मीट्रिक टेंसर

From Vigyanwiki

अवकल ज्यामिति के गणितीय क्षेत्र में, एक मीट्रिक टेन्सर (या केवल मीट्रिक) मैनिफोल्ड M (जैसे सतह) पर एक ऐसी अतिरिक्त गणितीय संरचना है जो दूरी और कोणों को परिभाषित करने की अनुमति ठीक उसी प्रदान करती है, जिस प्रकार यूक्लिडीय अंतरिक्ष पर आंतरिक गुणनफल, दूरी और कोण को परिभाषित करने की अनुमति प्रदान करता है। अधिक यथार्थ रूप से, M के किसी बिंदु p पर एक मीट्रिक टेन्सर, p पर स्पर्शरेखा समष्टि पर परिभाषित एक द्विरेखीय रूप है (अर्थात्, एक द्विरेखीय फलन, जो स्पर्शरेखा सदिश युग्मों को वास्तविक संख्याओं में प्रतिचित्रित करता है), और M पर एक मीट्रिक टेंसर में M के प्रत्येक बिंदु p पर एक ऐसा मीट्रिक टेंसर होता है जो आसानी से p के साथ परिवर्तित होता रहता है।

एक मीट्रिक टेन्सर g धनात्मक-निश्चित होता है यदि, प्रत्येक अशून्य सदिश v के लिए, g(v, v) > 0। धनात्मक-निश्चित मीट्रिक टेन्सर से सुसज्जित मैनिफोल्ड को रीमैनियन मैनिफोल्ड के रूप में जाना जाता है। इस प्रकार के एक मीट्रिक टेन्सर पर किसी मैनिफोल्ड पर अतिसूक्ष्म दूरी को निर्दिष्ट करने के बारे में विचार किया जा सकता है। रीमैनियन मैनिफोल्ड M पर, दो बिंदुओं p और q के बीच एक निष्कोण वक्र की लंबाई को समाकलन द्वारा परिभाषित किया जा सकता है, और p और q के बीच की दूरी को इस प्रकार के सभी वक्रों की लंबाई के न्यूनतम के रूप में परिभाषित किया जा सकता है; यह M को एक मीट्रिक समष्टि बनाता है। इसके विपरीत, मीट्रिक टेन्सर स्वयं दूरी फलन (उपयुक्त तरीके से लिया गया) का अवकलज है।[citation needed]

हालाँकि एक मीट्रिक टेन्सर की धारणा कुछ अर्थों में कार्ल गॉस जैसे गणितज्ञों को 19वीं शताब्दी के प्रारंभ से ज्ञात थी, फिर भी 20वीं शताब्दी के प्रारंभ तक ऐसा नहीं था कि टेन्सर के रूप में इसके गुणों को विशेष रूप से ग्रेगोरियो रिक्की-क्लैस्ट्रो और टुल्लियो लेवी-सिविटा द्वारा समझा गया था, जिन्होंने पहली बार एक टेंसर की धारणा को संहिताबद्ध किया। मीट्रिक टेंसर, टेंसर क्षेत्र का एक उदाहरण है।

किसी मीट्रिक टेन्सर के घटक एक निर्देशांक आधार पर एक सममित आव्यूह के रूप में लिए जाते हैं, जिनकी प्रविष्टियाँ निर्देशांक प्रणाली में परिवर्तन के तहत सहपरिवर्ती रूप से रूपांतरित होती हैं। इस प्रकार एक मीट्रिक टेन्सर एक सहपरिवर्ती सममित टेन्सर होता है। निर्देशांक-मुक्त दृष्टिकोण से, एक मीट्रिक टेन्सर क्षेत्र को प्रत्येक स्पर्शरेखा समष्टि पर एक ऐसे अनपभ्रष्ट सममित द्विरेखीय रूप के रूप में परिभाषित किया जाता है जो बिंदु से बिंदु तक सुचारू रूप से परिवर्तित होता है।

परिचय

कार्ल फ्रेडरिक गॉस ने अपने वर्ष 1827 के डिक्विजिशन्स जेनरल सर्का सुपरफिसीज कर्वस (वक्राकार सतहों की सामान्य जाँच) में दो सहायक चरों u और v के आधार पर सतह पर बिंदुओं के कार्तीय निर्देशांक x, y, और z वाली एक सतह को प्राचलिक रूप से माना। इस प्रकार प्राचलिक सतह (वर्तमान संदर्भ में) एक सदिश-मान फलन होता है

वास्तविक चर (u, v) के एक क्रमित युग्म के आधार पर, और uv-समतल में इसे एक खुले समुच्चय D में परिभाषित किया गया है। गॉस की जाँच के मुख्य उद्देश्यों में से एक सतह की उन विशेषताओं को प्राप्त करना था, जिन्हें एक ऐसे फलन द्वारा वर्णित किया जा सकता है, जो सतह के अंतरिक्ष में एक परिवर्तन (जैसे सतह को बिना खींचे हुए झुकना), या एक ही ज्यामितीय सतह के विशेष प्राचलिक रूप में परिवर्तन से गुजरने पर अपरिवर्तित रहता है।

सतह के अनुदिश खींची गई वक्र की लंबाई ऐसी ही एक प्राकृतिक अपरिवर्तनीय राशि है। ऐसी ही एक अन्य राशि, सतह के अनुदिश खींचे गए वक्रों के एक युग्म और एक उभयनिष्ठ बिंदु पर प्रतिच्छेदन के बीच का कोण है। सतह के एक खण्ड का क्षेत्रफल भी ऐसी ही एक तीसरी राशि है। सतह के इन निश्चरों के अध्ययन ने गॉस को मीट्रिक टेन्सर की आधुनिक धारणा के पूर्ववर्ती को प्रस्तुत करने के लिए प्रेरित किया।

नीचे दिए गए विवरण में मीट्रिक टेन्सर है; इस आव्यूह में E, F, और G कोई भी संख्या ग्रहण कर सकते हैं जब तक कि आव्यूह धनात्मक निश्चित है।

