प्रत्यक्ष योग

From Vigyanwiki
Revision as of 00:32, 27 November 2022 by alpha>Indicwiki (Created page with "{{Use American English|date = January 2019}} {{Short description|Operation in abstract algebra composing objects into "more complicated" objects}} {{refimprove|date=December 2...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित की एक शाखा, सार बीजगणित में गणितीय संरचना के बीच प्रत्यक्ष योग एक ऑपरेशन (गणित) है। यह अलग-अलग प्रकार की संरचनाओं के लिए अलग-अलग, लेकिन समान रूप से परिभाषित किया गया है। अमूर्त बीजगणित में प्रत्यक्ष योग का उपयोग कैसे किया जाता है, यह देखने के लिए, अधिक प्रारंभिक प्रकार की संरचना, एबेलियन समूह पर विचार करें। दो एबेलियन समूहों का प्रत्यक्ष योग तथा एक और एबेलियन समूह है आदेशित जोड़े से मिलकर कहाँ पे तथा . क्रमित युग्मों को जोड़ने के लिए, हम योग को परिभाषित करते हैं होना ; दूसरे शब्दों में जोड़ को निर्देशांक-वार परिभाषित किया गया है। उदाहरण के लिए, प्रत्यक्ष योग , कहाँ पे वास्तविक समन्वय स्थान है, कार्तीय तल है, . इसी तरह की प्रक्रिया का उपयोग दो वेक्टर रिक्त स्थान या दो मॉड्यूल (गणित) के प्रत्यक्ष योग के लिए किया जा सकता है।

उदाहरण के लिए, हम किसी भी परिमित संख्या के जोड़ के साथ सीधा योग भी बना सकते हैं , बशर्ते तथा एक ही प्रकार की बीजगणितीय संरचनाएं हैं (उदाहरण के लिए, सभी एबेलियन समूह, या सभी वेक्टर रिक्त स्थान)। यह इस तथ्य पर निर्भर करता है कि प्रत्यक्ष योग समरूपता तक साहचर्य है। वह है, किसी भी बीजगणितीय संरचना के लिए , , तथा उसी तरह का। प्रत्यक्ष योग भी तुल्याकारिता तक क्रमविनिमेय है, अर्थात किसी भी बीजगणितीय संरचना के लिए तथा उसी तरह का।

बारीकी से कई एबेलियन समूहों, वेक्टर रिक्त स्थान, या मॉड्यूल का प्रत्यक्ष योग संबंधित प्रत्यक्ष उत्पाद के लिए कैनोनिक रूप से आइसोमॉर्फिक है। हालांकि, यह कुछ बीजगणितीय वस्तुओं के लिए गलत है, जैसे कि गैर-अबेलियन समूह।

ऐसे मामले में जहां असीमित रूप से कई वस्तुएं संयुक्त होती हैं, प्रत्यक्ष योग और प्रत्यक्ष उत्पाद आइसोमोर्फिक नहीं होते हैं, यहां तक ​​कि एबेलियन समूहों, वेक्टर रिक्त स्थान या मॉड्यूल के लिए भी। एक उदाहरण के रूप में, पूर्णांकों की अपरिमित रूप से अनेक प्रतियों के प्रत्यक्ष योग और प्रत्यक्ष गुणनफल पर विचार करें। प्रत्यक्ष उत्पाद में एक तत्व एक अनंत अनुक्रम है, जैसे (1,2,3,...) लेकिन प्रत्यक्ष योग में, एक आवश्यकता है कि सभी लेकिन बहुत से निर्देशांक शून्य हों, इसलिए अनुक्रम (1,2) ,3,...) प्रत्यक्ष उत्पाद का एक तत्व होगा, लेकिन प्रत्यक्ष योग का नहीं, जबकि (1,2,0,0,0,...) दोनों का एक तत्व होगा। अक्सर, यदि एक + चिह्न का उपयोग किया जाता है, तो बहुत से निर्देशांकों को छोड़कर सभी निर्देशांक शून्य होने चाहिए, जबकि यदि गुणन के किसी रूप का उपयोग किया जाता है, तो निश्चित रूप से बहुत से निर्देशांकों को छोड़कर सभी 1 होना चाहिए। अधिक तकनीकी भाषा में, यदि योगफल हैं , प्रत्यक्ष योग

