शंकु वर्गों का मैट्रिक्स प्रतिनिधित्व
गणित में, शंकु वर्गों का मैट्रिक्स प्रतिनिधित्व रैखिक बीजगणित के उपकरण को शंकु वर्गों के अध्ययन में उपयोग करने की अनुमति देता है। यह एक शंकु खंड के रोटेशन के अक्ष , शीर्ष (वक्र), स्पर्शरेखा और ध्रुव और शंकु द्वारा निर्धारित विमान के बिंदुओं और रेखाओं के बीच ध्रुवीय संबंध की गणना करने के आसान तरीके प्रदान करता है। तकनीक को एक शंकु खंड के समीकरण को एक मानक रूप में रखने की आवश्यकता नहीं होती है, इस प्रकार उन शंकु वर्गों की जांच करना आसान हो जाता है जिनके अक्ष समन्वय प्रणाली के समानांतर (ज्यामिति) नहीं हैं।
शांकव खंड (पतित शांकव सहित) उन बिंदुओं का समुच्चय (गणित) हैं जिनके निर्देशांक दो चरों में द्वितीय-डिग्री बहुपद समीकरण को संतुष्ट करते हैं,
संकेतन के दुरुपयोग से, इस शंकु खंड को भी बुलाया जाएगा Q जब कोई भ्रम पैदा नहीं हो सकता।
कुछ बाद के सूत्रों को सरल बनाने के लिए इस समीकरण को मैट्रिक्स (गणित) नोटेशन में सममित मैट्रिक्स के संदर्भ में लिखा जा सकता है[1]
इस समीकरण के पहले तीन शब्दों का योग, अर्थात्
समीकरण और मैट्रिक्स से जुड़ा द्विघात रूप है
द्विघात रूप का मैट्रिक्स कहा जाता है। ट्रेस (रैखिक बीजगणित) और निर्धारक कुल्हाड़ियों के रोटेशन और विमान के अनुवाद (ज्यामिति) (मूल की गति) के संबंध में दोनों अपरिवर्तनीय हैं।[2][3] द्विघात समीकरण को इस रूप में भी लिखा जा सकता है
कहां तीन चरों में सजातीय निर्देशांक प्रतिबंधित है ताकि अंतिम चर 1 हो, अर्थात,
और कहाँ मैट्रिक्स है
साँचा द्विघात समीकरण का आव्यूह कहा जाता है।[4] की तरह , इसका निर्धारक रोटेशन और अनुवाद दोनों के संबंध में अपरिवर्तनीय है।[3]
2 × 2 ऊपरी बाएँ सबमैट्रिक्स (आदेश 2 का एक मैट्रिक्स)। AQ, तीसरी (अंतिम) पंक्ति और तीसरे (अंतिम) कॉलम को हटाकर प्राप्त किया गया AQ द्विघात रूप का मैट्रिक्स है। उपरोक्त अंकन A33 इस लेख में इस रिश्ते पर जोर देने के लिए प्रयोग किया जाता है।
वर्गीकरण
उचित (गैर-पतित) और पतित शंकु को प्रतिष्ठित किया जा सकता है[5][6] के निर्धारक के आधार पर AQ:
यदि , शंकु पतित है।
यदि ताकि Q पतित नहीं है, हम लघुगणक (गणित) की गणना करके देख सकते हैं कि यह किस प्रकार का शंकु परिच्छेद है, :
- Q एक अतिपरवलय है अगर और केवल अगर ,
- Q एक परवलय है अगर और केवल अगर , और
- Q एक अंडाकार है अगर और केवल अगर .