चाप की लंबाई

यदि चरों u और v को एक अंतराल [a, b] से मान ग्रहण हुए एक तीसरे चर, t पर निर्भर करते हुए लिया जाता है, तो r(u(t), v(t)), प्राचलिक सतह M में एक प्राचलिक वक्र आरेखित करता है। इस वक्र के चाप की लंबाई निम्न समाकल द्वारा दी जाती है

जहाँ यूक्लिडीय मानक (फलन) को निरूपित करता है। यहाँ श्रृंखला नियम लागू किया गया है, और सबस्क्रिप्ट निम्न आंशिक अवकलजों को दर्शाते हैं:

समाकल्य (द्विघात) निम्न अवकल के वर्गमूल के वक्र के लिए प्रतिबंध[1] है

 

 

 

 

(1)

जहाँ

 

 

 

 

(2)

(1) में राशि ds को रेखा तत्व, जबकि ds2 को M का पहला मौलिक रूप कहा जाता है। सहज रूप से, यह r(u, v) द्वारा किए गए विस्थापन के वर्ग के मुख्य भाग को निरूपित करता है, जब u में du इकाई और v में dv इकाई की वृद्धि होती है।

आव्यूह संकेतन का उपयोग करते हुए, पहला मौलिक रूप इस प्रकार है

निर्देशांक रूपान्तरण

अब माना u और v को चरों के एक और युग्म u और v पर निर्भर होने की अनुमति देते हुए एक भिन्न प्राचलीकरण का चयन किया जाता है। तब नए चरों के लिए (2) का अनुरूप निम्न है

 

 

 

 

(2')

श्रृंखला नियम, निम्न आव्यूह समीकरण के माध्यम से E, F, और G को E, F, और G से संबंधित करता है

 

 

 

 

(3)

जहाँ सुपरस्क्रिप्ट T आव्यूह परिवर्त को दर्शाता है। गुणांकों E, F, और G वाले आव्यूह इस प्रकार व्यवस्थित किया जाता है, और इस प्रकार निम्न निर्देशांक परिवर्तन के जैकोबियन आव्यूह द्वारा रूपान्तरित किया जाता है

इस तरह से रूपांतरित होने वाला एक आव्यूह एक ऐसे प्रकार का होता है, जिसे एक टेन्सर कहा जाता है। आव्यूह

को रूपान्तरण नियम (3) के साथ सतह के मीट्रिक टेन्सर के रूप में जाना जाता है।

निर्देशांक रूपांतरणों के अंतर्गत चापलम्बाई की निश्चरता

रिक्की-कर्बस्त्रो & लेवी-सिविटा (1900) ने सबसे पहले गुणांकों E, F, और G की एक प्रणाली के महत्व का अवलोकन किया, जो एक निर्देशांक प्रणाली से दूसरी निर्देशांक प्रणाली में जाने पर इस प्रकार से रूपांतरित हो गयी। परिणामस्वरूप पहला मौलिक रूप (1) निर्देशांक प्रणाली में परिवर्तन के तहत निश्चर होता है, और यह विशेष रूप से E, F, और G के रूपान्तरण गुणों का अनुसरण करता है। वास्तव में, श्रृंखला नियम द्वारा,

जिससे


लंबाई और कोण

गॉस द्वारा भी मानी गयी मीट्रिक टेंसर की एक अन्य व्याख्या यह है कि यह सतह पर स्पर्शरेखा सदिशों की लंबाई, साथ ही दो स्पर्शरेखा सदिशों के बीच के कोण की गणना करने की एक विधि प्रदान करता है। समकालीन शब्दों में, मीट्रिक टेन्सर सतह के प्राचलिक विवरण से स्वतंत्र तरीके से स्पर्शरेखा सदिशों के बिंदु गुणन (गैर-यूक्लिडीय ज्यामिति) की गणना करने की अनुमति देता है। प्राचलिक सतह M के किसी बिंदु पर किसी भी स्पर्शरेखा सदिश को निम्न रूप में लिखा जा सकता है

उपयुक्त वास्तविक संख्याओं p1 और p2 के लिए। यदि दो स्पर्शरेखा सदिश इस प्रकार दिए गए हों:

फिर बिंदु गुणन की द्विरैखिकता का उपयोग करते हुए,

यह स्पष्ट रूप से चार चरों a1, b1, a2, और b2 का एक फलन है। हालाँकि, इसे एक ऐसे फलन के रूप में अधिक लाभप्रद रूप से देखा जाता है, जो कोणांकों के एक युग्म a = [a1 a2] और b = [b1 b2] को ग्रहण करता है, जो uv-समतल में सदिश हैं। अर्थात्, निम्न का मान रखने पर

यह a और b में एक सममित फलन है, जिसका अर्थ है

यह द्विरेखीय भी है, जिसका अर्थ है कि यह प्रत्येक चर a और b में अलग-अलग रैखिक है। अर्थात्,

uv-समतल में किन्हीं सदिशों a, a, b, और b, और किसी वास्तविक संख्या μ और λ के लिए।

विशेष रूप से, एक स्पर्शरेखा सदिश a की लंबाई इस प्रकार है

और दो सदिशों a और b के बीच के कोण θ की गणना इस प्रकार की जाती है

क्षेत्रफल

सतह का क्षेत्रफल ऐसी एक अन्य संख्यात्मक राशि है जो केवल सतह पर ही निर्भर होनी चाहिए, न कि इस पर कि यह कैसे प्राचलीकृत है। यदि सतह M, uv-समतल में प्रांत D पर फलन r(u, v) द्वारा प्राचलीकृत है, तो M की सतह का क्षेत्रफल निम्न समाकल द्वारा दिया जाता है

जहाँ ×, क्रॉस (सदिश) गुणन को दर्शाता है, और निरपेक्ष मान यूक्लिडीय अंतरिक्ष में एक सदिश की लंबाई को दर्शाता है। क्रॉस गुणन के लिए लैग्रेंज की सर्वसमिका से, इस समाकल को इस प्रकार लिखा जा सकता है