tuples के सेट के रूप में परिभाषित किया गया है साथ ऐसा है कि सभी के लिए लेकिन निश्चित रूप से बहुत से i. प्रत्यक्ष योग प्रत्यक्ष उत्पाद में निहित है , लेकिन सूचकांक सेट होने पर सख्ती से छोटा होता है अनंत है, क्योंकि प्रत्यक्ष उत्पाद के एक तत्व में असीम रूप से कई अशून्य निर्देशांक हो सकते हैं।[1]


उदाहरण

xy-प्लेन, एक द्वि-आयामी वेक्टर स्पेस, को दो एक-आयामी वेक्टर स्पेस, अर्थात् x और y अक्षों के प्रत्यक्ष योग के रूप में माना जा सकता है। इस प्रत्यक्ष योग में, x और y अक्ष केवल मूल बिंदु (शून्य सदिश) पर प्रतिच्छेद करते हैं। जोड़ को निर्देशांक-वार परिभाषित किया गया है, अर्थात , जो सदिश योग के समान है।

दो संरचनाएं दी गई हैं तथा , उनका सीधा योग इस प्रकार लिखा जाता है . संरचनाओं के अनुक्रमित परिवार को देखते हुए , के साथ अनुक्रमित , प्रत्यक्ष योग लिखा जा सकता है . प्रत्येक एiA का 'प्रत्यक्ष योग' कहा जाता है। यदि सूचकांक सेट परिमित है, तो प्रत्यक्ष योग प्रत्यक्ष उत्पाद के समान होता है। समूहों के मामले में, यदि समूह संचालन के रूप में लिखा गया है वाक्यांश प्रत्यक्ष योग का उपयोग किया जाता है, जबकि यदि समूह संचालन लिखा जाता है प्रत्यक्ष उत्पाद वाक्यांश का उपयोग किया जाता है। जब इंडेक्स सेट अनंत होता है, तो प्रत्यक्ष योग प्रत्यक्ष उत्पाद के समान नहीं होता है क्योंकि प्रत्यक्ष योग की अतिरिक्त आवश्यकता होती है कि सभी लेकिन अंतत: कई निर्देशांक शून्य होने चाहिए।

आंतरिक और बाह्य प्रत्यक्ष रकम

आंतरिक और बाह्य प्रत्यक्ष योगों के बीच एक भेद किया जाता है, हालांकि दोनों तुल्याकारी हैं। यदि योग को पहले परिभाषित किया जाता है, और फिर योग के संदर्भ में प्रत्यक्ष योग को परिभाषित किया जाता है, तो हमारे पास बाहरी प्रत्यक्ष योग होता है। उदाहरण के लिए, यदि हम वास्तविक संख्याओं को परिभाषित करते हैं और फिर परिभाषित करें प्रत्यक्ष योग को बाह्य कहा जाता है।

यदि, दूसरी ओर, हम पहले कुछ बीजगणितीय संरचना को परिभाषित करते हैं और फिर लिखो दो अवसंरचनाओं के प्रत्यक्ष योग के रूप में तथा , तो प्रत्यक्ष योग को आंतरिक कहा जाता है। इस मामले में, के प्रत्येक तत्व के एक तत्व के बीजगणितीय संयोजन के रूप में विशिष्ट रूप से व्यक्त किया जा सकता है और का एक तत्व . आंतरिक प्रत्यक्ष योग के उदाहरण के लिए, विचार करें (पूर्णांक मॉड्यूल छह), जिनके तत्व हैं . यह आंतरिक प्रत्यक्ष योग के रूप में व्यक्त किया जा सकता है .