दीर्घवृत्त के मामले में, हम पिछले दो विकर्ण तत्वों की तुलना गुणांक के अनुरूप करके एक वृत्त के विशेष मामले में अंतर कर सकते हैं x2 और y2:
- यदि A = C और B = 0, तब Q एक वर्तुल है।
इसके अलावा, एक गैर-पतित दीर्घवृत्त के मामले में (के साथ और ), हमारे पास एक वास्तविक संख्या दीर्घवृत्त है यदि लेकिन एक काल्पनिक संख्या दीर्घवृत्त यदि . उत्तरार्द्ध का एक उदाहरण है , जिसका कोई वास्तविक-मूल्यवान समाधान नहीं है।
यदि शांकव खंड पतित शांकव है (), अभी भी हमें इसके रूप में अंतर करने की अनुमति देता है:
- दो अन्तर्विभाजक रेखाएँ (एक अतिपरवलय इसके दो स्पर्शोन्मुख में पतित) यदि और केवल यदि .
- दो समानांतर सीधी रेखाएँ (एक पतित परवलय) यदि और केवल यदि . ये रेखाएँ विशिष्ट और वास्तविक हैं यदि , संयोग अगर , और वास्तविक विमान में मौजूद नहीं है .
- एक एकल बिंदु (एक पतित दीर्घवृत्त) यदि और केवल यदि .
संयोग रेखाओं का मामला तब होता है जब और केवल अगर 3 × 3 मैट्रिक्स के मैट्रिक्स का रैंक 1 है; अन्य सभी पतित मामलों में इसकी रैंक 2 है।[2]
केंद्रीय शांकव
कब शंकु खंड का एक ज्यामितीय केंद्र मौजूद है और ऐसे शंकु वर्गों (दीर्घवृत्त और अतिपरवलय) को 'केंद्रीय शंकु' कहा जाता है।[7]
केंद्र
एक शंकु का केंद्र, यदि वह मौजूद है, तो वह बिंदु है जो शंकु के सभी तारों को विभाजित करता है जो इसके माध्यम से गुजरते हैं। इस संपत्ति का उपयोग केंद्र के निर्देशांक की गणना करने के लिए किया जा सकता है, जिसे उस बिंदु के रूप में दिखाया जा सकता है जहां द्विघात समारोह का ढाल Q ग़ायब हो जाता है—अर्थात्[8]
यह नीचे दिए गए केंद्र को उत्पन्न करता है।
द्विघात समीकरण के मैट्रिक्स रूप का उपयोग करने वाला एक वैकल्पिक दृष्टिकोण इस तथ्य पर आधारित है कि जब केंद्र समन्वय प्रणाली की उत्पत्ति है, तो समीकरण में कोई रैखिक शब्द नहीं हैं। एक समन्वय मूल के लिए कोई भी अनुवाद (x0, y0), का उपयोग कर x* = x – x0, y* = y − y0 को जन्म देता है
के लिए शर्त (x0, y0) शांकव का केंद्र होना (xc, yc) यह है कि रैखिक के गुणांक x* और y* पद, जब इस समीकरण को गुणा किया जाता है, शून्य होते हैं। यह स्थिति केंद्र के निर्देशांक उत्पन्न करती है:
यह गणना संबद्ध की पहली दो पंक्तियों को लेकर भी पूरी की जा सकती है आव्यूह AQ, प्रत्येक को गुणा करके (x, y, 1)⊤ और दोनों आंतरिक उत्पादों को 0 के बराबर सेट करके, निम्नलिखित प्रणाली प्राप्त करें:
इससे उपरोक्त केंद्र बिंदु प्राप्त होता है।
एक परबोला के मामले में, वह है, कब 4AC − B2 = 0, कोई केंद्र नहीं है क्योंकि उपरोक्त भाजक शून्य हो जाते हैं (या, प्रक्षेपी ज्यामिति की व्याख्या, केंद्र अनंत पर रेखा पर है।)
केंद्रित मैट्रिक्स समीकरण
एक केंद्रीय (गैर-परवलय) शंकु के रूप में केंद्रित मैट्रिक्स रूप में फिर से लिखा जा सकता है
कहां
फिर दीर्घवृत्त मामले के लिए AC > (B/2)2, दीर्घवृत्त वास्तविक है अगर का संकेत K के चिह्न के बराबर है (A + C) (यानी, प्रत्येक का संकेत A और C), काल्पनिक यदि उनके विपरीत संकेत हैं, और एक पतित बिंदु दीर्घवृत्त यदि है K = 0. हाइपरबोला के मामले में AC < (B/2)2, अतिपरवलय पतित है अगर और केवल अगर K = 0.