जहाँ det, सारणिक है।

परिभाषा

माना M, n विमाओं, उदाहरण के लिए कार्तीय तल में एक सतह (n = 2 की स्थिति में) या हाइपरसफेस, वाला एक निष्कोण मैनिफोल्ड है। प्रत्येक बिंदु pM पर एक सदिश अंतरिक्ष TpM होता है, जिसे स्पर्शरेखा समष्टि कहा जाता है, जिसमें बिंदु p पर मैनिफोल्ड स्पर्शरेखा सदिश होते हैं। p पर एक मीट्रिक टेंसर एक फलन gp(Xp, Yp) है जो इनपुट के रूप में p पर स्पर्शरेखा सदिश Xp और Yp की एक जोड़ी लेता है, और आउटपुट के रूप में एक वास्तविक संख्या (स्केलर) उत्पन्न करता है, ताकि निम्नलिखित शर्तों को पूरा किया जा सके:

  • gp द्विरेखीय है। दो सदिश तर्कों का एक फलन द्विरेखीय होता है यदि यह प्रत्येक तर्क में पृथक रूप से रैखिक हो। इस प्रकार यदि Up, Vp, Yp p पर तीन स्पर्शरेखा सदिश हैं और a और b वास्तविक संख्याएँ हैं, तो
  • gp सममित है।[2] दो सदिश तर्कों का एक फलन सममित होता है बशर्ते कि सभी सदिशों Xp और Yp के लिए,
  • gp गैर-डीजेनरेट है। एक द्विरेखीय फलन अविकृत होता है, बशर्ते कि प्रत्येक स्पर्शरेखा सदिश Xp ≠ 0 के लिए, फलन
    Xp को स्थिर रखते हुए और Yp को अलग-अलग करने की अनुमति देकर प्राप्त किया गया समान रूप से शून्य नहीं है। अर्थात्, प्रत्येक Xp ≠ 0 के लिए एक Yp का अस्तित्व होता है जैसे कि gp(Xp, Yp) ≠ 0

M पर एक मीट्रिक टेन्सर फील्ड g, M के प्रत्येक बिंदु p को p पर स्पर्शरेखा स्थान में एक मीट्रिक टेंसर gp को इस तरह से असाइन करता है जो आसानी से p के साथ बदलता रहता है। अधिक सटीक रूप से, U पर कई गुना M और किसी भी (चिकनी) वेक्टर क्षेत्र X और Y के किसी भी खुले उपसमुच्चय को देखते हुए, वास्तविक कार्य

p का एक सहज कार्य है।

मीट्रिक के घटक

सदिश क्षेत्रों, या फ्रेम, f = (X1, ..., Xn) के किसी भी आधार में मीट्रिक के घटक[3] द्वारा दिए गए हैं

 

 

 

 

(4)

n2 }} फ़ंक्शन gij[f] की प्रविष्टियों को बनाएं n × n सममित मैट्रिक्स, G[f]।यदि

pU पर दो सदिश हैं, तो v और w पर लागू मीट्रिक का मान गुणांक (4) द्वारा द्विरेखीयिटी द्वारा निर्धारित किया जाता है:

G[f] द्वारा आव्यूह (gij[f]) को नकारना और सदिश v और w के घटकों को कॉलम सदिश v[f] और w[f] में व्यवस्थित करना,

जहाँ v[f]T और w[f]T क्रमशः सदिशों v[f] और w[f] के स्थानांतरण को दर्शाता है। रूप के आधार में परिवर्तन के तहत

कुछ व्युत्क्रमणीय n × n आव्यूह A = (aij) के लिए, मीट्रिक के घटकों का आव्यूह A द्वारा भी बदलता है। वह है,

या, इस आव्यूह की प्रविष्टियों के संदर्भ में,

इस कारण से, मात्राओं की प्रणाली gij[f] को फ्रेम f में परिवर्तनों के संबंध में सहपरिवर्ती रूप से रूपांतरित करने के लिए कहा जाता है।

निर्देशांक में मीट्रिक

n वास्तविक-मूल्यवान कार्यों (x1, ..., xn) की एक प्रणाली, M में एक खुले सेट U पर स्थानीय निर्देशांक दे रही है, U पर सदिश फ़ील्ड का आधार निर्धारित करती है

मीट्रिक g में इस फ़्रेम के सापेक्ष घटक होते हैं जो इसके द्वारा दिए गए हैं

स्थानीय निर्देशांक की एक नई प्रणाली के सापेक्ष, कहते हैं

मीट्रिक टेन्सर गुणांकों का एक अलग आव्यूह निर्धारित करेगा,

कार्यों की यह नई प्रणाली श्रृंखला नियम के माध्यम से मूल gij(f) से संबंधित है

जिससे

या, आव्यूह G[f] = (gij[f]) और G[f′] = (gij[f′]) के संदर्भ में,

जहाँ Dy निर्देशांक परिवर्तन के जैकोबियन आव्यूह को दर्शाता है।

एक मीट्रिक का संकेतक

किसी भी मीट्रिक टेन्सर से संबंधित द्विघात रूप है जिसे प्रत्येक स्पर्शरेखा स्थान में परिभाषित किया गया है

यदि qm सभी गैर-शून्य Xm के लिए धनात्मक है, तो मीट्रिक m पर धनात्मक-निश्चित है। यदि मीट्रिक प्रत्येक mM पर धनात्मक-निश्चित है, तो g को रीमैनियन मीट्रिक कहा जाता है। अधिक आम तौर पर, यदि द्विघात रूपों qm में m से स्वतंत्र निरंतर संकेतक होते हैं, तो g का संकेतक यह संकेतक होता है, और g को छद्म-रीमैनियन मीट्रिक कहा जाता है।[4] यदि M जुड़ा हुआ है, तो qm का संकेतक m पर निर्भर नहीं करता है।[5]

सिल्वेस्टर के जड़त्व के नियम से, स्पर्शरेखा सदिशों Xi के आधार को स्थानीय रूप से चुना जा सकता है ताकि द्विघात रूप निम्नलिखित तरीके से विकर्ण हो