प्रत्यक्ष योग के प्रकार

एबेलियन समूहों का प्रत्यक्ष योग

एबेलियन समूहों का प्रत्यक्ष योग प्रत्यक्ष योग का एक प्रोटोटाइपिक उदाहरण है। ऐसे दो समूह दिए गए हैं (गणित) तथा उनका सीधा योग समूहों के उनके प्रत्यक्ष उत्पाद के समान है। यही है, अंतर्निहित सेट कार्टेशियन उत्पाद है और समूह संचालन घटक-वार परिभाषित किया गया है:

यह परिभाषा सीधे तौर पर बहुत से एबेलियन समूहों के योगों का सामान्यीकरण करती है।

समूहों के एक मनमानी परिवार के लिए द्वारा अनुक्रमित उनका direct sum[2]

प्रत्यक्ष उत्पाद का उपसमूह है जिसमें तत्व होते हैं जिनके पास परिमित समर्थन (गणित) है, जहाँ परिभाषा के अनुसार, कहा जाता है finite support यदि का पहचान तत्व है सभी के लिए लेकिन निश्चित रूप से बहुत से [3] एक अनंत परिवार का प्रत्यक्ष योग गैर-तुच्छ समूहों की संख्या उत्पाद समूह का उचित उपसमूह है


मॉड्यूल का प्रत्यक्ष योग

मॉड्यूल का सीधा योग एक निर्माण है जो कई मॉड्यूल (गणित) को एक नए मॉड्यूल में जोड़ता है।

इस निर्माण के सबसे परिचित उदाहरण वेक्टर रिक्त स्थान पर विचार करते समय होते हैं, जो एक फ़ील्ड (गणित) पर मॉड्यूल होते हैं। निर्माण को बनच स्थानों और हिल्बर्ट स्थानों तक भी बढ़ाया जा सकता है।

श्रेणियों में प्रत्यक्ष योग

एक योजक श्रेणी मॉड्यूल की श्रेणी के गुणों का एक सार है।[4][5] ऐसी श्रेणी में, परिमित उत्पाद और सह-उत्पाद सहमत होते हैं और प्रत्यक्ष योग उनमें से कोई एक होता है, cf. द्विउत्पाद

सामान्य मामला:[2] श्रेणी सिद्धांत में direct sum अक्सर, लेकिन हमेशा नहीं, प्रश्न में गणितीय वस्तुओं की श्रेणी (गणित) में अनुत्पादक होता है। उदाहरण के लिए, एबेलियन समूहों की श्रेणी में, प्रत्यक्ष योग एक सह-उत्पाद है। यह मॉड्यूल की श्रेणी में भी सही है।

समूहों की श्रेणी में सीधे रकम बनाम सह-उत्पाद

हालाँकि, प्रत्यक्ष राशि (एबेलियन समूहों के प्रत्यक्ष योग के समान परिभाषित) है not समूहों का एक उत्पाद तथा समूहों की श्रेणी में।[6] तो इस श्रेणी के लिए, किसी भी संभावित भ्रम से बचने के लिए एक स्पष्ट प्रत्यक्ष योग को अक्सर एक सह-उत्पाद कहा जाता है।

समूह अभ्यावेदन का प्रत्यक्ष योग

समूह अभ्यावेदन का प्रत्यक्ष योग अंतर्निहित मॉड्यूल (गणित) के मॉड्यूल के प्रत्यक्ष योग को सामान्यीकृत करता है, इसमें एक समूह क्रिया (गणित) जोड़ता है। विशेष रूप से, एक समूह (गणित) दिया गया और दो समूह प्रतिनिधित्व तथा का (या, अधिक आम तौर पर, दो जी-मॉड्यूल |-मॉड्यूल), अभ्यावेदन का प्रत्यक्ष योग है की क्रिया के साथ दिए गए घटक-वार, अर्थात्,

प्रत्यक्ष योग को परिभाषित करने का एक अन्य समतुल्य तरीका इस प्रकार है:

