिच का सामना कर सकता है। समतल धारी संरचना का एक अन्य लाभ यह है कि यह हिमस्खलन टूटने की घटनाओं के दौरान विफलता के प्रति कम संवेदनशील होता है जिसमें परजीवी द्विध्रुवी ट्रांजिस्टर पर्याप्त आगे के पूर्वाग्रह से चालू होता है। सेलुलर संरचना में, यदि किसी एक कोशिका के स्रोत टर्मिनल से खराब तरीके से संपर्क किया जाता है, तो यह अधिक संभावना हो जाती है कि हिमस्खलन टूटने की घटना के दौरान परजीवी द्विध्रुवी ट्रांजिस्टर बंद हो जाता है। इस वजह से, तलीय धारी संरचना का उपयोग करने वाले MOSFETs केवल अत्यधिक थर्मल तनाव के कारण हिमस्खलन टूटने के दौरान विफल हो सकते हैं।[35]


संरचनाएं

वीएमओएस संरचना में गेट क्षेत्र पर एक वी-नाली है
यूएमओएस में एक ट्रेंच गेट है। इसका उद्देश्य चैनल को लंबवत बनाकर चैनल घनत्व को बढ़ाना है

पी-सब्सट्रेट पावर एमओएसएफईटी

एक पी-सब्सट्रेट एमओएसएफईटी (अक्सर पीएमओएस कहा जाता है) एक एमओएसएफईटी है जिसमें विपरीत डोपिंग प्रकार होते हैं (चित्र 1 में क्रॉस-सेक्शन में पी के बजाय एन और एन के बजाय पी)। यह मॉसफेट P के साथ P-प्रकार सब्सट्रेट का उपयोग करके बनाया गया हैएपिटैक्सी. जैसे ही चैनल एन-क्षेत्र में बैठता है, यह ट्रांजिस्टर एक नकारात्मक गेट टू सोर्स ऊर्जा द्वारा चालू हो जाता है। यह इसे हिरन कनवर्टर में वांछनीय बनाता है, जहां स्विच का एक टर्मिनल इनपुट ऊर्जा के उच्च पक्ष से जुड़ा होता है: एन-एमओएसएफईटी के साथ, इस कॉन्फ़िगरेशन के लिए गेट पर बराबर ऊर्जा लागू करने की आवश्यकता होती है , जबकि कोई ऊर्जा खत्म नहीं हुआ P-मॉसफेट के साथ आवश्यक है।

इस प्रकार के मॉसफेट का मुख्य नुकसान खराब ऑन-स्टेट प्रदर्शन है, क्योंकि यह चार्ज वाहक के रूप में छेद का उपयोग करता है, जिसमें इलेक्ट्रॉनों की तुलना में बहुत कम इलेक्ट्रॉन गतिशीलता होती है। चूंकि विद्युत प्रतिरोधकता और चालकता सीधे गतिशीलता से संबंधित है, किसी दिए गए पीएमओएस डिवाइस में एक होगा समान आयाम वाले N-मॉसफेट से तीन गुना अधिक।

वीएमओएस

वीएमओएस संरचना में गेट क्षेत्र पर एक वी-ग्रूव है और इसका उपयोग पहले वाणिज्यिक उपकरणों के लिए किया गया था।[36]


यूएमओएस

इस पावर मॉसफेट संरचना में, जिसे ट्रेंच-एमओएस भी कहा जाता है, गेट इलेक्ट्रोड को सिलिकॉन में खोदी गई खाई में दफनाया जाता है। इसका परिणाम एक ऊर्ध्वाधर चैनल होता है। संरचना का मुख्य हित जेएफईटी प्रभाव की अनुपस्थिति है। संरचना का नाम खाई के यू-आकार से आता है।