कुछ p के लिए 1 और n के बीच। q के ऐसे किन्हीं दो व्यंजकों (M के एक ही बिंदु m पर) के सकारात्मक चिह्नों की समान संख्या p होगी। g का संकेतक पूर्णांक (p, np) की जोड़ी है, यह दर्शाता है कि ऐसी किसी भी अभिव्यक्ति में p सकारात्मक संकेत और np नकारात्मक संकेत हैं। समतुल्य रूप से, मीट्रिक में संकेतक (p, np) होता है यदि मीट्रिक के आव्यूह gij में p धनात्मक और np ऋणात्मक eigenvalues ​​होते हैं।

कुछ मीट्रिक संकेतक जो अक्सर अनुप्रयोगों में उत्पन्न होते हैं:

  • यदि g के संकेतक (n, 0) हैं, तो g एक रीमैनियन मीट्रिक है, और M को रीमैनियन मैनिफोल्ड कहा जाता है। अन्यथा, g एक छद्म-रीमैनियन मीट्रिक है, और M को एक छद्म-रीमैनियन मैनिफोल्ड कहा जाता है (अर्द्ध-रिमैनियन शब्द का भी उपयोग किया जाता है)।
  • यदि M संकेतक (1, 3) या (3, 1) के साथ चार आयामी है, तो मीट्रिक को लोरेंट्ज़ियन मीट्रिक कहा जाता है। अधिक आम तौर पर, संकेतक (1, n − 1) या (n − 1, 1) के 4 के अलावा आयाम n में एक मीट्रिक टेन्सर को कभी-कभी लोरेंत्ज़ियन भी कहा जाता है।
  • यदि M 2n-आयामी है और g का संकेतक (n, n) है, तो मीट्रिक को अल्ट्राहाइपरबोलिक मीट्रिक कहा जाता है।

व्युत्क्रम मीट्रिक

मान लीजिए कि f = (X1, ..., Xn) सदिश क्षेत्रों का एक आधार है, और जैसा कि ऊपर बताया गया है कि G[f] गुणांकों का आव्यूह है

व्युत्क्रम आव्यूह G[f]−1 पर विचार किया जा सकता है, जिसे व्युत्क्रम मीट्रिक (या संयुग्म या दोहरी मीट्रिक) से पहचाना जाता है। व्युत्क्रम मीट्रिक एक परिवर्तन कानून को संतुष्ट करता है जब फ्रेम f को आव्यूह A द्वारा बदल दिया जाता है

 

 

 

 

(5)

व्युत्क्रम मीट्रिक विपरीत रूप से रूपांतरित होता है, या आधार आव्यूह A के परिवर्तन के व्युत्क्रम के संबंध में। जबकि मीट्रिक स्वयं सदिश क्षेत्रों की लंबाई (या कोण के बीच) को मापने का एक तरीका प्रदान करता है, व्युत्क्रम मीट्रिक लंबाई को मापने का एक साधन प्रदान करता है। (या बीच का कोण) कोसदिश फ़ील्ड्स; वह है, रैखिक क्रियाओं के क्षेत्र।

इसे देखने के लिए, मान लीजिए α एक कोसदिश क्षेत्र है। बुद्धि के लिए, प्रत्येक बिंदु p के लिए, α p पर स्पर्शरेखा सदिश पर परिभाषित एक फलन αp निर्धारित करता है ताकि निम्नलिखित रैखिकता की स्थिति सभी स्पर्शरेखा सदिश Xp और Yp, और सभी वास्तविक संख्याओं a और b के लिए हो:

जैसा कि p भिन्न होता है, α को इस अर्थ में एक सहज कार्य माना जाता है

किसी भी चिकने सदिश क्षेत्र X के लिए p का एक सहज कार्य है।

किसी भी कोसदिश फ़ील्ड α में सदिश फ़ील्ड f के आधार पर घटक होते हैं। इनके द्वारा निर्धारित किया जाता है

द्वारा इन घटकों के पंक्ति सदिश को निरूपित करें

एक आव्यूह A द्वारा f के परिवर्तन के तहत, α[f] नियम द्वारा बदलता है

अर्थात्, घटकों का पंक्ति सदिश α[f] सहसंयोजक सदिश के रूप में बदल जाता है।

कोसदिश क्षेत्रों की एक जोड़ी α और β के लिए, इन दो कोसदिशों पर लागू व्युत्क्रम मीट्रिक को परिभाषित करें

 

 

 

 

(6)

परिणामी परिभाषा, हालांकि इसमें आधार f का विकल्प शामिल है, वास्तव में f पर एक आवश्यक तरीके से निर्भर नहीं करता है। वास्तव में, आधार को fA में बदलने से प्राप्त होता है

ताकि समीकरण का दाहिना पक्ष (6) आधार f को किसी भी अन्य आधार fA में बदलने से अप्रभावित रहे। नतीजतन, समीकरण को आधार की पसंद से स्वतंत्र रूप से एक अर्थ सौंपा जा सकता है। आव्यूह G[f] की प्रविष्टियों को gij द्वारा निरूपित किया जाता है, जहाँ परिवर्तन कानून (5) को इंगित करने के लिए सूचकांक i और j को उठाया गया है।

उठाना और कम करना सूचकांक

सदिश क्षेत्रों f = (X1, ..., Xn) के आधार पर, किसी भी चिकने स्पर्शरेखा सदिश क्षेत्र X को रूप में लिखा जा सकता है

 

 

 

 

(7)

कुछ विशिष्ट रूप से निर्धारित सुचारू कार्यों के लिए v1, ..., vn। एक गैर-एकवचन आव्यूह A द्वारा आधार f को बदलने पर, गुणांक vi इस तरह से बदलते हैं कि समीकरण (7) सही रहता है। वह है,

फलस्वरूप, v[fA] = A−1v[f]। दूसरे शब्दों में, सदिश v[f] के घटक गैर-एकवचन आव्यूह A द्वारा आधार के परिवर्तन के तहत विपरीत रूप से (यानी, विपरीत या विपरीत तरीके से) रूपांतरित होते हैं। vi[f] की ऊपरी स्थिति में।

एक फ्रेम भी कोसदिशों को उनके घटकों के संदर्भ में व्यक्त करने की अनुमति देता है। सदिश क्षेत्रों के आधार के लिए f = (X1, ..., Xn) दोहरे आधार को रैखिक कार्यात्मक (θ1[f], ..., θn[f]) इस प्रकार परिभाषित करते हैं कि