दो अभ्यावेदन दिए तथा प्रत्यक्ष योग का वेक्टर स्थान है और समरूपता द्वारा दिया गया है कहाँ पे उपरोक्तानुसार समन्वय-वार क्रिया द्वारा प्राप्त प्राकृतिक मानचित्र है।

इसके अलावा, अगर परिमित आयामी हैं, फिर, का आधार दिया गया है , तथा मैट्रिक्स-मूल्यवान हैं। इस मामले में, के रूप में दिया जाता है

इसके अलावा, अगर हम इलाज करते हैं तथा समूह रिंग पर मॉड्यूल के रूप में , कहाँ पे क्षेत्र है, तो अभ्यावेदन का प्रत्यक्ष योग तथा उनके प्रत्यक्ष योग के बराबर है मॉड्यूल।

अंगूठियों का प्रत्यक्ष योग

कुछ लेखक प्रत्यक्ष योग की बात करेंगे दो छल्लों का जब उनका मतलब प्रत्यक्ष उत्पाद से है , लेकिन इससे बचना चाहिए[7] जबसे से प्राकृतिक वलय समरूपता प्राप्त नहीं करता है तथा : विशेष रूप से, मानचित्र भेजना प्रति रिंग समरूपता नहीं है क्योंकि यह 1 को भेजने में विफल रहता है (ऐसा मानते हुए में ). इस प्रकार अंगूठियों की श्रेणी में प्रतिउत्पाद नहीं है, और इसे प्रत्यक्ष योग के रूप में नहीं लिखा जाना चाहिए। (कम्यूटेटिव रिंग्स की श्रेणी में कोप्रोडक्ट रिंग्स का टेंसर उत्पाद है।[8] अंगूठियों की श्रेणी में, प्रतिउत्पाद समूहों के मुक्त उत्पाद के समान निर्माण द्वारा दिया जाता है।)

प्रत्यक्ष योग शब्दावली और संकेतन का उपयोग विशेष रूप से तब समस्याग्रस्त होता है जब छल्ले के अनंत परिवारों के साथ व्यवहार किया जाता है: यदि गैर-तुच्छ छल्लों का एक अनंत संग्रह है, तो अंतर्निहित योज्य समूहों का प्रत्यक्ष योग शब्दवार गुणन से सुसज्जित किया जा सकता है, लेकिन यह एक rng (बीजगणित) उत्पन्न करता है, जो कि गुणक पहचान के बिना एक वलय है।

मेट्रिसेस का प्रत्यक्ष योग

किसी भी मनमाना मैट्रिक्स के लिए तथा , प्रत्यक्ष योग के ब्लॉक मैट्रिक्स#ब्लॉक विकर्ण मैट्रिक्स के रूप में परिभाषित किया गया है तथा यदि दोनों वर्ग मैट्रिक्स हैं (और एक समान ब्लॉक मैट्रिक्स के लिए, यदि नहीं)।


टोपोलॉजिकल वेक्टर स्पेस का प्रत्यक्ष योग

एक टोपोलॉजिकल वेक्टर स्पेस (टीवीएस) जैसे बनच स्थान, कहा जाता है topological direct sum दो सदिश उपसमष्टियों का तथा यदि अतिरिक्त मानचित्र

एक टीवीएस-समरूपता है (जिसका अर्थ है कि यह रेखीय नक्शा एक द्विभाजन होमियोमोर्फिज्म है), इस मामले में तथा कहा जाता है topological complements में यह सच है अगर और केवल अगर योगात्मक समूह टोपोलॉजिकल समूहों के रूप में माना जाता है (इसलिए स्केलर गुणन को अनदेखा किया जाता है), सामयिक समूहों का प्रत्यक्ष योग है तथा यदि ऐसा है और यदि है हौसडॉर्फ अंतरिक्ष है तो तथा आवश्यक रूप से बंद सेट उप-स्थान हैं यदि एक वास्तविक या जटिल सदिश समष्टि की एक सदिश उपसमष्टि है तो वहाँ हमेशा एक और वेक्टर उप-स्थान मौजूद होता है का एक कहा जाता है algebraic complement of in ऐसा है कि है algebraic direct sum का तथा (जो तब होता है जब और केवल अगर अतिरिक्त मानचित्र एक वेक्टर अंतरिक्ष समरूपता है)। बीजगणितीय प्रत्यक्ष योगों के विपरीत, इस तरह के पूरक के अस्तित्व की अब टोपोलॉजिकल प्रत्यक्ष योगों के लिए गारंटी नहीं है।