एक केंद्रीय शांकव का मानक रूप
एक केंद्रीय शंकु खंड के समीकरण का मानक रूप तब प्राप्त होता है जब शंकु खंड का अनुवाद और घुमाया जाता है ताकि इसका केंद्र समन्वय प्रणाली के केंद्र में स्थित हो और इसके अक्ष समन्वय अक्षों के साथ मेल खाते हों। यह कहने के बराबर है कि समन्वय प्रणाली का केंद्र स्थानांतरित हो गया है और इन गुणों को पूरा करने के लिए समन्वय अक्षों को घुमाया जाता है। आरेख में, मूल xyमूल के साथ समन्वय प्रणाली O में ले जाया जाता है x'y'मूल के साथ समन्वय प्रणाली O'.
अनुवाद वेक्टर द्वारा है
कोण से घुमाव α मैट्रिक्स विकर्णकरण मैट्रिक्स द्वारा किया जा सकता है A33. इस प्रकार, यदि और eigenvalue हैं मैट्रिक्स ए का33केंद्रित समीकरण को नए चरों में फिर से लिखा जा सकता है x' और y' जैसा[9]
द्वारा विभाजित करना हम एक मानक विहित रूप प्राप्त करते हैं।
उदाहरण के लिए, दीर्घवृत्त के लिए यह रूप है
यहाँ से हमें मिलता है a और b, पारंपरिक अंकन में अर्ध-प्रमुख और अर्ध-लघु अक्षों की लंबाई।
केंद्रीय शांकवों के लिए, दोनों eigenvalues गैर-शून्य हैं और शांकव वर्गों का वर्गीकरण उनकी जांच करके प्राप्त किया जा सकता है।[10] * यदि λ1 और λ2 एक ही बीजगणितीय चिह्न है, तो Q एक वास्तविक दीर्घवृत्त, काल्पनिक दीर्घवृत्त या वास्तविक बिंदु यदि है K का समान चिह्न है, विपरीत चिह्न है या क्रमशः शून्य है।
- यदि λ1 और λ2 विपरीत बीजगणितीय संकेत हैं, फिर Q एक अतिपरवलय या दो अन्तर्विभाजक रेखाएँ हैं जो इस पर निर्भर करती हैं K क्रमशः अशून्य या शून्य है।
अक्ष
[[ प्रमुख अक्ष प्रमेय ]] द्वारा, एक केंद्रीय शंकु खंड (दीर्घवृत्त या हाइपरबोला) के द्विघात रूप के मैट्रिक्स के दो egenvectors लंबवत (एक दूसरे के लिए ओर्थोगोनालिटी ) हैं और प्रत्येक समानांतर (समान दिशा में) या तो प्रमुख अक्ष के रूप में है शंकु का। सबसे छोटा ईजेनवेल्यू (पूर्ण मान में) वाला ईजेनवेक्टर प्रमुख अक्ष से मेल खाता है।[11] विशेष रूप से, यदि एक केंद्रीय शांकव खंड में केंद्र है (xc, yc) और का एक ईजेनवेक्टर A33 द्वारा दिया गया है v→(v1, v2) तब उस ईजेनवेक्टर के संगत मुख्य अक्ष (प्रमुख या लघु) का समीकरण होता है,
कार्यक्षेत्र
एक केंद्रीय शंकु के शीर्ष (वक्र) को शंकु और उसके अक्षों के चौराहों की गणना करके निर्धारित किया जा सकता है - दूसरे शब्दों में, द्विघात शंकु समीकरण और वैकल्पिक रूप से एक या अन्य कुल्हाड़ियों के लिए रैखिक समीकरण से मिलकर प्रणाली को हल करके . प्रत्येक अक्ष के लिए दो या कोई शीर्ष प्राप्त नहीं होते हैं, चूंकि, अतिपरवलय के मामले में, लघु अक्ष अतिपरवलय को वास्तविक निर्देशांक वाले बिंदु पर नहीं काटता है। हालांकि, जटिल विमान के व्यापक दृष्टिकोण से, हाइपरबोला की छोटी धुरी हाइपरबोला को काटती है, लेकिन जटिल निर्देशांक वाले बिंदुओं पर।[12]
डंडे और ध्रुव
सजातीय निर्देशांक का उपयोग करना,[13] बिन्दु[14]
- और
शांकव के संबंध में संयुग्मी हैं Q बशर्ते