अर्थात्, θi[f](Xj) = δji, क्रोनकर डेल्टा। माना

एक गैर-एकवचन आव्यूह A के लिए आधार ffA के परिवर्तन के तहत, θ[f] के माध्यम से बदल जाता है

स्पर्शरेखा सदिशों पर किसी भी रैखिक कार्यात्मक α को दोहरे आधार θ के संदर्भ में विस्तारित किया जा सकता है

 

 

 

 

(8)

जहाँ a[f] पंक्ति सदिश [ a1[f] ... an[f] ] को दर्शाता है। घटक ai रूपांतरित होते हैं जब आधार f को fA द्वारा इस तरह से बदल दिया जाता है कि समीकरण (8) जारी रहता है। वह है,

जहाँ से, क्योंकि θ[fA] = A−1θ[f], यह इस प्रकार है कि a[fA] = a[f]A। यही है, घटक a सहसंयोजक रूप से परिवर्तित होते हैं (इसके व्युत्क्रम के बजाय आव्यूह A द्वारा)। a[f] के घटकों के सहप्रसरण को ai[f] के सूचकांकों को निचले स्थान पर रखकर सांकेतिक रूप से निर्दिष्ट किया जाता है।

अब, मीट्रिक टेन्सर सदिशों और कोसदिशों की पहचान करने के लिए निम्न प्रकार से एक साधन प्रदान करता है। होल्डिंग Xp फिक्स्ड, फंक्शन

स्पर्शरेखा सदिश Yp p पर स्पर्शरेखा स्थान पर एक रैखिक कार्यात्मक परिभाषित करता है। यह संक्रिया सदिश Xp को बिंदु p पर लेती है और एक सहसंयोजक gp(Xp, −) उत्पन्न करती है। सदिश क्षेत्र f के आधार पर, यदि एक सदिश क्षेत्र X में घटक v[f] हैं, तो दोहरे आधार में कोसदिश क्षेत्र g(X, −) के घटक पंक्ति सदिश की प्रविष्टियों द्वारा दिए गए हैं

आधार परिवर्तन ffA के तहत, इस समीकरण का दाहिना हाथ के माध्यम से रूपांतरित होता है

ताकि a[fA] = a[f]A: a सहपरिवर्ती रूप से परिवर्तित हो जाए। एक सदिश क्षेत्र v[f] = [ v1[f] v2[f] ... vn[f] ]T के (प्रतिपरिवर्ती) घटकों को सहसंयोजक क्षेत्र a[f] के घटकों से संबद्ध करने की क्रिया a[f] = [ a1[f] a2[f] … an[f] ], जहाँ

सूचकांक को कम करना कहा जाता है।

सूचकांक बढ़ाने के लिए, एक ही निर्माण लागू होता है लेकिन मीट्रिक के बजाय उलटा मीट्रिक के साथ। अगर a[f] = [ a1[f] a2[f] ... an[f] ] दोहरे आधार θ[f] में एक कोसदिश के घटक हैं, तो कॉलम सदिश

 

 

 

 

(9)

ऐसे घटक हैं जो विपरीत रूप से रूपांतरित होते हैं:

नतीजतन, मात्रा X = fv[f] एक आवश्यक तरीके से आधार f की पसंद पर निर्भर नहीं करता है, और इस प्रकार M पर एक सदिश क्षेत्र को परिभाषित करता है। ऑपरेशन (9) एक कोसदिश a[f] के (सहसंयोजक) घटकों से जुड़ा हुआ है दिए गए सदिश v[f] के (प्रतिपरिवर्ती) घटकों को सूचकांक उठाना कहा जाता है। घटकों में, (9) है

प्रेरित मीट्रिक

U को n में एक खुला सेट होने दें, और φ को U से यूक्लिडीय स्पेस m में एक सतत अवकलनीय फलन होने दें, जहाँ m > n। मैपिंग φ को एक विसर्जन कहा जाता है यदि इसका अंतर U के हर बिंदु पर एकैकी है। φ की छवि को एक डूबे हुए सबमनीफोल्ड कहा जाता है। अधिक विशेष रूप से, m = 3 के लिए, जिसका अर्थ है कि परिवेशी यूक्लिडीय स्थान 3 है, प्रेरित मीट्रिक टेन्सर को पहला मौलिक रूप कहा जाता है।

मान लीजिए कि φ सबमनीफोल्ड MRm पर एक निमज्जन है। m में सामान्य यूक्लिडीय बिंदु गुणन एक मीट्रिक है, जो M के स्पर्शरेखा वाले सदिश तक सीमित होने पर, इन स्पर्शरेखा सदिशों के बिंदु गुणन लेने के लिए एक साधन देता है। इसे प्रेरित मीट्रिक कहा जाता है।

मान लीजिए कि v, U के एक बिंदु पर एक स्पर्शरेखा सदिश है, मान लीजिए

जहाँ ei मानक निर्देशांक सदिश n में हैं। जब φ को U पर लागू किया जाता है, तो सदिश v M द्वारा दिए गए सदिश स्पर्शरेखा पर चला जाता है

(इसे φ के साथ v का पुशफॉरवर्ड कहा जाता है।) ऐसे दो सदिश, v और w दिए गए हैं, प्रेरित मीट्रिक द्वारा परिभाषित किया गया है

यह एक सीधी गणना से अनुसरण करता है कि समन्वित सदिश फ़ील्ड e के आधार पर प्रेरित मीट्रिक का आव्यूह द्वारा दिया गया है

जहाँ जैकबियन आव्यूह है:

एक मीट्रिक की आंतरिक परिभाषाएँ

फाइबर बंडलों और सदिश बंडलों की भाषा का उपयोग करके एक मीट्रिक की धारणा को आंतरिक रूप से परिभाषित किया जा सकता है। इन शब्दों में, मीट्रिक टेंसर एक फलन है

 

 

 

 

(10)

M के स्पर्शरेखा बंडल के फाइबर गुणन से स्वयं R के साथ जैसे कि प्रत्येक फाइबर के लिए g का प्रतिबंध एक गैर-विकृत द्विरेखीय मानचित्रण है