एक वेक्टर उप-स्थान का कहा जाता है (topologically) complemented subspace of अगर वहाँ कुछ वेक्टर उप-स्थान मौजूद है का ऐसा है कि का सामयिक प्रत्यक्ष योग है तथा एक वेक्टर उप-स्थान कहा जाता है uncomplemented अगर यह एक पूरक उप-स्थान नहीं है। उदाहरण के लिए, हौसडॉर्फ टीवीएस का प्रत्येक सदिश उपस्थान जो एक बंद उपसमुच्चय नहीं है, आवश्यक रूप से अपूर्ण है। हिल्बर्ट स्पेस का प्रत्येक बंद वेक्टर सबस्पेस पूरक है। लेकिन हर Banach स्थान जो कि हिल्बर्ट स्थान नहीं है, आवश्यक रूप से कुछ अपूर्ण बंद सदिश उप-स्थान रखता है।

समरूपता

[clarification needed]

प्रत्यक्ष योग प्रोजेक्शन (गणित) समरूपता से सुसज्जित है I में प्रत्येक j के लिए और एक सहप्रक्षेपण I में प्रत्येक जे के लिए।[9] एक और बीजगणितीय संरचना दी गई है (समान अतिरिक्त संरचना के साथ) और समरूपता I में प्रत्येक j के लिए, एक अद्वितीय समरूपता है , जी का योग कहा जाता हैj, ऐसा है कि सभी जे के लिए इस प्रकार प्रत्यक्ष योग उपयुक्त श्रेणी (गणित) में प्रतिफल है।

यह भी देखें

टिप्पणियाँ

  1. Thomas W. Hungerford, Algebra, p.60, Springer, 1974, ISBN 0387905189
  2. 2.0 2.1 Direct Sum at the nLab
  3. Joseph J. Rotman, The Theory of Groups: an Introduction, p. 177, Allyn and Bacon, 1965
  4. "p.45"
  5. "अनुबंध" (PDF). Archived from the original (PDF) on 2006-09-17. Retrieved 2014-01-14.
  6. "उत्पादों और प्रतिउत्पाद के लिए प्रति उदाहरण". Planetmath. Retrieved 2021-07-23.
  7. Math StackExchange on direct sum of rings vs. direct product of rings.
  8. Lang 2002, section I.11
  9. Heunen, Chris (2009). श्रेणीबद्ध क्वांटम मॉडल और तर्क. Pallas Proefschriften. Amsterdam University Press. p. 26. ISBN 978-9085550242.


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • कार्टेशियन विमान
  • सदिश स्थल
  • जोड़नेवाला
  • समाकृतिकता
  • समूह (गणित)
  • समूहों का प्रत्यक्ष उत्पाद
  • कार्तीय गुणन
  • हिल्बर्ट अंतरिक्ष
  • क्षेत्र (गणित)
  • सहउत्पाद
  • मॉड्यूल का प्रत्यक्ष योग
  • समूह की अंगूठी
  • अंगूठियों का टेंसर उत्पाद
  • विनिमेय छल्ले की श्रेणी
  • मुफ्त उत्पाद
  • आरएनजी (बीजगणित)
  • रैखिक नक्शा
  • हॉसडॉर्फ स्पेस
  • क्रमपरिवर्तन का सीधा योग

संदर्भ