सुपर-जंक्शन डीप-ट्रेंच तकनीक

विशेष रूप से 500 वी से अधिक ऊर्जा के लिए, कुछ निर्माताओं, जिनमें इसके CoolMOS उत्पादों के साथ Infineon Technologies शामिल हैं, ने चार्ज क्षतिपूर्ति सिद्धांत का उपयोग करना शुरू कर दिया है। इस तकनीक के साथ, एपिटैक्सियल परत का प्रतिरोध, जो उच्च-ऊर्जा MOSFETs के डिवाइस प्रतिरोध में सबसे बड़ा योगदानकर्ता (95% से अधिक) है, को 5 से अधिक के कारक से कम किया जा सकता है।

सुपर-जंक्शन एमओएसएफईटी की विनिर्माण दक्षता और विश्वसनीयता में सुधार करने की मांग करते हुए, रेनेसा इलेक्ट्रॉनिक्स ने एक गहरी-ट्रेंच प्रक्रिया तकनीक के साथ एक सुपर-जंक्शन संरचना विकसित की। इस तकनीक में पी-प्रकार के क्षेत्र बनाने के लिए कम अशुद्धता वाले एन-प्रकार की सामग्री में खाइयां खोदना शामिल है। यह प्रक्रिया बहु-स्तरीय एपिटैक्सियल विकास दृष्टिकोण में निहित समस्याओं पर काबू पाती है और इसके परिणामस्वरूप बेहद कम प्रतिरोध और कम आंतरिक क्षमता होती है।

बढ़े हुए पी-एन जंक्शन क्षेत्र के कारण, एक सुपर-जंक्शन संरचना में पारंपरिक प्लानर पावर मॉसफेट की तुलना में कम रिवर्स रिकवरी समय होता है, लेकिन बड़ा रिवर्स रिकवरी करंट होता है।

यह भी देखें

  • विद्युत रोधित गेट द्विध्रुवी ट्रांजिस्टर
  • मॉसफेट
  • बिजली के इलेक्ट्रॉनिक्स
  • पावर सेमीकंडक्टर डिवाइस