ब्याज के मामले के आधार पर मैपिंग (10) निरंतर, और अक्सर लगातार अलग-अलग, चिकनी, या वास्तविक विश्लेषणात्मक होना आवश्यक है, और M ऐसी संरचना का समर्थन कर सकता है या नहीं।

मीट्रिक एक बंडल के एक खंड के रूप में

टेंसर गुणन की सार्वभौमिक संपत्ति के द्वारा, कोई भी द्विरेखीय मैपिंग (10) स्वाभाविक रूप से TM के टेंसर गुणन बंडल के दोहरे के एक सेक्शन g को जन्म देती है

खंड g को TM ⊗ TM के सरल तत्वों पर परिभाषित किया गया है

और सरल तत्वों के रैखिक संयोजनों के रैखिक रूप से विस्तार करके TM ⊗ TM के मनमाने तत्वों पर परिभाषित किया गया है। मूल द्विरेखीय रूप g सममित है यदि और केवल यदि

जहाँ

ब्रेडिंग नक्शा है।

चूँकि M परिमित-आयामी है, एक प्राकृतिक आइसोमोर्फिज्म है

ताकि g को बंडल T*M ⊗ T*M के स्वयं के साथ कोटगेंट बंडल T*M के एक भाग के रूप में भी माना जाए। चूँकि g द्विरेखीय मैपिंग के रूप में सममित है, इसलिए यह अनुसरण करता है कि g एक सममित टेन्सर है।

एक सदिश बंडल में मीट्रिक

अधिक सामान्यतः, एक सदिश बंडल में एक मीट्रिक के बारे में बात कर सकते हैं। यदि E मैनिफोल्ड M पर एक सदिश बंडल है, तो एक मीट्रिक एक मानचित्रण है

E से R के फाइबर गुणन से जो प्रत्येक फाइबर में द्विरेखीय है:

उपरोक्त के रूप में द्वैत का उपयोग करते हुए, एक मीट्रिक को अक्सर टेंसर गुणन बंडल E* ⊗ E* के एक भाग के साथ पहचाना जाता है। (मीट्रिक (सदिश बंडल) देखें।)

स्पर्शरेखा -कोटैंगेंट आइसोमोर्फिज्म

मीट्रिक टेन्सर, स्पर्शरेखा बंडल से कोटैंजेंट बंडल तक एक प्राकृतिक समरूपता प्रदान करता है, जिसे कभी-कभी संगीतमय समरूपता कहा जाता है।[6] यह तुल्याकारिता प्रत्येक स्पर्शरेखा सदिश Xp ∈ TpM के लिए सेटिंग द्वारा प्राप्त की जाती है,

TpM पर रैखिक कार्यात्मक जो p से gp(Xp,Yp) पर एक स्पर्शरेखा सदिश Yp भेजता है। अर्थात्, TpM और इसके दोहरे स्थान T
p
M
के बीच [−, −] की जोड़ी के संदर्भ में

सभी स्पर्शरेखा सदिश Xp और Yp के लिए। मैपिंग Sg TpM से T
p
M
तक एक रैखिक परिवर्तन है। यह गैर-अपकर्ष की परिभाषा से अनुसरण करता है कि Sg का कर्नेल शून्य तक कम हो जाता है, और इसलिए रैंक-शून्यता प्रमेय द्वारा, Sg एक रैखिक समरूपता है। इसके अलावा, Sg इस अर्थ में एक सममित रैखिक परिवर्तन है

सभी स्पर्शरेखा सदिश Xp और Yp के लिए।

इसके विपरीत, कोई रैखिक आइसोमोर्फिज्म S : TpM → T
p
M
के माध्यम से TpM पर एक गैर-पतित द्विरेखीय रूप को परिभाषित करता है

यह द्विरेखीय रूप सममित है यदि और केवल यदि S सममित है। इस प्रकार TpM पर सममित द्विरेखीय रूपों और TpM के सममित रेखीय समरूपता के बीच दोहरे T
p
M
के बीच एक प्राकृतिक एक-से-एक पत्राचार होता है।

जैसा कि p M पर भिन्न होता है, Sg टेंगेंट बंडल के टेंगेंट बंडल के सदिश बंडल आइसोमोर्फिज्म के बंडल Hom(TM, T*M) के एक खंड को परिभाषित करता है। इस खंड में g के समान ही चिकनाई है: यह g के अनुसार निरंतर, भिन्न, चिकनी या वास्तविक-विश्लेषणात्मक है। मैपिंग Sg, जो M पर प्रत्येक सदिश फ़ील्ड को M पर एक कोसदिश फ़ील्ड से जोड़ता है, सदिश फ़ील्ड पर "इंडेक्स को कम करने" का एक सार फॉर्मूलेशन देता है। Sg का व्युत्क्रम एक मानचित्रण T*M → TM है, जो समान रूप से, एक कोसदिश क्षेत्र पर "सूचकांक बढ़ाने" का एक सार सूत्रीकरण देता है।

व्युत्क्रम S−1
g
एक रेखीय मानचित्रण को परिभाषित करता है

जो इस अर्थ में व्युत्क्रमणीय और सममित है

सभी covectors α, β के लिए। इस तरह के एक विलक्षण सममित मानचित्रण एक मानचित्र को (टेन्सर-हेम एडजंक्शन द्वारा) जन्म देता है

या डबल डुअल आइसोमोर्फिज्म द्वारा टेंसर गुणन के एक भाग के लिए

चाप की लम्बाई और रेखा तत्व

मान लीजिए कि g M पर एक रीमैनियन मीट्रिक है। एक स्थानीय निर्देशांक प्रणाली में xi, i = 1, 2, …, n, मीट्रिक टेन्सर एक आव्यूह के रूप में प्रकट होता है, जिसे G द्वारा निरूपित किया जाता है, जिसकी प्रविष्टियाँ मीट्रिक टेन्सर के घटक gij हैं निर्देशांक सदिश क्षेत्रों के सापेक्ष।