एक निश्चित बिंदु के संयुग्मक p या तो एक रेखा बनाएं या शांकव के तल में सभी बिंदुओं से मिलकर बने। जब का संयुग्मन होता है p एक रेखा बनाते हैं, रेखा को ध्रुवीय कहा जाता है p और बिंदु p शंकु के संबंध में रेखा का ध्रुव कहा जाता है। बिंदुओं और रेखाओं के बीच के इस संबंध को ध्रुवता कहा जाता है।
यदि शंकु गैर-पतित है, तो एक बिंदु के संयुग्म हमेशा एक रेखा बनाते हैं और शंकु द्वारा परिभाषित ध्रुवीयता विस्तारित विमान के बिंदुओं और रेखाओं के बीच एक आक्षेप है जिसमें शंकु होता है (अर्थात, बिंदु के साथ विमान एक साथ होता है) अनंत और अनंत पर रेखा)।
अगर बिंदु p शंकु पर स्थित है Q, की ध्रुवीय रेखा p की स्पर्शरेखा है Q पर p.
समीकरण, सजातीय निर्देशांक में, बिंदु की ध्रुवीय रेखा का p गैर-पतित शांकव के संबंध में Q द्वारा दिया गया है
जिस प्रकार p विशिष्ट रूप से अपनी ध्रुवीय रेखा (दिए गए शंकु के संबंध में) निर्धारित करता है, इसलिए प्रत्येक रेखा एक अद्वितीय ध्रुव निर्धारित करती है p. इसके अलावा, एक बिंदु p एक लाइन पर है L जो एक बिंदु का ध्रुवीय है r, अगर और केवल अगर ध्रुवीय p बिन्दु से होकर जाता है r (फिलिप डी ला हायर की प्रमेय)।[15] इस प्रकार, यह संबंध समतल में बिंदुओं और रेखाओं के बीच ज्यामितीय द्वैत (प्रक्षेपी ज्यामिति) की अभिव्यक्ति है।
शंक्वाकार वर्गों से संबंधित कई परिचित अवधारणाएं सीधे तौर पर इस ध्रुवीयता से संबंधित हैं। एक गैर-पतित शंकु के केंद्र को अनंत पर रेखा के ध्रुव के रूप में पहचाना जा सकता है। एक परबोला, अनंत पर रेखा के स्पर्शरेखा होने के कारण, इसका केंद्र अनंत पर रेखा पर एक बिंदु होगा। हाइपरबोलस दो अलग-अलग बिंदुओं में अनंत पर रेखा को काटते हैं और इन बिंदुओं की ध्रुवीय रेखाएँ हाइपरबोला की स्पर्शोन्मुख रेखाएँ हैं और अनंत के इन बिंदुओं पर हाइपरबोला की स्पर्श रेखाएँ हैं। साथ ही, शंकु के फ़ोकस की ध्रुवीय रेखा इसकी संगत नियता होती है।[16]
स्पर्शरेखा
चलो लाइन L बिंदु की ध्रुवीय रेखा हो p गैर-पतित शांकव के संबंध में Q. ला हिरे के प्रमेय के अनुसार, प्रत्येक रेखा से होकर गुजरती है p उसका पोल लगा हुआ है L. यदि L काटती है Q दो बिंदुओं में (अधिकतम संभव) तो उन बिंदुओं के ध्रुव स्पर्श रेखाएँ हैं जो गुजरती हैं p और ऐसे बिंदु को बाहरी या बाहरी बिंदु कहा जाता है Q. यदि L काटती है Q केवल एक बिंदु में, तो यह एक स्पर्शरेखा रेखा है और p स्पर्शरेखा का बिंदु है। अंत में, अगर L प्रतिच्छेद नहीं करता Q तब p इसमें से होकर कोई स्पर्शरेखा नहीं गुजरती है और इसे आंतरिक या आंतरिक बिंदु कहा जाता है।[17] एक बिंदु पर स्पर्श रेखा (सजातीय निर्देशांक में) का समीकरण p गैर-पतित शांकव पर Q द्वारा दिया गया है,
यदि p एक बाहरी बिंदु है, पहले इसके ध्रुवीय (उपरोक्त समीकरण) के समीकरण को खोजें और फिर शंकु के साथ उस रेखा के प्रतिच्छेदन, बिंदुओं पर कहें s और t. के ध्रुव s और t के माध्यम से स्पर्शरेखा होगी p.