संदर्भ

  1. IRLZ24N, 55V N-Channel Power MOSFET, TO-220AB package; Infineon.
  2. Irwin, J. David (1997). औद्योगिक इलेक्ट्रॉनिक्स हैंडबुक. CRC Press. p. 218. ISBN 9780849383434.
  3. 3.0 3.1 3.2 "पावर MOSFET मूल बातें" (PDF). Alpha & Omega Semiconductor. Retrieved 29 July 2019.
  4. 4.0 4.1 Duncan, Ben (1996). उच्च प्रदर्शन ऑडियो पावर एम्पलीफायर. Elsevier. pp. 178–81. ISBN 9780080508047.
  5. "GaN के साथ पावर घनत्व पर पुनर्विचार करें". Electronic Design. 21 April 2017. Retrieved 23 July 2019.
  6. Oxner, E. S. (1988). Fet प्रौद्योगिकी और अनुप्रयोग. CRC Press. p. 18. ISBN 9780824780500.
  7. 7.0 7.1 7.2 7.3 "असतत अर्धचालकों में प्रगति जारी है". Power Electronics Technology. Informa: 52–6. September 2005. Archived (PDF) from the original on 22 March 2006. Retrieved 31 July 2019.
  8. Tarui, Y.; Hayashi, Y.; Sekigawa, Toshihiro (September 1969). "Diffusion Self-Aligned MOST; A New Approach for High Speed Device". Proceedings of the 1st Conference on Solid State Devices. doi:10.7567/SSDM.1969.4-1. S2CID 184290914.
  9. McLintock, G. A.; Thomas, R. E. (December 1972). स्व-संरेखित द्वारों के साथ डबल-डिफ्यूज्ड MOST की मॉडलिंग. 1972 International Electron Devices Meeting. pp. 24–26. doi:10.1109/IEDM.1972.249241.
  10. 10.0 10.1 10.2 10.3 Duncan, Ben (1996). उच्च प्रदर्शन ऑडियो पावर एम्पलीफायर. Elsevier. pp. 177–8, 406. ISBN 9780080508047.
  11. 11.0 11.1 Baliga, B. Jayant (2005). सिलिकॉन आरएफ पावर मॉसफेट्स. World Scientific. ISBN 9789812561213.
  12. 12.0 12.1 Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. p. 134. ISBN 9780429881343.
  13. "उत्तरी अमेरिका के लिए SEMI पुरस्कार". SEMI. Archived from the original on 5 August 2016. Retrieved 5 August 2016.
  14. 14.0 14.1 "इंटरनेशनल रेक्टिफायर के एलेक्स लिडो और टॉम हरमन को इंजीनियरिंग हॉल ऑफ फेम में शामिल किया गया". Business Wire. 14 September 2004. Retrieved 31 July 2019.
  15. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. xxviii, 5–11. ISBN 9781455731534.
  16. 16.0 16.1 "MDmesh: 20 Years of Superjunction STPOWER MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019.
  17. US Patent 4,754,310
  18. "Power Transistor Market Will Cross $13.0 Billion in 2011". IC Insights. June 21, 2011. Retrieved 15 October 2019.
  19. Carbone, James (September–October 2018). "Buyers can expect 30-week lead times and higher tags to continue for MOSFETs" (PDF). Electronics Sourcing: 18–19.
  20. Williams, Richard K.; Darwish, Mohamed N.; Blanchard, Richard A.; Siemieniec, Ralf; Rutter, Phil; Kawaguchi, Yusuke (23 February 2017). "The Trench Power MOSFET: Part I—History, Technology, and Prospects". IEEE Transactions on Electron Devices. 64 (3): 674–691. Bibcode:2017ITED...64..674W. doi:10.1109/TED.2017.2653239. S2CID 20730536.
  21. 21.0 21.1 "MOSFET". Infineon Technologies. Retrieved 24 December 2019.
  22. "Infineon EiceDRIVER गेट ड्राइवर ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019.
  23. "आरएफ डीएमओएस ट्रांजिस्टर". STMicroelectronics. Retrieved 22 December 2019.
  24. "AN1256: Application note – High-power RF MOSFET targets VHF applications" (PDF). ST Microelectronics. July 2007. Retrieved 22 December 2019.
  25. Emadi, Ali (2017). ऑटोमोटिव पावर इलेक्ट्रॉनिक्स और मोटर ड्राइव की हैंडबुक. CRC Press. p. 117. ISBN 9781420028157.
  26. "परिवहन के लिए इन्फिनियॉन समाधान" (PDF). Infineon. June 2013. Retrieved 23 December 2019.
  27. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019.
  28. "सीएमओएस सेंसर फोन कैमरे, एचडी वीडियो को सक्षम करते हैं". NASA Spinoff. NASA. Retrieved 6 November 2019.
  29. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974.
  30. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5.
  31. "ऑटोमोटिव पावर MOSFETs" (PDF). Fuji Electric. Retrieved 10 August 2019.
  32. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249.
  33. Simon M. Sze, Modern semiconductor device physics, John Wiley and Sons, Inc 1998 ISBN 0-471-15237-4
  34. Pierre Aloïsi, Les transistors MOS de puissance in Interrupteurs électroniques de puissance, traite EGEM, under the direction of Robert Perret, Lavoisier, Paris, 2003 [in French] ISBN 2-7462-0671-4
  35. Murray, Anthony F. J.; McDonald, Tim; Davis, Harold; Cao, Joe; Spring, Kyle. "Extremely Rugged MOSFET Technology with Ultra-low RDS(on) Specified for A Broad Range of EAR Conditions" (PDF). International Rectifier. Retrieved 26 April 2022.
  36. Duncan A. Grant, John Gowar POWER MOSFETS: Theory and Applications John Wiley and Sons, Inc ISBN 0-471-82867-X , 1989


अग्रिम पठन

  • Baliga, B. Jayant (1996). Power Semiconductor Devices. PWS Publishing. ISBN 9780534940980.