मान लीजिए कि γ(t) M में एक atb के लिए एक खंड-विभेदक प्राचलिक वक्र है। वक्र की चाप लंबाई द्वारा परिभाषित किया गया है

इस ज्यामितीय अनुप्रयोग के संबंध में, द्विघात विभेदक रूप

मीट्रिक से जुड़ा पहला मौलिक रूप कहा जाता है, जबकि ds रेखा तत्व है। जब ds2 को M में एक वक्र की छवि पर पुलबैक किया जाता है, तो यह चाप की लम्बाई के संबंध में अंतर के वर्ग का प्रतिनिधित्व करता है।

छद्म-रीमैनियन मीट्रिक के लिए, उपरोक्त लंबाई सूत्र हमेशा परिभाषित नहीं होता है, क्योंकि वर्गमूल के अंतर्गत शब्द ऋणात्मक हो सकता है। हम आम तौर पर केवल एक वक्र की लंबाई को परिभाषित करते हैं जब वर्गमूल के तहत मात्रा हमेशा एक या दूसरे चिह्न की होती है। इस मामले में परिभाषित करें

ध्यान दें कि, जबकि ये सूत्र निर्देशांक व्यंजकों का उपयोग करते हैं, वे वास्तव में चुने गए निर्देशांकों से स्वतंत्र होते हैं; वे केवल मीट्रिक और उस वक्र पर निर्भर करते हैं जिसके साथ सूत्र एकीकृत है।

ऊर्जा, परिवर्तनशील सिद्धांत और जियोडेसिक्स

वक्र के एक खंड को देखते हुए, एक अन्य अक्सर परिभाषित मात्रा वक्र की (गतिज) ऊर्जा है:

यह उपयोग भौतिकी, विशेष रूप से, शास्त्रीय यांत्रिकी से आता है, जहाँ अभिन्न E को मैनिफोल्ड की सतह पर चलने वाले बिंदु कण की गतिज ऊर्जा के सीधे अनुरूप देखा जा सकता है। इस प्रकार, उदाहरण के लिए, जैकोबी के मूपर्टुइस सिद्धांत के सूत्रीकरण में, मीट्रिक टेन्सर को गतिमान कण के द्रव्यमान टेन्सर के अनुरूप देखा जा सकता है।

कई मामलों में, जब भी गणना के लिए लंबाई का उपयोग करने की आवश्यकता होती है, तो ऊर्जा का उपयोग करके समान गणना भी की जा सकती है। यह अक्सर वर्ग-मूल की आवश्यकता से बचकर सरल सूत्रों की ओर ले जाता है। इस प्रकार, उदाहरण के लिए, भूगणितीय समीकरणों को या तो लंबाई या ऊर्जा में परिवर्तनशील सिद्धांतों को लागू करके प्राप्त किया जा सकता है। बाद के मामले में, जियोडेसिक समीकरण कम से कम कार्रवाई के सिद्धांत से उत्पन्न होते हैं: वे एक "मुक्त कण" (कोई बल महसूस नहीं करने वाला कण) की गति का वर्णन करते हैं जो मैनिफोल्ड बढ़ने के लिए सीमित है, लेकिन अन्यथा स्वतंत्र रूप से चलता है, निरंतर गति के साथ, मैनिफोल्ड के भीतर।[7]

कैनोनिकल माप और वॉल्यूम फॉर्म

सतहों के मामले के अनुरूप, एक n-डायमेंशनल पैराकॉम्पैक्ट मैनिफोल्ड M पर एक मीट्रिक टेंसर मैनिफोल्ड के सबसेट के n-डायमेंशनल वॉल्यूम को मापने के लिए एक प्राकृतिक तरीके को जन्म देता है। परिणामी प्राकृतिक सकारात्मक बोरेल माप से संबंधित लेबेसेग इंटीग्रल इंटीग्रल के माध्यम से मैनिफोल्ड कार्यों को एकीकृत करने के सिद्धांत को विकसित करने की अनुमति मिलती है।

एक माप को परिभाषित किया जा सकता है, रिज प्रतिनिधित्व प्रमेय द्वारा, M पर कॉम्पैक्ट रूप से समर्थित निरंतर कार्यों के अंतरिक्ष C0(M) पर एक सकारात्मक रैखिक कार्यात्मक Λ देकर। अधिक सटीक रूप से, यदि M एक (छद्म-) रीमैनियन मीट्रिक टेंसर g के साथ मैनिफोल्ड है, तो μg एक अद्वितीय सकारात्मक बोरेल माप माइक्रोग्राम है जैसे कि किसी भी निर्देशांक चार्ट (U, φ) के लिए,

U में समर्थित सभी f के लिए। यहाँ det g निर्देशांक चार्ट में मीट्रिक टेंसर के घटकों द्वारा गठित मैट्रिक्स का निर्धारक है। वह Λ समन्वित पड़ोस में समर्थित कार्यों पर अच्छी तरह से परिभाषित है, चर के जैकोबियन परिवर्तन द्वारा उचित है। यह एकता के विभाजन के माध्यम से C0(M) पर एक अद्वितीय सकारात्मक रैखिक कार्यात्मकता तक फैली हुई है।


यदि M भी उन्मुख है, तो मीट्रिक टेन्सर से प्राकृतिक मात्रा के रूप को परिभाषित करना संभव है। सकारात्मक रूप से उन्मुख निर्देशांक प्रणाली (x1, ..., xn) में वॉल्यूम फॉर्म का प्रतिनिधित्व किया जाता है

जहाँ dxi निर्देशांक अंतर हैं और अंतर रूपों के बीजगणित में बाहरी गुणन को दर्शाता है। वॉल्यूम फॉर्म मैनिफोल्ड पर कार्यों को एकीकृत करने का एक तरीका भी देता है, और यह ज्यामितीय इंटीग्रल कैनोनिकल बोरेल माप द्वारा प्राप्त इंटीग्रल से सहमत है।

उदाहरण

यूक्लिडीय मीट्रिक

सबसे परिचित उदाहरण प्राथमिक यूक्लिडीय ज्यामिति का है: द्वि-आयामी यूक्लिडीय मीट्रिक टेन्सर। सामान्य (x, y) निर्देशांकों में हम लिख सकते हैं