ध्रुवों और ध्रुवों के सिद्धांत का उपयोग करते हुए, दो शांकवों की चार पारस्परिक स्पर्शरेखाओं को खोजने की समस्या शंक्वाकार खंड # दो शंकुओं को प्रतिच्छेद करने में कम हो जाती है।
यह भी देखें
- शांकव खंड # सामान्य कार्तीय रूप
- द्विघात रूप (सांख्यिकी)
टिप्पणियाँ
- ↑ Brannan, Esplen & Gray 1999, p. 30
- ↑ 2.0 2.1 Pettofrezzo 1978, p. 110
- ↑ 3.0 3.1 Spain 2007, pp. 59–62
- ↑ It is also a matrix of a quadratic form, but this form has three variables and is .
- ↑ Lawrence 1972, p. 63
- ↑ Spain 2007, p. 70
- ↑ Pettofrezzo 1978, p. 105
- ↑ Ayoub 1993, p. 322
- ↑ Ayoub 1993, p. 324
- ↑ Pettofrezzo 1978, p. 108
- ↑ Ostermann & Wanner 2012, p. 311
- ↑ Kendig, Keith (2005), Conics, The Mathematical Association of America, pp. 89–102, ISBN 978-0-88385-335-1
- ↑ This permits the algebraic inclusion of infinite points and a line at infinity which are necessary to have for some of the following results
- ↑ This section follows Fishback, W.T. (1969), Projective and Euclidean Geometry (2nd ed.), Wiley, pp. 167–172
- ↑ Brannan, Esplen & Gray 1999, p. 189
- ↑ Akopyan, A.V.; Zaslavsky, A.A. (2007), Geometry of Conics, American Mathematical Society, p. 72, ISBN 978-0-8218-4323-9
- ↑ Interpreted in the complex plane such a point is on two complex tangent lines that meet Q in complex points.
इस पेज में लापता आंतरिक लिंक की सूची
- शिखर (वक्र)
- सेट (गणित)
- पतित शंकु
- अंक शास्त्र
- लीनियर अलजेब्रा
- ध्रुव और ध्रुवीय
- अंकन का दुरुपयोग
- सिद्ध
- माइनर (गणित)
- अतिशयोक्ति
- घेरा
- एक मैट्रिक्स की रैंक
- सीधा
- निरपेक्ष मूल्य
- द्विभाजन
- अनंत पर बिंदु
संदर्भ
- Ayoub, A. B. (1993), "The central conic sections revisited", Mathematics Magazine, 66 (5): 322–325, doi:10.1080/0025570x.1993.11996157
- Brannan, David A.; Esplen, Matthew F.; Gray, Jeremy J. (1999), Geometry, Cambridge University Press, ISBN 978-0-521-59787-6
- Lawrence, J. Dennis (1972), A Catalog of Special Plane Curves, Dover
- Ostermann, Alexander; Wanner, Gerhard (2012), Geometry by its History, Springer, doi:10.1007/978-3-642-29163-0, ISBN 978-3-642-29163-0
- Pettofrezzo, Anthony (1978) [1966], Matrices and Transformations, Dover, ISBN 978-0-486-63634-4
- Spain, Barry (2007) [1957], Analytical Conics, Dover, ISBN 978-0-486-45773-4