वक्र की लंबाई सूत्र में घट जाती है:

कुछ अन्य सामान्य निर्देशांक प्रणालियों में यूक्लिडीय मीट्रिक को निम्नानुसार लिखा जा सकता है।

धुवीय निर्देशांक (r, θ):

इसलिए

त्रिकोणमितीय पहचान द्वारा।

सामान्य तौर पर, एक यूक्लिडीय अंतरिक्ष पर कार्तीय निर्देशांक प्रणाली xi में, आंशिक अवकलजों ∂ / ∂xi यूक्लिडीय मीट्रिक के संबंध में ऑर्थोनॉर्मल हैं। इस प्रकार मीट्रिक टेन्सर इस निर्देशांक प्रणाली में क्रोनकर डेल्टा δij है। मनमाना (संभवतः घुमावदार) निर्देशांक qi के संबंध में मीट्रिक टेन्सर द्वारा दिया गया है


एक क्षेत्र पर गोल मीट्रिक

3 में इकाई क्षेत्र परिवेश यूक्लिडीय मीट्रिक से प्रेरित एक प्राकृतिक मीट्रिक से सुसज्जित है, जो प्रेरित मीट्रिक अनुभाग में बताई गई प्रक्रिया के माध्यम से है। मानक गोलाकार निर्देशांक (θ, φ) में, θ समांतरता के साथ, z-अक्ष से मापा गया कोण, और φ xy-तल में x-अक्ष से कोण, मीट्रिक का रूप लेता है

यह आमतौर पर फॉर्म में लिखा जाता है

लोरेंट्ज़ियन मीट्रिक्स रिलेटिविटी से

फ्लैट मिन्कोव्स्की अंतरिक्ष (विशेष सापेक्षता) में, निर्देशांक के साथ

मीट्रिक संकेतक की पसंद के आधार पर मीट्रिक है,

एक वक्र के लिए - उदाहरण के लिए - निरंतर समय निर्देशांक, इस मीट्रिक के साथ लंबाई सूत्र सामान्य लंबाई सूत्र को कम करता है। समयबद्ध वक्र के लिए, लंबाई सूत्र वक्र के साथ उचित समय देता है।

इस मामले में, स्पेसटाइम अंतराल के रूप में लिखा गया है

श्वार्ज़स्चिल्ड मीट्रिक मीट्रिक एक गोलाकार रूप से सममित शरीर, जैसे ग्रह, या ब्लैक होल के आसपास स्पेसटाइम का वर्णन करता है। निर्देशांक के साथ

हम मीट्रिक को इस रूप में लिख सकते हैं

जहाँ G (आव्यूह के अंदर) गुरुत्वाकर्षण स्थिरांक है और M केंद्रीय वस्तु की कुल द्रव्यमान-ऊर्जा सामग्री का प्रतिनिधित्व करता है।

यह भी देखें

टिप्पणियाँ

  1. More precisely, the integrand is the pullback of this differential to the curve.
  2. In several formulations of classical unified field theories, the metric tensor was allowed to be non-symmetric; however, the antisymmetric part of such a tensor plays no role in the contexts described here, so it will not be further considered.
  3. The notation of using square brackets to denote the basis in terms of which the components are calculated is not universal. The notation employed here is modeled on that of Wells (1980). Typically, such explicit dependence on the basis is entirely suppressed.
  4. Dodson & Poston 1991, Chapter VII §3.04
  5. Vaughn 2007, §3.4.3
  6. For the terminology "musical isomorphism", see Gallot, Hulin & Lafontaine (2004, p. 75). See also Lee (1997, pp. 27–29)
  7. Sternberg 1983


संदर्भ

  • Dodson, C. T. J.; Poston, T. (1991), Tensor geometry, Graduate Texts in Mathematics, vol. 130 (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-10514-2, ISBN 978-3-540-52018-4, MR 1223091
  • Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques (2004), Riemannian Geometry (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-20493-0.
  • Gauss, Carl Friedrich (1827), General Investigations of Curved Surfaces, New York: Raven Press (published 1965) translated by A. M. Hiltebeitel and J. C. Morehead; "Disquisitiones generales circa superficies curvas", Commentationes Societatis Regiae Scientiarum Gottingesis Recentiores Vol. VI (1827), pp. 99–146.
  • Hawking, S.W.; Ellis, G.F.R. (1973), The large scale structure of space-time, Cambridge University Press.
  • Kay, David (1988), Schaum's Outline of Theory and Problems of Tensor Calculus, McGraw-Hill, ISBN 978-0-07-033484-7.
  • Kline, Morris (1990), Mathematical thought from ancient to modern times, Volume 3, Oxford University Press.
  • Lee, John (1997), Riemannian manifolds, Springer Verlag, ISBN 978-0-387-98322-6.
  • Michor, Peter W. (2008), Topics in Differential Geometry, Graduate Studies in Mathematics, vol. 93, Providence: American Mathematical Society (to appear).
  • Misner, Charles W.; Thorne, Kip S.; Wheeler, John A. (1973), Gravitation, W. H. Freeman, ISBN 0-7167-0344-0
  • Ricci-Curbastro, Gregorio; Levi-Civita, Tullio (1900), "Méthodes de calcul différentiel absolu et leurs applications", Mathematische Annalen, 54 (1): 125–201, doi:10.1007/BF01454201, ISSN 1432-1807, S2CID 120009332
  • Sternberg, S. (1983), Lectures on Differential Geometry (2nd ed.), New York: Chelsea Publishing Co., ISBN 0-8218-1385-4
  • Vaughn, Michael T. (2007), Introduction to mathematical physics (PDF), Weinheim: Wiley-VCH Verlag GmbH & Co., doi:10.1002/9783527618859, ISBN 978-3-527-40627-2, MR 2324500
  • Wells, Raymond (1980), Differential Analysis on Complex Manifolds, Berlin, New York: Springer-Verlag

श्रेणी: रिमैनियन ज्यामिति] श्रेणी: टेन्सर श्रेणी: भौतिकी में अवधारणाएं श्रेणी: अंतर ज्यामिति] *1